1
|
Hirao Y, Amemiya T, Narumi T, Argelaguet F, Lecuyer A. Leveraging Tendon Vibration to Enhance Pseudo-Haptic Perceptions in VR. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:5861-5874. [PMID: 37647196 DOI: 10.1109/tvcg.2023.3310001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Pseudo-haptic techniques are used to modify haptic perception by appropriately changing visual feedback to body movements. Based on the knowledge that tendon vibration can affect our somatosensory perception, this article proposes a method for leveraging tendon vibration to enhance pseudo-haptics during free arm motion. Three experiments were performed to examine the impact of tendon vibration on the range and resolution of pseudo-haptics. The first experiment investigated the effect of tendon vibration on the detection threshold of the discrepancy between visual and physical motion. The results indicated that vibrations applied to the inner tendons of the wrist and elbow increased the threshold, suggesting that tendon vibration can augment the applicable visual motion gain by approximately 13% without users detecting the visual/physical discrepancy. Furthermore, the results demonstrate that tendon vibration acts as noise on haptic motion cues. The second experiment assessed the impact of tendon vibration on the resolution of pseudo-haptics by determining the just noticeable difference in pseudo-weight perception. The results suggested that the tendon vibration does not largely compromise the resolution of pseudo-haptics. The third experiment evaluated the equivalence between the weight perception triggered by tendon vibration and that by visual motion gain, that is, the point of subjective equality. The results revealed that vibration amplifies the weight perception and its effect was equivalent to that obtained using a gain of 0.64 without vibration, implying that the tendon vibration also functions as an additional haptic cue. Our results provide design guidelines and future work for enhancing pseudo-haptics with tendon vibration.
Collapse
|
2
|
Mavromatis M, Hoyet L, Lecuyer A, Dewez D, Argelaguet F. To Stick or Not to Stick? Studying the Impact of Offset Recovery Techniques During Mid-Air Interactions. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:5493-5506. [PMID: 37440385 DOI: 10.1109/tvcg.2023.3295209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
During mid-air interactions, common approaches (such as the god-object method) typically rely on visually constraining the user's avatar to avoid visual interpenetrations with the virtual environment in the absence of kinesthetic feedback. This paper explores two methods which influence how the position mismatch (positional offset) between users' real and virtual hands is recovered when releasing the contact with virtual objects. The first method (sticky) constrains the user's virtual hand until the mismatch is recovered, while the second method (unsticky) employs an adaptive offset recovery method. In the first study, we explored the effect of positional offset and of motion alteration on users' behavioral adjustments and users' perception. In a second study, we evaluated variations in the sense of embodiment and the preference between the two control laws. Overall, both methods presented similar results in terms of performance and accuracy, yet, positional offsets strongly impacted motion profiles and users' performance. Both methods also resulted in comparable levels of embodiment. Finally, participants usually expressed strong preferences toward one of the two methods, but these choices were individual-specific and did not appear to be correlated solely with characteristics external to the individuals. Taken together, these results highlight the relevance of exploring the customization of motion control algorithms for avatars.
Collapse
|
3
|
Benda B, Rheault B, Lin Y, Ragan ED. Examining Effects of Technique Awareness on the Detection of Remapped Hands in Virtual Reality. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:2651-2661. [PMID: 38437116 DOI: 10.1109/tvcg.2024.3372054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Input remapping techniques have been widely explored to allow users in virtual reality to exceed both their own physical abilities, the limitations of physical space, or to facilitate interactions with real-world objects. Often considered is how these techniques can be applied to achieve maximum utility, but still be undetectable to users to maintain a sense of immersion and presence. Existing psychophysical methods used to determine these detection thresholds have known limitations: they are highly conservative lower bounds for detection and do not account for complex usage of the technique. Our work describes and evaluates a method for estimating detection that reduces these limitations and yields meaningful upper bounds. We present the findings of our work where we apply this method to a well-explored hand motion scaling technique. In wholly unaware cases, we determined that users may detect their hand speed as abnormal at around 3.37 times the normal speed, compared to a scale factor of 1.47 that was estimated using traditional methods when users knew the motion scaling was occurring. A considerable number of participants in unaware cases (12 of 56) never detected their hand speed increasing at all, even at the maximum scale factor of 5.0. The study demonstrates just how conservative the thresholds generated by traditional psychophysical methods can be compared to detection during naive usage, and our method can be modified and applied easily to other techniques.
Collapse
|
4
|
Vallageas V, Aissaoui R, Willaert I, Labbe DR. Embodying a self-avatar with a larger leg: its impacts on motor control and dynamic stability. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:2066-2076. [PMID: 38437132 DOI: 10.1109/tvcg.2024.3372084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Several studies have shown that users of immersive virtual reality can feel high levels of embodiment in self-avatars that have different morphological proportions than those of their actual bodies. Deformed and unrealistic morphological modifications are accepted by embodied users, underlying the adaptability of one's mental map of their body (body schema) in response to incoming sensory feedback. Before initiating a motor action, the brain uses the body schema to plan and sequence the necessary movements. Therefore, embodiment in a self-avatar with a different morphology, such as one with deformed proportions, could lead to changes in motor planning and execution. In this study, we aimed to measure the effects on movement planning and execution of embodying a self-avatar with an enlarged lower leg on one side. Thirty participants embodied an avatar without any deformations, and with an enlarged dominant or non-dominant leg, in randomized order. Two different levels of embodiment were induced, using synchronous or asynchronous visuotactile stimuli. In each condition, participants performed a gait initiation task. Their center of mass and center of pressure were measured, and the margin of stability (MoS) was computed from these values. Their perceived level of embodiment was also measured, using a validated questionnaire. Results show no significant changes on the biomechenical variables related to dynamic stability. Embodiment scores decreased with asynchronous stimuli, without impacting the measures related to stability. The body schema may not have been impacted by the larger virtual leg. However, deforming the self-avatar's morphology could have important implications when addressing individuals with impaired physical mobility by subtly influencing action execution during a rehabilitation protocol.
Collapse
|
5
|
Cheymol A, Fribourg R, Lecuyer A, Normand JM, Argelaguet F. Beyond my Real Body: Characterization, Impacts, Applications and Perspectives of "Dissimilar" Avatars in Virtual Reality. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:4426-4437. [PMID: 37782594 DOI: 10.1109/tvcg.2023.3320209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
In virtual reality, the avatar - the user's digital representation - is an important element which can drastically influence the immersive experience. In this paper, we especially focus on the use of "dissimilar" avatars i.e., avatars diverging from the real appearance of the user, whether they preserve an anthropomorphic aspect or not. Previous studies reported that dissimilar avatars can positively impact the user experience, in terms for example of interaction, perception or behaviour. However, given the sparsity and multi-disciplinary character of research related to dissimilar avatars, it tends to lack common understanding and methodology, hampering the establishment of novel knowledge on this topic. In this paper, we propose to address these limitations by discussing: (i) a methodology for dissimilar avatars characterization, (ii) their impacts on the user experience, (iii) their different fields of application, and finally, (iv) future research direction on this topic. Taken together, we believe that this paper can support future research related to dissimilar avatars, and help designers of VR applications to leverage dissimilar avatars appropriately.
Collapse
|
6
|
Weidner F, Boettcher G, Arboleda SA, Diao C, Sinani L, Kunert C, Gerhardt C, Broll W, Raake A. A Systematic Review on the Visualization of Avatars and Agents in AR & VR displayed using Head-Mounted Displays. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; PP:2596-2606. [PMID: 37027741 DOI: 10.1109/tvcg.2023.3247072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Augmented Reality (AR) and Virtual Reality (VR) are pushing from the labs towards consumers, especially with social applications. These applications require visual representations of humans and intelligent entities. However, displaying and animating photo-realistic models comes with a high technical cost while low-fidelity representations may evoke eeriness and overall could degrade an experience. Thus, it is important to carefully select what kind of avatar to display. This article investigates the effects of rendering style and visible body parts in AR and VR by adopting a systematic literature review. We analyzed 72 papers that compare various avatar representations. Our analysis includes an outline of the research published between 2015 and 2022 on the topic of avatars and agents in AR and VR displayed using head-mounted displays, covering aspects like visible body parts (e.g., hands only, hands and head, full-body) and rendering style (e.g., abstract, cartoon, realistic); an overview of collected objective and subjective measures (e.g., task performance, presence, user experience, body ownership); and a classification of tasks where avatars and agents were used into task domains (physical activity, hand interaction, communication, game-like scenarios, and education/training). We discuss and synthesize our results within the context of today's AR and VR ecosystem, provide guidelines for practitioners, and finally identify and present promising research opportunities to encourage future research of avatars and agents in AR/VR environments.
Collapse
|
7
|
Matthews BJ, Thomas BH, Von Itzstein GS, Smith RT. Adaptive Reset Techniques for Haptic Retargeted Interaction. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:1478-1490. [PMID: 34653001 DOI: 10.1109/tvcg.2021.3120410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article presents a set of adaptive reset techniques for use with haptic retargeting systems focusing on interaction with hybrid virtual reality interfaces that align with a physical interface. Haptic retargeting between changing physical and virtual targets requires a reset where the physical and virtual hand positions are re-aligned. We present a modified Point technique to guide the user in the direction of their next interaction such that the remaining distance to the target is minimized upon completion of the reset. This, along with techniques drawn from existing work are further modified to consider the angular and translational gain of each redirection and identify the optimal position for the reset to take place. When the angular and translational gain is within an acceptable range, the reset can be entirely omitted. This enables continuous retargeting between targets removing interruptions from a sequence of retargeted interactions. These techniques were evaluated in a user study which showed that adaptive reset techniques can provide a significant decrease in task completion time, travel distance, and the number of user errors.
Collapse
|
8
|
Porssut T, Hou Y, Blanke O, Herbelin B, Boulic R. Adapting Virtual Embodiment Through Reinforcement Learning. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:3193-3205. [PMID: 33556011 DOI: 10.1109/tvcg.2021.3057797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In Virtual Reality, having a virtual body opens a wide range of possibilities as the participant's avatar can appear to be quite different from oneself for the sake of the targeted application (e.g., for perspective-taking). In addition, the system can partially manipulate the displayed avatar movement through some distortion to make the overall experience more enjoyable and effective (e.g., training, exercising, rehabilitation). Despite its potential, an excessive distortion may become noticeable and break the feeling of being embodied into the avatar. Past researches have shown that individuals have a relatively high tolerance to movement distortions and a great variability of individual sensitivities to distortions. In this article, we propose a method taking advantage of Reinforcement Learning (RL) to efficiently identify the magnitude of the maximum distortion that does not get noticed by an individual (further noted the detection threshold). We show through a controlled experiment with subjects that the RL method finds a more robust detection threshold compared to the adaptive staircase method, i.e., it is more able to prevent subjects from detecting the distortion when its amplitude is equal or below the threshold. Finally, the associated majority voting system makes the RL method able to handle more noise within the forced choices input than adaptive staircase. This last feature is essential for future use with physiological signals as these latter are even more susceptible to noise. It would then allow to calibrate embodiment individually to increase the effectiveness of the proposed interactions.
Collapse
|
9
|
Dewez D, Hoyet L, Lecuyer A, Argelaguet F. Do You Need Another Hand? Investigating Dual Body Representations During Anisomorphic 3D Manipulation. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:2047-2057. [PMID: 35167468 DOI: 10.1109/tvcg.2022.3150501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In virtual reality, several manipulation techniques distort users' motions, for example to reach remote objects or increase precision. These techniques can become problematic when used with avatars, as they create a mismatch between the real performed action and the corresponding displayed action, which can negatively impact the sense of embodiment. In this paper, we propose to use a dual representation during anisomorphic interaction. A co-located representation serves as a spatial reference and reproduces the exact users' motion, while an interactive representation is used for distorted interaction. We conducted two experiments, investigating the use of dual representations with amplified motion (with the Go-Go technique) and decreased motion (with the PRISM technique). Two visual appearances for the interactive representation and the co-located one were explored. This exploratory study investigating dual representations in this context showed that people globally preferred having a single representation, but opinions diverged for the Go-Go technique. Also, we could not find significant differences in terms of performance. While interacting seemed more important than showing exact movements for agency during out-of-reach manipulation, people felt more in control of the realistic arm during close manipulation.
Collapse
|
10
|
Self-Body Recognition through a Mirror: Easing Spatial-Consistency Requirements for Rubber Hand Illusion. PSYCH 2020. [DOI: 10.3390/psych2020011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Considering that humans recognize mirror images as copies of the real world despite misinterpreting optical reflections, spatial disagreement may be accepted in rubber hand illusion (RHI) settings when a mirror is used to show a fake hand. The present study performed two experiments to reveal how self-body recognition of a fake hand via a mirror affects RHI. First, we tested whether illusory ownership of a fake hand seen in a mirror could be induced in our experimental environment (screening experiment). Subjective evaluations using an RHI questionnaire demonstrated that embodiment of the rubber hand was evoked in the presence or absence of a mirror. We then examined whether using a mirror image for RHI allows disagreement in orientation (45 ∘ ) between the rubber and actual hands (main experiment). The participants experienced RHI even when the actual and rubber hands were incongruent in terms of orientation. These findings suggest that using a mirror masks subtle spatial incongruency or degrades the contribution of visual cues for spatial recognition and facilitates multisensory integration for bodily illusions.
Collapse
|