1
|
Yoon H, Song TK. An Adaptive Harmonic Separation Technique for Ultrasound Harmonic Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:743-750. [PMID: 38413294 DOI: 10.1016/j.ultrasmedbio.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 02/04/2024] [Indexed: 02/29/2024]
Abstract
OBJECTIVE An adaptive harmonic separation (HS) technique is proposed to overcome the limitations in conventional filtering techniques for ultrasound (US) tissue harmonic imaging (THI). METHODS Based on expectation-maximization source separation, the proposed HS technique adaptively models the depth-varying fundamental and harmonic components in the frequency domain and separates the two by applying their calculated posterior probabilities. Phantom experiments with a Tx center frequency of 2 MHz are conducted to evaluate the proposed HS-based US THI schemes. RESULTS The phantom images show that the proposed single-pulse THI scheme utilizing the HS technique provides not only an average improvement of 19.2% in axial resolution compared to the conventional bandpass filtering scheme but also similar image quality to that of the conventional pulse-inversion (PI) scheme which requires two Tx/Rx sequences for each scan line. Furthermore, when combined with the PI technique, the HS technique provides a uniform axial resolution over the entire 170 mm imaging depth with an average improvement of 17.1% compared to the conventional PI scheme. CONCLUSION These results show that the proposed adaptive HS technique is capable of improving both the frame rate and the image quality of US THI.
Collapse
Affiliation(s)
- Hansol Yoon
- Department of Electronic Engineering, Sogang University, Seoul, Republic of Korea
| | - Tai-Kyong Song
- Department of Electronic Engineering, Sogang University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Yi HM, Lowerison MR, Song PF, Zhang W. A Review of Clinical Applications for Super-resolution Ultrasound Localization Microscopy. Curr Med Sci 2022; 42:1-16. [PMID: 35167000 DOI: 10.1007/s11596-021-2459-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/11/2021] [Indexed: 12/21/2022]
Abstract
Microvascular structure and hemodynamics are important indicators for the diagnosis and assessment of many diseases and pathologies. The structural and functional imaging of tissue microvasculature in vivo is a clinically significant objective for the development of many imaging modalities. Contrast-enhanced ultrasound (CEUS) is a popular clinical tool for characterizing tissue microvasculature, due to the moderate cost, wide accessibility, and absence of ionizing radiation of ultrasound. However, in practice, it remains challenging to demonstrate microvasculature using CEUS, due to the resolution limit of conventional ultrasound imaging. In addition, the quantification of tissue perfusion by CEUS remains hindered by high operator-dependency and poor reproducibility. Inspired by super-resolution optical microscopy, super-resolution ultrasound localization microscopy (ULM) was recently developed. ULM uses the same ultrasound contrast agent (i.e. microbubbles) in CEUS. However, different from CEUS, ULM uses the location of the microbubbles to construct images, instead of using the backscattering intensity of microbubbles. Hence, ULM overcomes the classic compromise between imaging resolution and penetration, allowing for the visualization of capillary-scale microvasculature deep within tissues. To date, many in vivo ULM results have been reported, including both animal (kidney, brain, spinal cord, xenografted tumor, and ear) and human studies (prostate, tibialis anterior muscle, and breast cancer tumors). Furthermore, a variety of useful biomarkers have been derived from using ULM for different preclinical and clinical applications. Due to the high spatial resolution and accurate blood flow speed estimation (approximately 1 mm/s to several cm/s), ULM presents as an enticing alternative to CEUS for characterizing tissue microvasculature in vivo. This review summarizes the principles and present applications of CEUS and ULM, and discusses areas where ULM can potentially provide a better alternative to CEUS in clinical practice and areas where ULM may not be a better alternative. The objective of the study is to provide clinicians with an up-to-date review of ULM technology, and a practical guide for implementing ULM in clinical research and practice.
Collapse
Affiliation(s)
- Hui-Ming Yi
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, 61801, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, USA
| | - Matthew R Lowerison
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, 61801, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, USA
| | - Peng-Fei Song
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, 61801, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, USA
| | - Wei Zhang
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, 61801, USA. .,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, USA.
| |
Collapse
|
3
|
Ketterling JA, Silverman RH. High-Frequency Multipulse, Plane-Wave Acoustic Contrast Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:934-942. [PMID: 31841408 PMCID: PMC7195994 DOI: 10.1109/tuffc.2019.2960211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multipulse (MP) ultrasound contrast agent (UCA) imaging is a method to increase the contrast-to-background (CBR) ratio in regions of blood flow. Plane-wave imaging allows high frame rates, and with high-frequency ultrasound, fine-spatial and temporal resolution. MP and plane-wave imaging have not been applied to high-frequency ultrasound. Here, an 18-MHz linear array was employed to implement the MP methods of pulse inversion (PI) and amplitude modulation (AM) using high-speed, multiangle, compound plane-wave imaging. A flow of the UCA DEFINITY© at a dilution ratio of 2000:1 circulating through a 2-mm-diameter flow channel in a tissue-mimicking phantom was used to characterize CBR and compared with cases of standard, multiangle compound plane-wave imaging. The relative improvement of PI and AM versus standard plane-wave imaging ranged from 5 to 10 dB. The CBR was observed to be stable over a 60-min time duration for a 2000:1 dilution ratio and a 2000:1 dilution ratio provided an optimal CBR.
Collapse
|
4
|
Moghimirad E, Bamber J, Harris E. Plane wave versus focused transmissions for contrast enhanced ultrasound imaging: the role of parameter settings and the effects of flow rate on contrast measurements. Phys Med Biol 2019; 64:095003. [PMID: 30917360 PMCID: PMC7655116 DOI: 10.1088/1361-6560/ab13f2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Contrast enhanced ultrasound (CEUS) and dynamic contrast enhanced ultrasound
(DCE-US) can be used to provide information about the vasculature aiding
diagnosis and monitoring of a number of pathologies including cancer. In the
development of a CEUS imaging system, there are many choices to be made, such as
whether to use plane wave (PW) or focused imaging (FI), and the values for
parameters such as transmit frequency, F-number, mechanical index, and number of
compounding angles (for PW imaging). CEUS image contrast may also be dependent
on subject characteristics, e.g. flow speed and vessel orientation. We evaluated
the effect of such choices on vessel contrast for PW and FI in
vitro, using 2D ultrasound imaging. CEUS images were obtained using
a VantageTM (Verasonics Inc.) and a pulse-inversion (PI) algorithm on
a flow phantom. Contrast (C) and contrast reduction (CR) were calculated, where
C was the initial ratio of signal in vessel to signal in background and CR was
its reduction after 200 frames (acquired in 20 s). Two transducer orientations
were used: parallel and perpendicular to the vessel direction. Similar C and CR
was achievable for PW and FI by choosing optimal parameter values. PW imaging
suffered from high frequency grating lobe artefacts, which may lead to degraded
image quality and misinterpretation of data. Flow rate influenced the contrast
based on: (1) false contrast increase due to the bubble motion between the PI
positive and negative pulses (for both PW and FI), and (2) contrast reduction
due to the incoherency caused by bubble motion between the compounding angles
(for PW only). The effects were less pronounced for perpendicular transducer
orientation compared to a parallel one. Although both effects are undesirable,
it may be more straight forward to account for artefacts in FI as it only
suffers from the former effect. In conclusion, if higher frame rate imaging is
not required (a benefit of PW), FI appears to be a better choice of imaging mode
for CEUS, providing greater image quality over PW for similar rates of contrast
reduction.
Collapse
Affiliation(s)
- Elahe Moghimirad
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, United Kingdom
| | | | | |
Collapse
|
5
|
Stanziola A, Toulemonde M, Li Y, Papadopoulou V, Corbett R, Duncan N, Eckersley RJ, Tang MX. Motion Artifacts and Correction in Multipulse High-Frame Rate Contrast-Enhanced Ultrasound. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:417-420. [PMID: 30571621 DOI: 10.1109/tuffc.2018.2887164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
High-frame-rate (HFR) ultrasound (US) imaging and contrast-enhanced US (CEUS) are often implemented using multipulse transmissions, to enhance image quality. Multipulse approaches, however, suffer from degradation in the presence of motion, especially when coherent compounding and CEUS are combined. In this paper, we investigate this effect on the intensity of HFR CEUS in deep tissue imaging using simulations and in vivo contrast echocardiography (CE). The simulation results show that the motion artifact is much higher when the flow is in an axial direction than a lateral direction. Using a pulse repetition frequency suitable for cardiac imaging, a motion of 35 cm/s can cause as much as 28.5 dB decrease in image intensity, where compounding can contribute up to 18.7 dB of intensity decrease (11 angles). These motion effects are also demonstrated for in vivo cardiac HFR CE, where the large velocities of both the myocardium and the blood are present. Intensity reductions of 10.4 dB are readily visible in the chamber. Finally, we demonstrate how performing motion-correction before pulse inversion compounding greatly reduces such motion artifact and improve image signal-to-noise ratio and contrast.
Collapse
|
6
|
Nie L, Cowell DMJ, Carpenter TM, Mclaughlan JR, Cubukcu AA, Freear S. High-Frame-Rate Contrast-Enhanced Echocardiography Using Diverging Waves: 2-D Motion Estimation and Compensation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:359-371. [PMID: 30575531 DOI: 10.1109/tuffc.2018.2887224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Combining diverging ultrasound waves and microbubbles could improve contrast-enhanced echocardiography (CEE), by providing enhanced temporal resolution for cardiac function assessment over a large imaging field of view. However, current image formation techniques using coherent summation of echoes from multiple steered diverging waves (DWs) are susceptible to tissue and microbubble motion artifacts, resulting in poor image quality. In this study, we used correlation-based 2-D motion estimation to perform motion compensation for CEE using DWs. The accuracy of this motion estimation method was evaluated with Field II simulations. The root-mean-square velocity errors were 5.9% ± 0.2% and 19.5% ± 0.4% in the axial and lateral directions, when normalized to the maximum value of 62.8 cm/s which is comparable to the highest speed of blood flow in the left ventricle (LV). The effects of this method on image contrast ratio (CR) and contrast-to-noise ratio (CNR) were tested in vitro using a tissue mimicking rotating disk with a diameter of 10 cm. Compared against the control without motion compensation, a mean increase of 12 dB in CR and 7 dB in CNR were demonstrated when using this motion compensation method. The motion correction algorithm was tested in vivo on a CEE data set acquired with the Ultrasound Array Research Platform II performing coherent DW imaging. Improvement of the B-mode and contrast-mode image quality with cardiac motion and blood flow-induced microbubble motion was achieved. The results of motion estimation were further processed to interpret blood flow in the LV. This allowed for a triplex cardiac imaging technique, consisting of B mode, contrast mode, and 2-D vector flow imaging with a high frame rate of 250 Hz.
Collapse
|
7
|
Lin F, Shelton SE, Espíndola D, Rojas JD, Pinton G, Dayton PA. 3-D Ultrasound Localization Microscopy for Identifying Microvascular Morphology Features of Tumor Angiogenesis at a Resolution Beyond the Diffraction Limit of Conventional Ultrasound. Am J Cancer Res 2017; 7:196-204. [PMID: 28042327 PMCID: PMC5196896 DOI: 10.7150/thno.16899] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/02/2016] [Indexed: 12/23/2022] Open
Abstract
Angiogenesis has been known as a hallmark of solid tumor cancers for decades, yet ultrasound has been limited in its ability to detect the microvascular changes associated with malignancy. Here, we demonstrate the potential of 'ultrasound localization microscopy' applied volumetrically in combination with quantitative analysis of microvascular morphology, as an approach to overcome this limitation. This pilot study demonstrates our ability to image complex microvascular patterns associated with tumor angiogenesis in-vivo at a resolution of tens of microns - substantially better than the diffraction limit of traditional clinical ultrasound, yet using an 8 MHz clinical ultrasound probe. Furthermore, it is observed that data from healthy and tumor-bearing tissue exhibit significant differences in microvascular pattern and density. Results suggests that with continued development of these novel technologies, ultrasound has the potential to detect biomarkers of cancer based on the microvascular 'fingerprint' of malignant angiogenesis rather than through imaging of blood flow dynamics or the tumor mass itself.
Collapse
|
8
|
Boni E, Bassi L, Dallai A, Guidi F, Meacci V, Ramalli A, Ricci S, Tortoli P. ULA-OP 256: A 256-Channel Open Scanner for Development and Real-Time Implementation of New Ultrasound Methods. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1488-1495. [PMID: 27187952 PMCID: PMC7115910 DOI: 10.1109/tuffc.2016.2566920] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Open scanners offer an increasing support to the ultrasound researchers who are involved in the experimental test of novel methods. Each system presents specific performance in terms of number of channels, flexibility, processing power, data storage capability, and overall dimensions. This paper reports the design criteria and hardware/software implementation details of a new 256-channel ultrasound advanced open platform. This system is organized in a modular architecture, including multiple front-end boards, interconnected by a high-speed (80 Gb/s) ring, capable of finely controlling all transmit (TX) and receive (RX) signals. High flexibility and processing power (equivalent to 2500 GFLOP) are guaranteed by the possibility of individually programming multiple digital signal processors and field programmable gate arrays. Eighty GB of on-board memory are available for the storage of prebeamforming, postbeamforming, and baseband data. The use of latest generation devices allowed to integrate all needed electronics in a small size ( 34 cm ×30 cm ×26 cm). The system implements a multiline beamformer that allows obtaining images of 96 lines by 2048 depths at a frame rate of 720 Hz (expandable to 3000 Hz). The multiline beamforming capability is also exploited to implement a real-time vector Doppler scheme in which a single TX and two independent RX apertures are simultaneously used to maintain the analysis over a full pulse repetition frequency range.
Collapse
|
9
|
Viti J, Vos HJ, Jong ND, Guidi F, Tortoli P. Detection of Contrast Agents: Plane Wave Versus Focused Transmission. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:203-211. [PMID: 26642451 DOI: 10.1109/tuffc.2015.2504546] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ultrasound contrast agent (UCA) imaging provides a cost-effective diagnostic tool to assess tissue perfusion and vascular pathologies. However, excessive transmission (TX) levels may negatively impact both uniform diffusion and survival rates of contrast agents, limiting their density and thus their echogenicity. Contrast detection methods with both high sensitivity and low-contrast destruction rate are thus essential to maintain diagnostic capabilities. Plane-wave TX with a high number of compounding angles has been suggested to produce good quality images at pressure levels that do not destroy UCA. In this paper, we performed a quantitative evaluation of detection efficacy of flowing UCA with either traditional focused scanning or ultrafast plane-wave imaging. Amplitude modulation (AM) at nondestructive pressure levels was implemented in the ULA-OP ultrasound research platform. The influence of the number of compounding angles, peak-negative pressure, and flow speed on the final image quality was investigated. Results show that the images obtained by compounding multiple angled plane waves offer a greater contrast (up to a 12-dB increase) with respect to focused AM. This increase is attributed mainly to noise reduction caused by the coherent summation in the compounding step. Additionally, we show that highly sensitive detection is already achieved with a limited compounding number ( ), thus suggesting the feasibility of continuous contrast monitoring at a high frame rate. This capability is essential to properly detect contrast agents flowing at high speed, as an excessive angle compounding is shown to be destructive for the contrast signal, as the UCA motion quickly causes loss of correlation between consecutive echoes.
Collapse
|
10
|
Lin F, Cachard C, Varray F, Basset O. Generalization of Multipulse Transmission Techniques for Ultrasound Imaging. ULTRASONIC IMAGING 2015; 37:294-311. [PMID: 25628094 DOI: 10.1177/0161734614566696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
To increase the contrast-to-tissue ratio (CTR) in contrast imaging or the signal-to-noise ratio (SNR) in tissue harmonic imaging, many multipulse transmission techniques have been suggested. This article first recalls the various imaging techniques proposed in the literature and then presents a mathematical background to synthesize and generalize most of the multipulse ultrasound imaging techniques. The formulation presented can be used to predict the relative amplitude of the nonlinear components in each frequency band and to design new transmission sequences to either increase or decrease specified nonlinear components in each harmonic band. Simulation results on several multipulse techniques agree with the results from previous studies.
Collapse
Affiliation(s)
- Fanglue Lin
- CREATIS, Université de Lyon, CNRS UMR5220; Inserm U1044; INSA-Lyon, Université Lyon 1, Villeurbanne, France
| | - Christian Cachard
- CREATIS, Université de Lyon, CNRS UMR5220; Inserm U1044; INSA-Lyon, Université Lyon 1, Villeurbanne, France
| | - François Varray
- CREATIS, Université de Lyon, CNRS UMR5220; Inserm U1044; INSA-Lyon, Université Lyon 1, Villeurbanne, France
| | - Olivier Basset
- CREATIS, Université de Lyon, CNRS UMR5220; Inserm U1044; INSA-Lyon, Université Lyon 1, Villeurbanne, France
| |
Collapse
|
11
|
Basset O, Bouakaz A, Sénégond N, Toulemonde M, Guillermin R, Fouan D, Lin F, Tourniaire F, Cristea A, Novell A, Franceschini E. Ultrasound imaging using CMUT – Techniques developed in the frame of the ANR BBMUT project. Ing Rech Biomed 2015. [DOI: 10.1016/j.irbm.2015.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|