1
|
Guendouz Y, Razif NAM, Bernasconi F, Brien GO, Johnston RD, Lally C. Simulating atherosclerotic plaque mechanics using polyvinyl alcohol (PVA) cryogel artery phantoms, ultrasound imaging and inverse finite element analysis. Phys Med Biol 2024; 69:245020. [PMID: 39626619 DOI: 10.1088/1361-6560/ad9a4b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
The clinical decision to establish if a patient with carotid disease should undergo surgical intervention is primarily based on the percent stenosis. Whilst this applies for high-grade stenosed vessels (>70%), it falls short for other cases. Due to the heterogeneity of plaque tissue, probing the mechanics of the tissue would likely provide further insights into why some plaques are more prone to rupture. Mechanical characterization of such tissue is nontrivial, however, due to the difficulties in collecting fresh, intact plaque tissue and using physiologically relevant mechanical testing of such material. The use of polyvinyl alcohol (PVA) cryogel is thus highly convenient because of its acoustic properties and tunable mechanical properties.Methods.The aim of this study is to demonstrate the potential of PVA phantoms to simulate atherosclerotic features. In addition, a testing and simulation framework is developed for full PVA vessel material characterization using ring tensile testing and inflation testing combined with non-invasive ultrasound imaging and computational modeling.Results.Strain stiffening behavior was observed in PVA through ring tensile tests, particularly at high (n= 6) freeze-thaw cycles (FTCs). Inflation testing of bi-layered phantoms featuring lipid pool inclusions demonstrated high strains at shoulder regions. The application of an inverse finite element framework successfully recovered boundaries and determined the shear moduli for the PVA wall to lie within the range 27-53 kPa.Conclusion.The imaging-modeling framework presented facilitates the use and characterization of arterial mimicking phantoms to further explore plaque rupture. It also shows translational potential for non-invasive mechanical characterization of atherosclerotic plaques to improve the identification of clinically relevant metrics of plaque vulnerability.
Collapse
Affiliation(s)
- Yasmine Guendouz
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Noor Adeebah Mohamed Razif
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Floriane Bernasconi
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Gordon O' Brien
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Robert D Johnston
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Caitríona Lally
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Kim M, Yoon K, Lee S, Shin MS, Kim KG. Development of an Artificial Soft Solid Gel Using Gelatin Material for High-Quality Ultrasound Diagnosis. Diagnostics (Basel) 2024; 14:335. [PMID: 38337851 PMCID: PMC10855452 DOI: 10.3390/diagnostics14030335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
For ultrasound diagnosis, a gel is applied to the skin. Ultrasound gel serves to block air exposure and match impedance between the skin and the probe, enhancing imaging efficiency. However, if use of the ultrasound gel exceeds a certain period of time, it may dry out and be exposed to air, causing impedance mismatch and reducing imaging resolution. In such cases, the use of a soft, solid gel proves advantageous, as it can be employed for an extended period without succumbing to the drying phenomenon and can be reused after disinfection. Its soft consistency ensures excellent skin adhesion. Our soft solid gel demonstrated approximately 1.2 times better performance than water, silicone, and traditional ultrasound gels. When comparing the dimensions of grayscale, dead zone, vertical, and horizontal regions, the measurements for the traditional ultrasound gel were 93.79 mm, 45.32 mm, 103.13 mm, 83.86 mm, and 83.86 mm, respectively. In contrast, the proposed soft solid gel exhibited dimensions of 105.64 mm, 34.48 mm, 141.1 mm, and 102.8 mm.
Collapse
Affiliation(s)
- Minchan Kim
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 Beon-gil, Namdong-daero, Namdong-gu, Incheon 21565, Republic of Korea; (M.K.); (K.Y.); (S.L.)
| | - Kicheol Yoon
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 Beon-gil, Namdong-daero, Namdong-gu, Incheon 21565, Republic of Korea; (M.K.); (K.Y.); (S.L.)
- Premedicine Course, College of Medicine, Gachon University, 38-13, 3 Beon-gil, Dokjom-ro 3, Namdong-gu, Incheon 21565, Republic of Korea
| | - Sangyun Lee
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 Beon-gil, Namdong-daero, Namdong-gu, Incheon 21565, Republic of Korea; (M.K.); (K.Y.); (S.L.)
- Department of Health and Safety Convergence Sciences & Health and Environmental Convergence Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Mi-Seung Shin
- Division of Cardiology, Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, 21 Namdong-daero 774 Beon-gil, Namdong-gu, Incheon 21565, Republic of Korea
| | - Kwang Gi Kim
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 Beon-gil, Namdong-daero, Namdong-gu, Incheon 21565, Republic of Korea; (M.K.); (K.Y.); (S.L.)
- Department of Biomedical Engineering, College of Health Science, Gachon University, 191 Hambak-moero, Yeonsu-gu, Incheon 21936, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, 38-13, 3 Beon-gil, Dokjom-ro, Namdong-gu, Incheon 21565, Republic of Korea
| |
Collapse
|
3
|
Latorre ÁT, Martínez MA, Peña E. Characterizing atherosclerotic tissues: in silico analysis of mechanical properties using intravascular ultrasound and inverse finite element methods. Front Bioeng Biotechnol 2023; 11:1304278. [PMID: 38152285 PMCID: PMC10751321 DOI: 10.3389/fbioe.2023.1304278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023] Open
Abstract
Atherosclerosis is a prevalent cause of acute coronary syndromes that consists of lipid deposition inside the artery wall, creating an atherosclerotic plaque. Early detection may prevent the risk of plaque rupture. Nowadays, intravascular ultrasound (IVUS) is the most common medical imaging technology for atherosclerotic plaque detection. It provides an image of the section of the coronary wall and, in combination with new techniques, can estimate the displacement or strain fields. From these magnitudes and by inverse analysis, it is possible to estimate the mechanical properties of the plaque tissues and their stress distribution. In this paper, we presented a methodology based on two approaches to characterize the mechanical properties of atherosclerotic tissues. The first approach estimated the linear behavior under particular pressure. In contrast, the second technique yielded the non-linear hyperelastic material curves for the fibrotic tissues across the complete physiological pressure range. To establish and validate this method, the theoretical framework employed in silico models to simulate atherosclerotic plaques and their IVUS data. We analyzed different materials and real geometries with finite element (FE) models. After the segmentation of the fibrotic, calcification, and lipid tissues, an inverse FE analysis was performed to estimate the mechanical response of the tissues. Both approaches employed an optimization process to obtain the mechanical properties by minimizing the error between the radial strains obtained from the simulated IVUS and those achieved in each iteration. The second methodology was successfully applied to five distinct real geometries and four different fibrotic tissues, getting median R 2 of 0.97 and 0.92, respectively, when comparing the real and estimated behavior curves. In addition, the last technique reduced errors in the estimated plaque strain field by more than 20% during the optimization process, compared to the former approach. The findings enabled the estimation of the stress field over the hyperelastic plaque tissues, providing valuable insights into its risk of rupture.
Collapse
Affiliation(s)
- Álvaro T. Latorre
- Aragón Institute for Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Miguel A. Martínez
- Aragón Institute for Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Estefanía Peña
- Aragón Institute for Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| |
Collapse
|
4
|
Wang Y, Shi R, Zhai R, Yang S, Peng T, Zheng F, Shen Y, Li M, Li L. Matrix stiffness regulates macrophage polarization in atherosclerosis. Pharmacol Res 2022; 179:106236. [PMID: 35483516 DOI: 10.1016/j.phrs.2022.106236] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/01/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease and the pathological basis of many fatal cardiovascular diseases. Macrophages, the main inflammatory cells in atherosclerotic plaque, have a paradox role in disease progression. In response to different microenvironments, macrophages mainly have two polarized directions: pro-inflammatory macrophages and anti-inflammatory macrophages. More and more evidence shows that macrophage is mechanosensitive and matrix stiffness regulate macrophage phenotypes in atherosclerosis. However, the molecular mechanism of matrix stiffness regulating macrophage polarization still lacks in-depth research, which hinders the development of new anti-atherosclerotic therapies. In this review, we discuss the important role of matrix stiffness in regulating macrophage polarization through mechanical signal transduction (Hippo, Piezo, cytoskeleton, and integrin) and epigenetic mechanisms (miRNA, DNA methylation, and histone). We hope to provide a new perspective for atherosclerosis therapy by targeting matrix stiffness and macrophage polarization.
Collapse
Affiliation(s)
- Yin Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Ruotong Shi
- Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Ran Zhai
- Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Shiyan Yang
- Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Tianqi Peng
- Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Fuwen Zheng
- Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - YanNan Shen
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
5
|
An inverse method for mechanical characterization of heterogeneous diseased arteries using intravascular imaging. Sci Rep 2021; 11:22540. [PMID: 34795350 PMCID: PMC8602310 DOI: 10.1038/s41598-021-01874-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 10/27/2021] [Indexed: 11/08/2022] Open
Abstract
The increasing prevalence of finite element (FE) simulations in the study of atherosclerosis has spawned numerous inverse FE methods for the mechanical characterization of diseased tissue in vivo. Current approaches are however limited to either homogenized or simplified material representations. This paper presents a novel method to account for tissue heterogeneity and material nonlinearity in the recovery of constitutive behavior using imaging data acquired at differing intravascular pressures by incorporating interfaces between various intra-plaque tissue types into the objective function definition. Method verification was performed in silico by recovering assigned material parameters from a pair of vessel geometries: one derived from coronary optical coherence tomography (OCT); one generated from in silico-based simulation. In repeated tests, the method consistently recovered 4 linear elastic (0.1 ± 0.1% error) and 8 nonlinear hyperelastic (3.3 ± 3.0% error) material parameters. Method robustness was also highlighted in noise sensitivity analysis, where linear elastic parameters were recovered with average errors of 1.3 ± 1.6% and 8.3 ± 10.5%, at 5% and 20% noise, respectively. Reproducibility was substantiated through the recovery of 9 material parameters in two more models, with mean errors of 3.0 ± 4.7%. The results highlight the potential of this new approach, enabling high-fidelity material parameter recovery for use in complex cardiovascular computational studies.
Collapse
|
6
|
Li H, Poree J, Chayer B, Cardinal MHR, Cloutier G. Parameterized Strain Estimation for Vascular Ultrasound Elastography With Sparse Representation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3788-3800. [PMID: 32746123 DOI: 10.1109/tmi.2020.3005017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ultrasound vascular strain imaging has shown its potential to interrogate the motion of the vessel wall induced by the cardiac pulsation for predicting plaque instability. In this study, a sparse model strain estimator (SMSE) is proposed to reconstruct a dense strain field at a high resolution, with no spatial derivatives, and a high computation efficiency. This sparse model utilizes the highly-compacted property of discrete cosine transform (DCT) coefficients, thereby allowing to parameterize displacement and strain fields with truncated DCT coefficients. The derivation of affine strain components (axial and lateral strains and shears) was reformulated into solving truncated DCT coefficients and then reconstructed with them. Moreover, an analytical solution was derived to reduce estimation time. With simulations, the SMSE reduced estimation errors by up to 50% compared with the state-of-the-art window-based Lagrangian speckle model estimator (LSME). The SMSE was also proven to be more robust than the LSME against global and local noise. For in vitro and in vivo tests, residual strains assessing cumulated errors with the SMSE were 2 to 3 times lower than with the LSME. Regarding computation efficiency, the processing time of the SMSE was reduced by 4 to 25 times compared with the LSME, according to simulations, in vitro and in vivo results. Finally, phantom studies demonstrated the enhanced spatial resolution of the proposed SMSE algorithm against LSME.
Collapse
|
7
|
Malone AJ, Cournane S, Naydenova IG, Fagan AJ, Browne JE. Polyvinyl alcohol cryogel based vessel mimicking material for modelling the progression of atherosclerosis. Phys Med 2020; 69:1-8. [DOI: 10.1016/j.ejmp.2019.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/31/2019] [Accepted: 11/15/2019] [Indexed: 01/03/2023] Open
|
8
|
Chayer B, van den Hoven M, Cardinal MHR, Li H, Swillens A, Lopata R, Cloutier G. Atherosclerotic carotid bifurcation phantoms with stenotic soft inclusions for ultrasound flow and vessel wall elastography imaging. ACTA ACUST UNITED AC 2019; 64:095025. [DOI: 10.1088/1361-6560/ab1145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Wang Y, Li H, Guo Y, Lee WN. Bidirectional Ultrasound Elastographic Imaging Framework for Non-invasive Assessment of the Non-linear Behavior of a Physiologically Pressurized Artery. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1184-1196. [PMID: 30876671 DOI: 10.1016/j.ultrasmedbio.2019.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Studies of non-destructive bidirectional ultrasound assessment of non-linear mechanical behavior of the artery are scarce in the literature. We hereby propose derivation of a strain-shear modulus relationship as a new graphical diagnostic index using an ultrasound elastographic imaging framework, which encompasses our in-house bidirectional vascular guided wave imaging (VGWI) and ultrasound strain imaging (USI). This framework is used to assess arterial non-linearity in two orthogonal (i.e., longitudinal and circumferential) directions in the absence of non-invasive pressure measurement. Bidirectional VGWI estimates longitudinal (μL) and transverse (μT) shear moduli, whereas USI estimates radial strain (ɛr). Vessel-mimicking phantoms (with and without longitudinal pre-stretch) and in vitro porcine aortas under static and/or dynamic physiologic intraluminal pressure loads were examined. ɛr was found to be a suitable alternative to intraluminal pressure for representation of cyclic loading on the artery wall. Results revealed that μT values of all samples examined increased non-linearly with εr magnitude and more drastically than μL, whereas μL values of only the pre-stretched phantoms and aortas increased with ɛr magnitude. As a new graphical representation of arterial non-linearity and function, strain-shear modulus loops derived by the proposed framework over two consecutive dynamic loading cycles differentiated sample pre-conditions and corroborated direction-dependent non-linear mechanical behaviors of the aorta with high estimation repeatability.
Collapse
Affiliation(s)
- Yahua Wang
- Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong
| | - He Li
- Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong
| | - Yuexin Guo
- Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong
| | - Wei-Ning Lee
- Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong; Medical Engineering Programme, University of Hong Kong, Hong Kong.
| |
Collapse
|
10
|
Gómez A, Tacheau A, Finet G, Lagache M, Martiel JL, Floc'h SL, Yazdani SK, Elias-Zuñiga A, Pettigrew RI, Cloutier G, Ohayon J. Intraluminal Ultrasonic Palpation Imaging Technique Revisited for Anisotropic Characterization of Healthy and Atherosclerotic Coronary Arteries: A Feasibility Study. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:35-49. [PMID: 30348475 DOI: 10.1016/j.ultrasmedbio.2018.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 08/09/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Accurate mechanical characterization of coronary atherosclerotic lesions remains essential for the in vivo detection of vulnerable plaques. Using intravascular ultrasound strain measurements and based on the mechanical response of a circular and concentric vascular model, E. I. Céspedes, C. L. de Korte and A. F. van der Steen developed an elasticity-palpography technique in 2000 to estimate the apparent stress-strain modulus palpogram of the thick subendoluminal arterial wall layer. More recently, this approach was improved by our group to consider the real anatomic shape of the vulnerable plaque. Even though these two studies highlighted original and promising approaches for improving the detection of vulnerable plaques, they did not overcome a main limitation related to the anisotropic mechanical behavior of the vascular tissue. The present study was therefore designed to extend these previous approaches by considering the orthotropic mechanical properties of the arterial wall and lesion constituents. Based on the continuum mechanics theory prescribing the strain field, an elastic anisotropy index was defined. This new anisotropic elasticity-palpography technique was successfully applied to characterize ten coronary plaque and one healthy vessel geometries of patients imaged in vivo with intravascular ultrasound. The results revealed that the anisotropy index-palpograms were estimated with a good accuracy (with a mean relative error of 26.8 ± 48.8%) compared with ground true solutions.
Collapse
Affiliation(s)
- Armida Gómez
- Laboratory TIMC-IMAG/DyCTiM, UGA, CNRS UMR 5525, Grenoble, France
| | - Antoine Tacheau
- Laboratory TIMC-IMAG/DyCTiM, UGA, CNRS UMR 5525, Grenoble, France
| | - Gérard Finet
- Department of Hemodynamics and Interventional Cardiology, Hospices Civils de Lyon and Claude Bernard University Lyon1, INSERM Unit 886, Lyon, France
| | - Manuel Lagache
- Laboratory SYMME, SYMME, University Savoie Mont-Blanc, France; Polytech Annecy-Chambéry, University Savoie Mont-Blanc, Le Bourget du Lac, France
| | | | - Simon Le Floc'h
- Laboratory LMGC, CNRS UMR 5508, University of Montpellier II, Montpellier, France
| | - Saami K Yazdani
- Department of Mechanical Engineering, University of South Alabama, Mobile, Alabama, USA
| | - Alex Elias-Zuñiga
- Department of Mechanical Engineering Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Monterrey, Monterrey, Mexico
| | | | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, Québec, Canada
| | - Jacques Ohayon
- Laboratory TIMC-IMAG/DyCTiM, UGA, CNRS UMR 5525, Grenoble, France; Polytech Annecy-Chambéry, University Savoie Mont-Blanc, Le Bourget du Lac, France.
| |
Collapse
|
11
|
Li H, Porée J, Roy Cardinal MH, Cloutier G. Two-dimensional affine model-based estimators for principal strain vascular ultrasound elastography with compound plane wave and transverse oscillation beamforming. ULTRASONICS 2019; 91:77-91. [PMID: 30081331 DOI: 10.1016/j.ultras.2018.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/26/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Polar strain (radial and circumferential) estimations can suffer from artifacts because the center of a nonsymmetrical carotid atherosclerotic artery, defining the coordinate system in cross-sectional view, can be misregistered. Principal strains are able to remove coordinate dependency to visualize vascular strain components (i.e., axial and lateral strains and shears). This paper presents two affine model-based estimators, the affine phase-based estimator (APBE) developed in the framework of transverse oscillation (TO) beamforming, and the Lagrangian speckle model estimator (LSME). These estimators solve simultaneously the translation (axial and lateral displacements) and deformation (axial and lateral strains and shears) components that were then used to compute principal strains. To improve performance, the implemented APBE was also tested by introducing a time-ensemble estimation approach. Both APBE and LSME were tested with and without the plane strain incompressibility assumption. These algorithms were evaluated on coherent plane wave compounded (CPWC) images considering TO. LSME without TO but implemented with the time-ensemble and incompressibility constraint (Porée et al., 2015) served as benchmark comparisons. The APBE provided better principal strain estimations with the time-ensemble and incompressibility constraint, for both simulations and in vitro experiments. With a few exceptions, TO did not improve principal strain estimates for the LSME. With simulations, the smallest errors compared with ground true measures were obtained with the LSME considering time-ensemble and the incompressibility constraint. This latter estimator also provided the highest elastogram signal-to-noise ratios (SNRs) for in vitro experiments on a homogeneous vascular phantom without any inclusion, for applied strains varying from 0.07% to 4.5%. It also allowed the highest contrast-to-noise ratios (CNRs) for a heterogeneous vascular phantom with a soft inclusion, at applied strains from 0.07% to 3.6%. In summary, the LSME outperformed the implemented APBE, and the incompressibility constraint improved performances of both estimators.
Collapse
Affiliation(s)
- Hongliang Li
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada; Institute of Biomedical Engineering, University of Montreal, Montréal, QC, Canada
| | - Jonathan Porée
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada; Institute of Biomedical Engineering, University of Montreal, Montréal, QC, Canada
| | - Marie-Hélène Roy Cardinal
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada
| | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada; Institute of Biomedical Engineering, University of Montreal, Montréal, QC, Canada; Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montréal, QC, Canada.
| |
Collapse
|
12
|
Marlevi D, Maksuti E, Urban MW, Winter R, Larsson M. Plaque characterization using shear wave elastography—evaluation of differentiability and accuracy using a combined ex vivo and in vitro setup. ACTA ACUST UNITED AC 2018; 63:235008. [DOI: 10.1088/1361-6560/aaec2b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Multi-Plane Ultrafast Compound 3D Strain Imaging: Experimental Validation in a Carotid Bifurcation Phantom. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8040637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|