1
|
Gyawali P, Ziegler D, Cailhier JF, Denault A, Cloutier G. Quantitative Measurement of Erythrocyte Aggregation as a Systemic Inflammatory Marker by Ultrasound Imaging: A Systematic Review. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:1303-1317. [PMID: 29661483 DOI: 10.1016/j.ultrasmedbio.2018.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/21/2018] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
This systematic review is aimed at answering two questions: (i) Is erythrocyte aggregation a useful biomarker in assessing systemic inflammation? (ii) Does quantitative ultrasound imaging provide the non-invasive option to measure erythrocyte aggregation in real time? The search was executed through bibliographic electronic databases CINAHL, EMB Review, EMBASE, MEDLINE, PubMed and the grey literature. The majority of studies correlated elevated erythrocyte aggregation with inflammatory blood markers for several pathologic states. Some studies used "erythrocyte aggregation" as an established marker of systemic inflammation. There were limited but promising articles regarding the use of quantitative ultrasound spectroscopy to monitor erythrocyte aggregation. Similarly, there were limited studies that used other ultrasound techniques to measure systemic inflammation. The quantitative measurement of erythrocyte aggregation has the potential to be a routine clinical marker of inflammation as it can reflect the cumulative inflammatory dynamics in vivo, is relatively simple to measure, is cost-effective and has a rapid turnaround time. Technologies like quantitative ultrasound spectroscopy that can measure erythrocyte aggregation non-invasively and in real time may offer the advantage of continuous monitoring of the inflammation state and, thus, may help in rapid decision making in a critical care setup.
Collapse
Affiliation(s)
- Prajwal Gyawali
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, Québec, Canada
| | - Daniela Ziegler
- Documentation Center, University of Montreal Hospital, Montréal, Québec, Canada
| | - Jean-François Cailhier
- University of Montreal Hospital Research Center (CRCHUM), Montréal, Québec, Canada; Department of Medicine, University of Montreal, Montréal, Québec, Canada
| | - André Denault
- University of Montreal Hospital, Montreal, Québec, Canada; Montreal Heart Institute, Montreal, Québec, Canada; Department of Anesthesiology, University of Montreal, Montréal, Québec, Canada
| | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, Québec, Canada; Department of Radiology, Radio-Oncology and Nuclear Medicine, Montréal, Québec, Canada; Institute of Biomedical Engineering, University of Montreal, Montréal, Québec, Canada.
| |
Collapse
|
2
|
Nam KH, Paeng DG. In vivo observation of the hypo-echoic "black hole" phenomenon in rat arterial bloodstream: a preliminary Study. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:1619-1628. [PMID: 24785440 DOI: 10.1016/j.ultrasmedbio.2014.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/26/2013] [Accepted: 01/27/2014] [Indexed: 06/03/2023]
Abstract
The "black hole," a hypo-echoic hole at the center of the bloodstream surrounded by a hyper-echoic zone in cross-sectional views, has been observed in ultrasound backscattering measurements of blood with red blood cell aggregation in in vitro studies. We investigated whether the phenomenon occurs in the in vivo arterial bloodstream of rats using a high-frequency ultrasound imaging system. Longitudinal and cross-sectional ultrasound images of the rat common carotid artery (CCA) and abdominal aorta were obtained using a 40-MHz ultrasound system. A high-frame-rate retrospective imaging mode was employed to precisely examine the dynamic changes in blood echogenicity in the arteries. When the imaging was performed with non-invasive scanning, blood echogenicity was very low in the CCA as compared with the surrounding tissues, exhibiting no hypo-echoic zone at the center of the vessel. Invasive imaging of the CCA by incising the skin and subcutaneous tissues at the imaging area provided clearer and brighter blood echo images, showing the "black hole" phenomenon near the center of the vessel in longitudinal view. The "black hole" was also observed in the abdominal aorta under direct imaging after laparotomy. The aortic "black hole" was clearly observed in both longitudinal and cross-sectional views. Although the "black hole" was always observed near the center of the arteries during the diastolic phase, it dissipated or was off-center along with the asymmetric arterial wall dilation at systole. In conclusion, we report the first in vivo observation of the hypo-echoic "black hole" caused by the radial variation of red blood cell aggregation in arterial bloodstream.
Collapse
Affiliation(s)
- Kweon-Ho Nam
- Department of Ocean System Engineering, Jeju National University, Jeju, South Korea
| | - Dong-Guk Paeng
- Department of Ocean System Engineering, Jeju National University, Jeju, South Korea; Interdisciplinary Postgraduate Program in Biomedical Engineering, Jeju National University, Jeju, South Korea.
| |
Collapse
|
3
|
Nam KH, Bok TH, Kong Q, Paeng DG. High spatial and temporal resolution observations of pulsatile changes in blood echogenicity in the common carotid artery of rats. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1665-71. [PMID: 23830099 DOI: 10.1016/j.ultrasmedbio.2013.03.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 03/25/2013] [Accepted: 03/30/2013] [Indexed: 05/24/2023]
Abstract
Previous studies have found that ultrasound backscatter from blood in vascular flow systems varies under pulsatile flow, with the maximum values occurring during the systolic period. This phenomenon is of particular interest in hemorheology because it is contrary to the well-known fact that red blood cell (RBC) aggregation, which determines the intensity of ultrasound backscatter from blood, decreases at a high systolic shear rate. In the present study, a rat model was used to provide basic information on the characteristics of blood echogenicity in arterial blood flow to investigate the phenomenon of RBC aggregation under pulsatile flow. Blood echogenicity in the common carotid arteries of rats was measured using a high-frequency ultrasound imaging system with a 40-MHz probe. The electrocardiography-based kilohertz visualization reconstruction technique was employed to obtain high-temporal-resolution and high-spatial-resolution time-course B-mode cross-sectional and longitudinal images of the vessel. The experimental results indicate that blood echogenicity in rat carotid arteries varies during a cardiac cycle. Blood echogenicity tends to decrease during early systole and reaches its peak during late systole, followed by a slow decline thereafter. The time delay of the echogenicity peak from peak systole in the present results is the main difference from previous in vitro and in vivo observations of backscattering peaks during early systole, which may be caused by the very rapid heart rates and low RBC aggregation tendency of rats compared with humans and other mammalian species. The present study may provide useful information elucidating the characteristics of RBC aggregation in arterial blood flow.
Collapse
Affiliation(s)
- Kweon-Ho Nam
- Department of Ocean System Engineering, Jeju National University, Jeju, South Korea
| | | | | | | |
Collapse
|
4
|
Nam KH, Yeom E, Ha H, Lee SJ. Simultaneous measurement of red blood cell aggregation and whole blood coagulation using high-frequency ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:468-475. [PMID: 22264408 DOI: 10.1016/j.ultrasmedbio.2011.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 11/14/2011] [Accepted: 11/19/2011] [Indexed: 05/27/2023]
Abstract
This study aims to investigate the feasibility of using high-frequency ultrasound (HFUS) for simultaneous monitoring of blood coagulation and red blood cell (RBC) aggregation. Using a 35-MHz ultrasound scanner, ultrasound speckle data were acquired from whole blood samples of three experimental groups of rats, including 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS)-treated, noncoagulation and normal control groups. The variations of blood echogenicity, the shape parameters of probability distribution of speckle intensity (skewness and kurtosis) and the correlation coefficient between two consecutive speckle data were calculated as a function of time starting from immediately after taking blood. The blood echogenicity increases rapidly to plateaus at the early stage of measurement for all the experimental groups caused by the formation of RBC aggregates. The DIDS-treated group exhibits the lowest echogenicity level due to the inhibitory effect of DIDS on RBC aggregation. The correlation analysis between consecutive speckle patterns seems to be useful to examine the variation of blood fluidity and the progress of clot formation. Whole blood coagulation is observed to be accelerated by DIDS treatment. In addition, the results of skewness and kurtosis analysis indicated that RBC aggregates may be disrupted during blood coagulation. The present study suggests that HFUS has good potential for simultaneous monitoring of RBC aggregation and blood coagulation to examine the relationship between them.
Collapse
Affiliation(s)
- Kweon-Ho Nam
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology, Pohang, South Korea
| | | | | | | |
Collapse
|
5
|
Nam KH, Jeong B, Jung IO, Ha H, Kim KH, Lee SJ. Measurement of anisotropic reflection of flowing blood using optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:120502. [PMID: 22191907 DOI: 10.1117/1.3660299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Light reflectance of blood is a complex phenomenon affected by hematocrit and red blood cell (RBC) aggregation (rouleaux formation). According to the hypothesis that RBC rouleaux are aligned with the direction of blood flow, the spatial alignment of RBC rouleaux, as well as their size and quantity in the blood, may also affect light reflectance. The present study aims to investigate the effect of the spatial alignment and distribution of RBC rouleaux on light reflection using optical coherence tomography (OCT). Blood flow velocity and reflectance profiles in a rat jugular-femoral bypass loop were simultaneously measured using a Doppler swept-source OCT system at various incident angles from -30 to +30 deg. The reflectance profiles of flowing blood show nonmonotonous decay with a local negative peak at the center of the tube. The profiles vary depending on the incident angle. This angular dependence is stronger at a higher angle of incidence. The anisotropic reflectance of flowing blood is consistent with the hypothesis on the spatial alignment of RBC rouleaux.
Collapse
|
6
|
Lee SJ, Ha H, Nam KH. Measurement of red blood cell aggregation using X-ray phase contrast imaging. OPTICS EXPRESS 2010; 18:26052-26061. [PMID: 21164953 DOI: 10.1364/oe.18.026052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
When a coherent beam illuminates spatially disordered particles, speckle patterns are formed due to interference of the scattered light waves. Speckle patterns from biological tissues using synchrotron phase contrast X-ray imaging can provide functional information about micro-scale morphological structures of the tissues. In this study, we investigated the size and contrast variations of the speckles of aggregated red blood cells (RBCs) suspensions with varying the degree of RBC aggregation. Results show that the degree of RBC aggregation is a governing parameter on the change of speckle characteristics. This blood speckle analysis method can be used as a novel modality for monitoring RBC aggregation.
Collapse
Affiliation(s)
- Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784, Korea.
| | | | | |
Collapse
|
7
|
Huang CC. High-frequency attenuation and backscatter measurements of rat blood between 30 and 60 MHz. Phys Med Biol 2010; 55:5801-15. [PMID: 20844333 DOI: 10.1088/0031-9155/55/19/012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
There has recently been a great deal of interest in noninvasive high-frequency ultrasound imaging of small animals such as rats due to their being the preferred animal model for gene therapy and cancer research. Improving the interpretation of the obtained images and furthering the development of the imaging devices require a detailed knowledge of the ultrasound attenuation and backscattering of biological tissue (e.g. blood) at high frequencies. In the present study, the attenuation and backscattering coefficients of the rat red blood cell (RBC) suspensions and whole blood with hematocrits ranging from 6% to 40% were measured between 30 and 60 MHz using a modified substitution approach. The acoustic parameters of porcine blood under the same conditions were also measured in order to compare differences in the blood properties between these two animals. For porcine blood, both whole blood and RBC suspension were stirred at a rotation speed of 200 rpm. Three different rotation speeds of 100, 200 and 300 rpm were carried out for rat blood experiments. The attenuation coefficients of both rat and porcine blood were found to increase linearly with frequency and hematocrit (the values of coefficients of determination (r(2)) are around 0.82-0.97 for all cases). The average attenuation coefficient of rat whole blood with a hematocrit of 40% increased from 0.26 Nepers mm(-1) at 30 MHz to 0.47 Nepers mm(-1) at 60 MHz. The maximum backscattering coefficients of both rat and porcine RBC suspensions were between 10% and 15% hematocrits at all frequencies. The fourth-power dependence of backscatter on frequency was approximately valid for rat RBC suspensions with hematocrits between 6% and 40%. However, the frequency dependence of the backscatter estimate deviates from a fourth-power law for porcine RBC suspension with hematocrit higher than 20%. The backscattering coefficient plateaued for hematocrits higher than 15% in porcine blood, but for rat blood it was maximal around a hematocrit of 20% at the same rotation speed, and shifted to a hematocrit of 10% at a higher speed. The backscattering properties of rat RBCs in plasma are similar to those of RBCs in saline at a higher rotation speed. The differences in attenuation and backscattering between rat and porcine blood may be attributed to RBCs' being smaller and the RBC aggregation level being lower for rat blood than for porcine blood.
Collapse
Affiliation(s)
- Chih-Chung Huang
- Department of Electrical Engineering, Fu Jen Catholic University, Taipei, Taiwan, Republic of China.
| |
Collapse
|
8
|
Bigelow TA. Improved algorithm for estimation of attenuation along propagation path using backscattered echoes from multiple sources. ULTRASONICS 2010; 50:496-501. [PMID: 19913861 PMCID: PMC2823938 DOI: 10.1016/j.ultras.2009.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 10/12/2009] [Accepted: 10/14/2009] [Indexed: 05/22/2023]
Abstract
Accurately determining the attenuation along the propagation path leading to a region of interest could significantly improve diagnostic ultrasound tissue characterization since tissue characterization requires exact compensation for the frequency-dependent attenuation along the propagation path. In a previous study (JASA, 124:1367, 2008), it was shown that the total attenuation can be determined by using the backscattered echoes from multiple sources. The preliminary computer simulation results, had an average error between -0.3 and +0.2dB/MHz for the cases tested with a trend towards increasing error with increasing correlation length (i.e., characteristic size of the tissue microstructure of the scattering medium) and attenuation along the propagation path. Therefore, the goal of this study was to improve the accuracy of previously derived algorithm and reduce the dependence of the algorithm on correlation length and attenuation. In this study, the previous derivations were redone and the assumptions made by the algorithm regarding the scattering properties of the medium and the shape of the backscattered power spectrum were relaxed. The revised algorithm was then verified using computer simulations of five sources (6, 8, 10, 12, and 14MHz, 50% bandwidth) exposing a homogeneous tissue region. The simulated tissue had microstructure following a Gaussian spatial correlation function (i.e., exp(-0.827(ka(eff))(2)) where k is the wavenumber) with effective radii, a(eff), of 5-55microm (one size per simulated case) placed at a density of 250/mm(3) ( approximately 5 scatterers/resolution cell for 14MHz transducer). The attenuation of the tissue was also varied from 0.1 to 0.9dB/cm-MHz. The computer simulations demonstrated that the modifications significantly improved the accuracy of the algorithm resulting in average errors between -0.04 and 0.1dB/MHz which is three times better than the error performance of the original algorithm.
Collapse
Affiliation(s)
- Timothy A Bigelow
- Department of Electrical and Computer Engineering, Department of Mechanical Engineering, Iowa State University, 2113 Coover Hall, Ames, IA 50011, United States.
| |
Collapse
|
9
|
Paeng DG, Nam KH. Ultrasonic visualization of dynamic behavior of red blood cells in flowing blood. J Vis (Tokyo) 2009. [DOI: 10.1007/bf03181874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|