1
|
Bezer JH, Koruk H, Rowlands CJ, Choi JJ. Elastic Deformation of Soft Tissue-Mimicking Materials Using a Single Microbubble and Acoustic Radiation Force. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:3327-3338. [PMID: 32919812 PMCID: PMC7605868 DOI: 10.1016/j.ultrasmedbio.2020.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 06/04/2023]
Abstract
Mechanical effects of microbubbles on tissues are central to many emerging ultrasound applications. Here, we investigated the acoustic radiation force a microbubble exerts on tissue at clinically relevant therapeutic ultrasound parameters. Individual microbubbles administered into a wall-less hydrogel channel (diameter: 25-100 µm, Young's modulus: 2-8.7 kPa) were exposed to an acoustic pulse (centre frequency: 1 MHz, pulse length: 10 ms, peak-rarefactional pressures: 0.6-1.0 MPa). Using high-speed microscopy, each microbubble was tracked as it pushed against the hydrogel wall. We found that a single microbubble can transiently deform a soft tissue-mimicking material by several micrometres, producing tissue loading-unloading curves that were similar to those produced using other indentation-based methods. Indentation depths were linked to gel stiffness. Using a mathematical model fitted to the deformation curves, we estimated the radiation force on each bubble (typically tens of nanonewtons) and the viscosity of the gels. These results provide insight into the forces exerted on tissues during ultrasound therapy and indicate a potential source of bio-effects.
Collapse
Affiliation(s)
- James H Bezer
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Hasan Koruk
- Mechanical Engineering Department, MEF University, Istanbul, Turkey
| | | | - James J Choi
- Department of Bioengineering, Imperial College London, London, United Kingdom.
| |
Collapse
|
2
|
Supponen O, Upadhyay A, Lum J, Guidi F, Murray T, Vos HJ, Tortoli P, Borden M. The effect of size range on ultrasound-induced translations in microbubble populations. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:3236. [PMID: 32486824 PMCID: PMC7205472 DOI: 10.1121/10.0001172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/17/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Microbubble translations driven by ultrasound-induced radiation forces can be beneficial for applications in ultrasound molecular imaging and drug delivery. Here, the effect of size range in microbubble populations on their translations is investigated experimentally and theoretically. The displacements within five distinct size-isolated microbubble populations are driven by a standard ultrasound-imaging probe at frequencies ranging from 3 to 7 MHz, and measured using the multi-gate spectral Doppler approach. Peak microbubble displacements, reaching up to 10 μm per pulse, are found to describe transient phenomena from the resonant proportion of each bubble population. The overall trend of the statistical behavior of the bubble displacements, quantified by the total number of identified displacements, reveals significant differences between the bubble populations as a function of the transmission frequency. A good agreement is found between the experiments and theory that includes a model parameter fit, which is further supported by separate measurements of individual microbubbles to characterize the viscoelasticity of their stabilizing lipid shell. These findings may help to tune the microbubble size distribution and ultrasound transmission parameters to optimize the radiation-force translations. They also demonstrate a simple technique to characterize the microbubble shell viscosity, the fitted model parameter, from freely floating microbubble populations using a standard ultrasound-imaging probe.
Collapse
Affiliation(s)
- Outi Supponen
- Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Awaneesh Upadhyay
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, Boulder, Colorado 80309, USA
| | - Jordan Lum
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, Boulder, Colorado 80309, USA
| | - Francesco Guidi
- Department of Information Engineering, University of Florence, Via di S. Marta 3, 50139 Florence, Italy
| | - Todd Murray
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, Boulder, Colorado 80309, USA
| | - Hendrik J. Vos
- Department of Biomedical Engineering, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Piero Tortoli
- Department of Information Engineering, University of Florence, Via di S. Marta 3, 50139 Florence, Italy
| | - Mark Borden
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, Boulder, Colorado 80309, USA
| |
Collapse
|
3
|
Guidi F, Supponen O, Upadhyay A, Vos HJ, Borden MA, Tortoli P. Microbubble Radiation Force-Induced Translation in Plane-Wave Versus Focused Transmission Modes. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:1856-1865. [PMID: 31449011 PMCID: PMC6900931 DOI: 10.1109/tuffc.2019.2937158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Due to the primary radiation force, microbubble displacement has been observed previously in the focal region of single-element and array ultrasound probes. This effect has been harnessed to increase the contact between the microbubbles and targeted endothelium for drug delivery and ultrasound molecular imaging. In this study, microbubble displacements associated with plane-wave (PW) transmission are thoroughly investigated and compared to those obtained in focused-wave (FW) transmission over a range of pulse repetition frequencies, burst lengths (BLs), peak negative pressures, and transmission frequencies. In PW mode, the displacements, depending upon the experimental conditions, are in some cases consistently higher (e.g., by 28%, when the longest BL was used at PRF = 4 kHz), and the axial displacements are spatially more uniform compared to FW mode. Statistical analysis on the measured displacements reveals a slightly different frequency dependence of statistical quantities compared to transient peak microbubble displacements, which may suggest the need to consider the size range within the tested microbubble population.
Collapse
Affiliation(s)
- Francesco Guidi
- Department of Information Engineering, University of Florence, Italy
| | - Outi Supponen
- Department of Mechanical Engineering, University of Colorado, Boulder, USA
| | - Awaneesh Upadhyay
- Department of Mechanical Engineering, University of Colorado, Boulder, USA
| | - Hendrik J. Vos
- Biomedical Engineering Thorax Center, Erasmus MC Rotterdam, The Netherlands
| | - Mark A. Borden
- Department of Mechanical Engineering, University of Colorado, Boulder, USA
| | - Piero Tortoli
- Department of Information Engineering, University of Florence, Italy
| |
Collapse
|
4
|
Yoshida K, Saito K, Omura M, Tamura K, Yamaguchi T. Ultrasound assessment of translation of microbubbles driven by acoustic radiation force in a channel filled with stationary fluid. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:2335. [PMID: 31672000 DOI: 10.1121/1.5128309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
In this report, a method is proposed to quantify the translation of ultrasound contrast agent (UCA) microbubbles driven by acoustic radiation for the detection of channels filled with stationary fluid. The authors subjected UCA microbubbles in a channel with diameters of 0.1 and 0.5 mm to ultrasound pulses with a center frequency of 14.4 MHz. The translational velocity of the UCA microbubbles increased with the sound pressure and pulse repetition frequency (PRF) of the transmitted ultrasound. The mean translational velocity reached 0.75 mm/s at a negative peak sound pressure of 2.76 MPa and a PRF of 2 kHz. This trend agreed with the theoretical prediction, which indicated that the translational velocity was proportional to the square of the sound pressure and the PRF. Furthermore, an experiment was carried out with a phantom that mimics tissue and found that the proposed method aided in detection of the channel, even in the case of a low contrast-echo to tissue-echo ratio. The authors expect to develop the proposed method into a technique for detecting lymph vessels.
Collapse
Affiliation(s)
- Kenji Yoshida
- Center for Frontier Medical Engineering, Chiba University, 1-3 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Katsuya Saito
- Graduate School of Science and Engineering, Chiba University, 1-3 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Masaaki Omura
- Graduate School of Science and Engineering, Chiba University, 1-3 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Kazuki Tamura
- Institute for Medical Photonics Research, Hamamatsu University of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 461-3125, Japan
| | - Tadashi Yamaguchi
- Center for Frontier Medical Engineering, Chiba University, 1-3 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| |
Collapse
|