1
|
Herrero‐Alfonso P, Pejenaute A, Millet O, Ortega‐Quintanilla G. Electrostatics introduce a trade-off between mesophilic stability and adaptation in halophilic proteins. Protein Sci 2024; 33:e5003. [PMID: 38747380 PMCID: PMC11094771 DOI: 10.1002/pro.5003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/22/2024] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
Extremophile organisms have adapted to extreme physicochemical conditions. Halophilic organisms, in particular, survive at very high salt concentrations. To achieve this, they have engineered the surface of their proteins to increase the number of short, polar and acidic amino acids, while decreasing large, hydrophobic and basic residues. While these adaptations initially decrease protein stability in the absence of salt, they grant halophilic proteins remarkable stability in environments with extremely high salt concentrations, where non-adapted proteins unfold and aggregate. The molecular mechanisms by which halophilic proteins achieve this, however, are not yet clear. Here, we test the hypothesis that the halophilic amino acid composition destabilizes the surface of the protein, but in exchange improves the stability in the presence of salts. To do that, we have measured the folding thermodynamics of various protein variants with different degrees of halophilicity in the absence and presence of different salts, and at different pH values to tune the ionization state of the acidic amino acids. Our results show that halophilic amino acids decrease the stability of halophilic proteins under mesophilic conditions, but in exchange improve salt-induced stabilization and solubility. We also find that, in contrast to traditional assumptions, contributions arising from hydrophobic effect and preferential ion exclusion are more relevant for haloadaptation than electrostatics. Overall, our findings suggest a trade-off between folding thermodynamics and halophilic adaptation to optimize proteins for hypersaline environments.
Collapse
Affiliation(s)
- Pablo Herrero‐Alfonso
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences CIC bioGUNEBizkaia Science and Technology ParkDerioSpain
| | - Alba Pejenaute
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences CIC bioGUNEBizkaia Science and Technology ParkDerioSpain
- Tekniker, Basque Research and Technology Alliance (BRTA)EibarSpain
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences CIC bioGUNEBizkaia Science and Technology ParkDerioSpain
| | - Gabriel Ortega‐Quintanilla
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences CIC bioGUNEBizkaia Science and Technology ParkDerioSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| |
Collapse
|
2
|
Jaramillo-Martinez V, Dominguez MJ, Bell GM, Souness ME, Carhart AH, Cuibus MA, Masoumzadeh E, Lantz BJ, Adkins AJ, Latham MP, Ball KA, Stollar EJ. How a highly acidic SH3 domain folds in the absence of its charged peptide target. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.532811. [PMID: 36993259 PMCID: PMC10055188 DOI: 10.1101/2023.03.21.532811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Charged residues on the surface of proteins are critical for both protein stability and interactions. However, many proteins contain binding regions with a high net-charge that may destabilize the protein but are useful for binding to oppositely charged targets. We hypothesized that these domains would be marginally stable, as electrostatic repulsion would compete with favorable hydrophobic collapse during folding. Furthermore, by increasing the salt concentration we predict that these protein folds would be stabilized by mimicking some of the favorable electrostatic interactions that take place during target binding. We varied the salt and urea concentrations to probe the contributions of electrostatic and hydrophobic interactions for the folding of the 60-residue yeast SH3 domain found in Abp1p. The SH3 domain was significantly stabilized with increased salt concentrations according to the Debye-Huckel limiting law. Molecular dynamics and NMR show that sodium ions interact with all 15 acidic residues but do little to change backbone dynamics or overall structure. Folding kinetics experiments show that the addition of urea or salt primarily affects the folding rate, indicating that almost all the hydrophobic collapse and electrostatic repulsion occurs in the transition state. After the transition state formation, modest yet favorable short-range salt-bridges are formed along with hydrogen bonds, as the native state fully folds. Thus, hydrophobic collapse offsets electrostatic repulsion to ensure this highly charged binding domain can still fold and be ready to bind to its charged peptide targets, a property that is likely evolutionarily conserved over one billion years. Statement for broader audience Some protein domains are highly charged because they are adapted to bind oppositely charged proteins and nucleic acids. However, it is unknown how these highly charged domains fold as during folding there will be significant repulsion between like-charges. We investigate how one of these highly charged domains folds in the presence of salt, which can screen the charge repulsion and make folding easier, allowing us to understand how folding occurs despite the protein’s high charge. Supplementary material Supplementary material document containing additional details on protein expression methods, thermodynamics and kinetics equations, and the effect of urea on electrostatic interactions, as well as 4 supplemental figures and 4 supplemental data tables. ( Supplementary_Material.docx ), 15 pages Supplemental excel file containing covariation data across AbpSH3 orthologs ( FileS1.xlsx ).
Collapse
|
3
|
Probing plausible role of anionic surfactants in inducing structural alternations in HEWL with Fe-containing metallo-catanionic aggregates. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Koone JC, Dashnaw CM, Gonzalez M, Shaw BF. A method for quantifying how the activity of an enzyme is affected by the net charge of its nearest crowded neighbor. Protein Sci 2022. [PMCID: PMC9601770 DOI: 10.1002/pro.4384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The electrostatic effects of protein crowding have not been systematically explored. Rather, protein crowding is generally studied with co‐solvents or crowders that are electrostatically neutral, with no methods to measure how the net charge (Z) of a crowder affects protein function. For example, can the activity of an enzyme be affected electrostatically by the net charge of its neighbor in crowded milieu? This paper reports a method for crowding proteins of different net charge to an enzyme via semi‐random chemical crosslinking. As a proof of concept, RNase A was crowded (at distances ≤ the Debye length) via crosslinking to different heme proteins with Z = +8.50 ± 0.04, Z = +6.39 ± 0.12, or Z = −10.30 ± 1.32. Crosslinking did not disrupt the structure of proteins, according to amide H/D exchange, and did not inhibit RNase A activity. For RNase A, we found that the electrostatic environment of each crowded neighbor had significant effects on rates of RNA hydrolysis. Crowding with cationic cytochrome c led to increases in activity, while crowding with anionic “supercharged” cytochrome c or myoglobin diminished activity. Surprisingly, electrostatic crowding effects were amplified at high ionic strength (I = 0.201 M) and attenuated at low ionic strength (I = 0.011 M). This salt dependence might be caused by a unique set of electric double layers at the dimer interspace (maximum distance of 8 Å, which cannot accommodate four layers). This new method of crowding via crosslinking can be used to search for electrostatic effects in protein crowding.
Collapse
Affiliation(s)
- Jordan C. Koone
- Department of Chemistry and Biochemistry Baylor University Waco Texas USA
| | - Chad M. Dashnaw
- Department of Chemistry and Biochemistry Baylor University Waco Texas USA
| | - Mayte Gonzalez
- Department of Chemistry and Biochemistry Baylor University Waco Texas USA
| | - Bryan F. Shaw
- Department of Chemistry and Biochemistry Baylor University Waco Texas USA
| |
Collapse
|
5
|
Yao W, Wang K, Wu A, Reed WF, Gibb BC. Anion binding to ubiquitin and its relevance to the Hofmeister effects. Chem Sci 2020; 12:320-330. [PMID: 34163600 PMCID: PMC8178748 DOI: 10.1039/d0sc04245e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/29/2020] [Indexed: 02/01/2023] Open
Abstract
Although the non-covalent interactions between proteins and salts contributing to the Hofmeister effects have been generally mapped, there are many questions regarding the specifics of these interactions. We report here studies involving the small protein ubiquitin and salts of polarizable anions. These studies reveal a complex interplay between the reverse Hofmeister effect at low pH, the salting-in Hofmeister effect at higher pH, and six anion binding sites in ubiquitin at the root of these phenomena. These sites are all located at protuberances of preorganized secondary structure, and although stronger at low pH, are still apparent when ubiquitin possesses no net charge. These results demonstrate the traceability of these Hofmeister phenomena and suggest new strategies for understanding the supramolecular properties of proteins.
Collapse
Affiliation(s)
- Wei Yao
- Department of Chemistry, Tulane University New Orleans LA 70118 USA
| | - Kaiyu Wang
- Department of Chemistry, Tulane University New Orleans LA 70118 USA
| | - Aide Wu
- Department of Physics and Engineering Physics, Tulane University New Orleans LA 70118 USA
| | - Wayne F Reed
- Department of Physics and Engineering Physics, Tulane University New Orleans LA 70118 USA
| | - Bruce C Gibb
- Department of Chemistry, Tulane University New Orleans LA 70118 USA
| |
Collapse
|
6
|
Hydrodynamic and Electrophoretic Properties of Trastuzumab/HER2 Extracellular Domain Complexes as Revealed by Experimental Techniques and Computational Simulations. Int J Mol Sci 2019; 20:ijms20051076. [PMID: 30832287 PMCID: PMC6429128 DOI: 10.3390/ijms20051076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 11/18/2022] Open
Abstract
The combination of hydrodynamic and electrophoretic experiments and computer simulations is a powerful approach to study the interaction between proteins. In this work, we present hydrodynamic and electrophoretic experiments in an aqueous solution along with molecular dynamics and hydrodynamic modeling to monitor and compute biophysical properties of the interactions between the extracellular domain of the HER2 protein (eHER2) and the monoclonal antibody trastuzumab (TZM). The importance of this system relies on the fact that the overexpression of HER2 protein is related with the poor prognosis breast cancers (HER2++ positives), while the TZM is a monoclonal antibody for the treatment of this cancer. We have found and characterized two different complexes between the TZM and eHER2 proteins (1:1 and 1:2 TZM:eHER2 complexes). The conformational features of these complexes regulate their hydrodynamic and electrostatic properties. Thus, the results indicate a high degree of molecular flexibility in the systems that ultimately leads to higher values of the intrinsic viscosity, as well as lower values of diffusion coefficient than those expected for simple globular proteins. A highly asymmetric charge distribution is detected for the monovalent complex (1:1 complex), which has strong implications in correlations between the experimental electrophoretic mobility and the modeled net charge. In order to understand the dynamics of these systems and the role of the specific domains involved, it is essential to find biophysical correlations between dynamics, macroscopic transport and electrostatic properties. The results should be of general interest for researchers working in this area.
Collapse
|
7
|
Abstract
The ability of polyvalent anions to influence protein-protein interactions and protein net charge was investigated through solubility and turbidity experiments, determination of osmotic second virial coefficients ( B22), and ζ-potential values for lysozyme solutions. B22 values showed that all anions reduce protein-protein repulsion between positively charged lysozyme molecules, and those anions with higher net valencies are more effective. The polyvalent anions pyrophosphate and tripolyphosphate were observed to induce protein reentrant condensation, which has been previously observed with negatively charged proteins in the presence of trivalent cations. Reentrant condensation is a phenomenon in which low concentrations of polyvalent ions induce protein precipitation, but further increasing polyvalent ion concentration causes the protein precipitate to resolubilize. Interestingly, citrate does not induce lysozyme reentrant condensation despite having a similar charge, size, and shape to pyrophosphate. We observe qualitative differences in protein behavior when compared against negatively charged proteins in solutions of trivalent cations. The polyphosphate ions induce a much stronger protein-protein attraction, which correlates with the occurrence of a liquid-gel transition that replaces the liquid-liquid transition observed with trivalent cations. The results indicate that solutions of polyphosphate ions provide a model system for exploring the link between the protein-phase diagram and model interaction potentials and also highlight the importance that ion-specific effects can have on protein solubility.
Collapse
Affiliation(s)
- Jordan W Bye
- School of Chemical Engineering and Analytical Science , The University of Manchester , Sackville Street , Manchester M13 9PL , U.K
| | - Robin A Curtis
- School of Chemical Engineering and Analytical Science , The University of Manchester , Sackville Street , Manchester M13 9PL , U.K
| |
Collapse
|
8
|
Lothian A, Lago L, Mukherjee S, Connor AR, Fowler C, McLean CA, Horne M, Masters CL, Cappai R, Roberts BR. Characterization of the metal status of natively purified alpha-synuclein from human blood, brain tissue, or recombinant sources using size exclusion ICP-MS reveals no significant binding of Cu, Fe or Zn. Metallomics 2019; 11:128-140. [DOI: 10.1039/c8mt00223a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The binding of Cu, Fe or Zn to alpha-synuclein has been implicated in neurodegenerative disease, such as Parkinson's.
Collapse
Affiliation(s)
- Amber Lothian
- The Florey Institute of Neuroscience and Mental Health
- University of Melbourne
- Parkville 3052
- Australia
| | - Larissa Lago
- The Florey Institute of Neuroscience and Mental Health
- University of Melbourne
- Parkville 3052
- Australia
| | - Soumya Mukherjee
- The Florey Institute of Neuroscience and Mental Health
- University of Melbourne
- Parkville 3052
- Australia
| | - Andrea R. Connor
- Department of Pathology
- The University of Melbourne
- Parkville
- Australia
| | - Chris Fowler
- The Florey Institute of Neuroscience and Mental Health
- University of Melbourne
- Parkville 3052
- Australia
| | - Catriona A. McLean
- The Florey Institute of Neuroscience and Mental Health
- University of Melbourne
- Parkville 3052
- Australia
- Department of Anatomical Pathology
| | - Malcolm Horne
- The Florey Institute of Neuroscience and Mental Health
- University of Melbourne
- Parkville 3052
- Australia
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental Health
- University of Melbourne
- Parkville 3052
- Australia
| | - Roberto Cappai
- Department of Pathology
- The University of Melbourne
- Parkville
- Australia
- Department of Pharmacology and Therapeutics
| | - Blaine R. Roberts
- The Florey Institute of Neuroscience and Mental Health
- University of Melbourne
- Parkville 3052
- Australia
| |
Collapse
|
9
|
Manning MC, Liu J, Li T, Holcomb RE. Rational Design of Liquid Formulations of Proteins. THERAPEUTIC PROTEINS AND PEPTIDES 2018; 112:1-59. [DOI: 10.1016/bs.apcsb.2018.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Borzooeian Z, Taslim ME, Borzooeian G, Ghasemi O, Aminlari M. Activity and stability analysis of covalent conjugated lysozyme-single walled carbon nanotubes: potential biomedical and industrial applications. RSC Adv 2017. [DOI: 10.1039/c7ra07189b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Analysis of covalent conjugated lysozyme-single walled carbon nanotubes.
Collapse
Affiliation(s)
- Z. Borzooeian
- Department of Mechanical and Industrial Engineering
- College of Engineering
- Northeastern University
- Boston
- USA
| | - M. E. Taslim
- Department of Mechanical and Industrial Engineering
- College of Engineering
- Northeastern University
- Boston
- USA
| | - G. Borzooeian
- Department of Biology
- Payame Noor University of Isfahan
- Iran
| | - O. Ghasemi
- Takeda Pharmaceuticals USA Inc
- Cambridge
- USA
| | - M. Aminlari
- Department of Biochemistry
- School of Veterinary Medicine
- Shiraz University
- Shiraz
- Iran
| |
Collapse
|
11
|
Galano-Frutos JJ, Morón MC, Sancho J. The mechanism of water/ion exchange at a protein surface: a weakly bound chloride in Helicobacter pylori apoflavodoxin. Phys Chem Chem Phys 2016; 17:28635-46. [PMID: 26443502 DOI: 10.1039/c5cp04504e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Binding/unbinding of small ligands, such as ions, to/from proteins influences biochemical processes such as protein folding, enzyme catalysis or protein/ligand recognition. We have investigated the mechanism of chloride/water exchange at a protein surface (that of the apoflavodoxin from Helicobacter pylori) using classical all-atom molecular dynamics simulations. They reveal a variety of chloride exit routes and residence times; the latter is related to specific coordination modes of the anion. The role of solvent molecules in the mechanism of chloride unbinding has been studied in detail. We see no temporary increase in chloride coordination along the release process. Instead, the coordination of new water molecules takes place in most cases after the chloride/protein atom release event has begun. Moreover, the distribution function of water entrance events into the first chloride solvation shell peaks after chloride protein atom dissociation events. All these observations together seem to indicate that water molecules simply fill the vacancies left by the previously coordinating protein residues. We thus propose a step-by-step dissociation pathway in which protein/chloride interactions gradually break down before new water molecules progressively fill the vacant positions left by protein atoms. As observed for other systems, water molecules associated with bound chloride or with protein atoms have longer residence times than those bound to the free anion. The implications of the exchange mechanism proposed for the binding of the FMN (Flavin Mononucleotide) protein cofactor are discussed.
Collapse
Affiliation(s)
- Juan J Galano-Frutos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain. and Biocomputation and Complex Systems Physics Institute (BIFI), Joint Unit BIFI-IQFR (CSIC). Edificio I + D, Mariano Esquillor, 50018, Zaragoza, Spain
| | - M Carmen Morón
- Instituto de Ciencia de Materiales de Aragón (ICMA), Consejo Superior de Investigaciones Científicas-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain and Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Javier Sancho
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain. and Biocomputation and Complex Systems Physics Institute (BIFI), Joint Unit BIFI-IQFR (CSIC). Edificio I + D, Mariano Esquillor, 50018, Zaragoza, Spain
| |
Collapse
|
12
|
Aoki K, Shiraki K, Hattori T. Salt effects on the picosecond dynamics of lysozyme hydration water investigated by terahertz time-domain spectroscopy and an insight into the Hofmeister series for protein stability and solubility. Phys Chem Chem Phys 2016; 18:15060-9. [DOI: 10.1039/c5cp06324h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The addition of salts into protein aqueous solutions causes changes in protein solubility and stability, the ability of which is known to be ordered in the Hofmeister series.
Collapse
Affiliation(s)
- Katsuyoshi Aoki
- Institute of Applied Physics
- University of Tsukuba
- Tsukuba
- Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
| | | |
Collapse
|
13
|
Owczarz M, Arosio P. Sulfate anion delays the self-assembly of human insulin by modifying the aggregation pathway. Biophys J 2015; 107:197-207. [PMID: 24988354 DOI: 10.1016/j.bpj.2014.05.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/01/2014] [Accepted: 05/06/2014] [Indexed: 12/18/2022] Open
Abstract
The understanding of the molecular mechanisms underlying protein self-assembly and of their dependence on solvent composition has implications in a large number of biological and biotechnological systems. In this work, we characterize the aggregation process of human insulin at acidic pH in the presence of sulfate ions using a combination of Thioflavin T fluorescence, dynamic light scattering, size exclusion chromatography, Fourier transform infrared spectroscopy, and transmission electron microscopy. It is found that the increase of sulfate concentration inhibits the conversion of insulin molecules into aggregates by modifying the aggregation pathway. At low sulfate concentrations (0-5 mM) insulin forms amyloid fibrils following the nucleated polymerization mechanism commonly observed under acidic conditions in the presence of monovalent anions. When the sulfate concentration is increased above 5 mM, the sulfate anion induces the salting-out of ∼18-20% of insulin molecules into reversible amorphous aggregates, which retain a large content of α-helix structures. During time these aggregates undergo structure rearrangements into β-sheet structures, which are able to recruit monomers and bind to the Thioflavin T dye. The alternative aggregation mechanism observed at large sulfate concentrations is characterized by a larger activation energy and leads to more polymorphic structures with respect to the self-assembly in the presence of chloride ions. The system shown in this work represents a case where amorphous aggregates on pathway to the formation of structures with amyloid features could be detected and analyzed.
Collapse
Affiliation(s)
- Marta Owczarz
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Roberts D, Keeling R, Tracka M, van der Walle CF, Uddin S, Warwicker J, Curtis R. Specific Ion and Buffer Effects on Protein–Protein Interactions of a Monoclonal Antibody. Mol Pharm 2014; 12:179-93. [DOI: 10.1021/mp500533c] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- D. Roberts
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester M13 9PL, U.K
| | - R. Keeling
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester M13 9PL, U.K
| | - M. Tracka
- Formulation
Sciences, MedImmune, Ltd., Aaron Klug Building, Granta Park, Cambridge CB21 6GH, U.K
| | - C. F. van der Walle
- Formulation
Sciences, MedImmune, Ltd., Aaron Klug Building, Granta Park, Cambridge CB21 6GH, U.K
| | - S. Uddin
- Formulation
Sciences, MedImmune, Ltd., Aaron Klug Building, Granta Park, Cambridge CB21 6GH, U.K
| | - J. Warwicker
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester M13 9PL, U.K
| | - R. Curtis
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester M13 9PL, U.K
| |
Collapse
|
15
|
Uchiyama S. Liquid formulation for antibody drugs. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2041-2052. [DOI: 10.1016/j.bbapap.2014.07.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 07/16/2014] [Accepted: 07/25/2014] [Indexed: 01/21/2023]
|
16
|
Arnold U. Stability and folding of amphibian ribonuclease A superfamily members in comparison with mammalian homologues. FEBS J 2014; 281:3559-75. [PMID: 24966023 DOI: 10.1111/febs.12891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/18/2014] [Indexed: 01/05/2023]
Abstract
Comparative studies on homologous proteins can provide knowledge on how limited changes in the primary structure find their expression in large effects on catalytic activity, stability or the folding behavior. For more than half a century, members of the ribonuclease A superfamily have been the subject of a myriad of studies on protein folding and stability. Both the unfolding and refolding kinetics as well as the structure of several folding intermediates of ribonuclease A have been characterized in detail. Moreover, the RNA-degrading activity of these enzymes provides a basis for their cytotoxicity, which renders them potential tumor therapeutics. Because amphibian ribonuclease A homologues evade the human ribonuclease inhibitor, they emerged as particularly promising candidates. Interestingly, the amphibian ribonuclease A homologues investigated to date are more stable than the mammalian homologues. Nevertheless, despite the generation of numerous genetically engineered variants, knowledge of the folding of amphibian ribonuclease A homologues remains rather limited. An exception is onconase, a ribonuclease A homologue from Rana pipiens, which has been characterized in detail. This review summarizes the data on the unfolding and refolding kinetics and pathways, as well on the stability of amphibian ribonuclease A homologues compared with those of ribonuclease A, the best known member of this superfamily.
Collapse
Affiliation(s)
- Ulrich Arnold
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Germany
| |
Collapse
|
17
|
Molten globule-like partially folded state of Bacillus licheniformis α-amylase at low pH induced by 1,1,1,3,3,3-hexafluoroisopropanol. ScientificWorldJournal 2014; 2014:824768. [PMID: 24977228 PMCID: PMC3996958 DOI: 10.1155/2014/824768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 02/17/2014] [Indexed: 11/24/2022] Open
Abstract
Effect of 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) on acid-denatured Bacillus licheniformis α-amylase (BLA) at pH 2.0 was investigated by far-UV CD, intrinsic fluorescence, and ANS fluorescence measurements. Addition of increasing HFIP concentrations led to an increase in the mean residue ellipticity at 222 nm (MRE222 nm) up to 1.5 M HFIP concentration beyond which it sloped off. A small increase in the intrinsic fluorescence and a marked increase in the ANS fluorescence were also observed up to 0.4 M HFIP concentration, both of which decreased thereafter. Far- and near-UV CD spectra of the HFIP-induced state observed at 0.4 M HFIP showed significant retention of the secondary structures closer to native BLA but a disordered tertiary structure. Increase in the ANS fluorescence intensity was also observed with the HFIP-induced state, suggesting exposure of the hydrophobic clusters to the solvent. Furthermore, thermal denaturation of HFIP-induced state showed a non-cooperative transition. Taken together, all these results suggested that HFIP-induced state of BLA represented a molten globule-like state at pH 2.0.
Collapse
|
18
|
Roberts D, Keeling R, Tracka M, van der Walle CF, Uddin S, Warwicker J, Curtis R. The role of electrostatics in protein-protein interactions of a monoclonal antibody. Mol Pharm 2014; 11:2475-89. [PMID: 24892385 DOI: 10.1021/mp5002334] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Understanding how protein-protein interactions depend on the choice of buffer, salt, ionic strength, and pH is needed to have better control over protein solution behavior. Here, we have characterized the pH and ionic strength dependence of protein-protein interactions in terms of an interaction parameter kD obtained from dynamic light scattering and the osmotic second virial coefficient B22 measured by static light scattering. A simplified protein-protein interaction model based on a Baxter adhesive potential and an electric double layer force is used to separate out the contributions of longer-ranged electrostatic interactions from short-ranged attractive forces. The ionic strength dependence of protein-protein interactions for solutions at pH 6.5 and below can be accurately captured using a Deryaguin-Landau-Verwey-Overbeek (DLVO) potential to describe the double layer forces. In solutions at pH 9, attractive electrostatics occur over the ionic strength range of 5-275 mM. At intermediate pH values (7.25 to 8.5), there is a crossover effect characterized by a nonmonotonic ionic strength dependence of protein-protein interactions, which can be rationalized by the competing effects of long-ranged repulsive double layer forces at low ionic strength and a shorter ranged electrostatic attraction, which dominates above a critical ionic strength. The change of interactions from repulsive to attractive indicates a concomitant change in the angular dependence of protein-protein interaction from isotropic to anisotropic. In the second part of the paper, we show how the Baxter adhesive potential can be used to predict values of kD from fitting to B22 measurements, thus providing a molecular basis for the linear correlation between the two protein-protein interaction parameters.
Collapse
Affiliation(s)
- D Roberts
- School of Chemical Engineering and Analytical Science, The University of Manchester , Sackville Street, Manchester M13 9PL, U.K
| | | | | | | | | | | | | |
Collapse
|
19
|
Hibi T, Hayashi Y, Fukada H, Itoh T, Nago T, Nishiya Y. Intersubunit Salt Bridges with a Sulfate Anion Control Subunit Dissociation and Thermal Stabilization of Bacillus sp. TB-90 Urate Oxidase. Biochemistry 2014; 53:3879-888. [DOI: 10.1021/bi500137b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takao Hibi
- Department
of Bioscience, Fukui Prefectural University, Eiheiji City, Yoshida District, Fukui 910-1195, Japan
| | - Yuta Hayashi
- Department
of Bioscience, Fukui Prefectural University, Eiheiji City, Yoshida District, Fukui 910-1195, Japan
| | - Harumi Fukada
- Graduate
School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Takafumi Itoh
- Department
of Bioscience, Fukui Prefectural University, Eiheiji City, Yoshida District, Fukui 910-1195, Japan
| | - Tomohiro Nago
- Department
of Bioscience, Fukui Prefectural University, Eiheiji City, Yoshida District, Fukui 910-1195, Japan
| | - Yoshiaki Nishiya
- Tsuruga
Institute of Biotechnology, Toyobo Company Ltd., Tsuruga, Fukui 914-0047, Japan
| |
Collapse
|
20
|
Electrostatic effects control the stability and iron release kinetics of ovotransferrin. J Biol Inorg Chem 2014; 19:1009-24. [DOI: 10.1007/s00775-014-1145-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
|
21
|
Honey-induced protein stabilization as studied by fluorescein isothiocyanate fluorescence. ScientificWorldJournal 2013; 2013:981902. [PMID: 24222758 PMCID: PMC3809590 DOI: 10.1155/2013/981902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/22/2013] [Indexed: 11/27/2022] Open
Abstract
Protein stabilizing potential of honey was studied on a model protein, bovine serum albumin (BSA), using extrinsic fluorescence of fluorescein isothiocyanate (FITC) as the probe. BSA was labelled with FITC using chemical coupling, and urea and thermal denaturation studies were performed on FITC-labelled BSA (FITC-BSA) both in the absence and presence of 10% and 20% (w/v) honey using FITC fluorescence at 522 nm upon excitation at 495 nm. There was an increase in the FITC fluorescence intensity upon increasing urea concentration or temperature, suggesting protein denaturation. The results from urea and thermal denaturation studies showed increased stability of protein in the presence of honey as reflected from the shift in the transition curve along with the start point and the midpoint of the transition towards higher urea concentration/temperature. Furthermore, the increase in ΔGDH2O and ΔGD25°C in presence of honey also suggested protein stabilization.
Collapse
|
22
|
Bye JW, Falconer RJ. Thermal stability of lysozyme as a function of ion concentration: a reappraisal of the relationship between the Hofmeister series and protein stability. Protein Sci 2013; 22:1563-70. [PMID: 24038575 DOI: 10.1002/pro.2355] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/14/2013] [Accepted: 08/19/2013] [Indexed: 11/09/2022]
Abstract
Anion and cation effects on the structural stability of lysozyme were investigated using differential scanning calorimetry. At low concentrations (<5 mM) anions and cations alter the stability of lysozyme but they do not follow the Hofmeister (or inverse Hofmeister) series. At higher concentrations protein stabilization follows the well-established Hofmeister series. Our hypothesis is that there are three mechanisms at work. At low concentrations the anions interact with charged side chains where the presence of the ion can alter the structural stability of the protein. At higher concentrations the low charge density anions perchlorate and iodide interact weakly with the protein. Their presence however reduces the Gibbs free energy required to hydrate the core of the protein that is exposed during unfolding therefore destabilizing the structure. At higher concentrations the high charge density anions phosphate and sulfate compete for water with the protein as it unfolds increasing the Gibbs free energy required to hydrate the newly exposed core of the protein therefore stabilizing the structure.
Collapse
Affiliation(s)
- Jordan W Bye
- Department of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Sheffield, S1 3JD, England, United Kingdom
| | | |
Collapse
|
23
|
Majumdar R, Manikwar P, Hickey JM, Samra HS, Sathish HA, Bishop SM, Middaugh CR, Volkin DB, Weis DD. Effects of Salts from the Hofmeister Series on the Conformational Stability, Aggregation Propensity, and Local Flexibility of an IgG1 Monoclonal Antibody. Biochemistry 2013; 52:3376-89. [DOI: 10.1021/bi400232p] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ranajoy Majumdar
- Department
of Pharmaceutical
Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047, United
States
| | - Prakash Manikwar
- Department
of Pharmaceutical
Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047, United
States
| | - John M. Hickey
- Department
of Pharmaceutical
Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047, United
States
| | - Hardeep S. Samra
- Department of Formulation
Sciences, MedImmune, One MedImmune Way,
Gaithersburg, Maryland
20878, United States
| | - Hasige A. Sathish
- Department of Formulation
Sciences, MedImmune, One MedImmune Way,
Gaithersburg, Maryland
20878, United States
| | - Steven M. Bishop
- Department of Formulation
Sciences, MedImmune, One MedImmune Way,
Gaithersburg, Maryland
20878, United States
| | - C. Russell Middaugh
- Department
of Pharmaceutical
Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047, United
States
| | - David B. Volkin
- Department
of Pharmaceutical
Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047, United
States
| | - David D. Weis
- Department
of Chemistry and R.
N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
24
|
Zhang-van Enk J, Mason BD, Yu L, Zhang L, Hamouda W, Huang G, Liu D, Remmele RL, Zhang J. Perturbation of thermal unfolding and aggregation of human IgG1 Fc fragment by Hofmeister anions. Mol Pharm 2013; 10:619-30. [PMID: 23256580 DOI: 10.1021/mp300378y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The thermal unfolding and subsequent aggregation of the unglycosylated Fc fragment of a human IgG1 antibody (Fc) were studied in the salt solutions of Na(2)SO(4), KF, KCl and KSCN at pH 4.8 and 7.2 below and at its pI of 7.2, respectively, using differential scanning calorimetry (DSC), far ultraviolet circular dichroism (far-UV CD), size exclusion chromatography (SE-HPLC) and light scattering. First, our experimental results demonstrated that the thermal unfolding of the C(H)2 domain of the Fc was sufficient to induce aggregation. Second, at both pH conditions, the anions (except F(-)) destabilized the C(H)2 domain where the effectiveness of SO(4)(2-) > SCN(-) > Cl(-) > F(-) was more apparent at pH 4.8. In addition, the thermal stability of the C(H)2 domain was less sensitive to the change in salt concentration at pH 7.2 than at pH 4.8. Third, at pH 4.8 when the Fc had a net positive charge, the anions accelerated the aggregation reaction with SO(4)(2-) > SCN(-) > Cl(-) > F(-) in effectiveness. But these anions slowed down the aggregation kinetics at pH 7.2 with similar effectiveness when the Fc was net charge neutral. We hypothesize that the effectiveness of the anion on destabilizing the C(H)2 domain could be attributed to its ability to perturb the free energy for both of the native and unfolded states. The effect of the anions on the kinetics of the aggregation reaction could be interpreted based on the modulation of the electrostatic protein-protein interactions by the anions.
Collapse
Affiliation(s)
- Jian Zhang-van Enk
- Department of Analytical and Formulation Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Airoldi M, Gennaro G, Giomini M, Giuliani AM, Giustini M. Effect of the alkaline cations on the stability of the model polynucleotide poly(dG-dC)·poly(dG-dC). J Biomol Struct Dyn 2012; 29:585-94. [PMID: 22066543 DOI: 10.1080/07391102.2011.10507407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
When the model polynucleotide poly(dG-dC)∙poly(dG-dC) [polyGC] is titrated with a strong acid (HCl) in unbuffered aqueous solutions containing the chlorides of the alkali metals in the concentration range 0.010 M-0.600 M, two transitions in the absorbance vs. pH plots are evidenced, characterized by the constants pK(a(₁)) and pK(a(₂)). The limiting values at infinite saline concentrations of these two constants, namely pK(∞)(a(₁)) and pK(∞)(a(₂)) obtained making use of the "one site saturation constant" equation or, in turn, of the double logarithmic plot: pK(a) vs. log([salt]⁻¹), exhibit a clear dependence on the nature of the cations. The effects of the different alkali cations on the pK(∞)(a) values follow the Hofmeister series. In fact, the pK(∞)(a(₁)) and the pK(∞)(a(₂)) values are smaller for Li+ and Na+ than for Rb+ and Cs+, with K+ at the border between the two, showing that the transitions require higher concentrations of protons to occur in the presence of high concentrations of the cosmotropic ions.
Collapse
Affiliation(s)
- Marta Airoldi
- Dipartimento di Chimica "S. Cannizzaro", Universita di Palermo, Viale delle Scienze, Pad. 17, 90128 Palermo, Italy
| | | | | | | | | |
Collapse
|
26
|
Hondorp ER, Hou SC, Hempstead AD, Hause LL, Beckett DM, McIver KS. Characterization of the Group A Streptococcus Mga virulence regulator reveals a role for the C-terminal region in oligomerization and transcriptional activation. Mol Microbiol 2012; 83:953-67. [PMID: 22468267 DOI: 10.1111/j.1365-2958.2012.07980.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Group A Streptococcus (GAS) is a strict human pathogen that causes a broad spectrum of illnesses. One of the key regulators of virulence in GAS is the transcriptional activator Mga, which co-ordinates the early stages of infection. Although the targets of Mga have been well characterized, basic biochemical analyses have been limited due to difficulties in obtaining purified protein. In this study, high-level purification of soluble Mga was achieved, enabling the first detailed characterization of the protein. Fluorescence titrations coupled with filter-binding assays indicate that Mga binds cognate DNA with nanomolar affinity. Gel filtration analyses, analytical ultracentrifugation and co-immunoprecipitation experiments demonstrate that Mga forms oligomers in solution.Moreover, the ability of the protein to oligomerize in solution was found to correlate with transcriptional activation; DNA binding appears to be necessary but insufficient for full activity. Truncation analyses reveal that the uncharacterized C-terminal region of Mga, possessing similarity to phosphotransferase system EIIB proteins, plays a critical role in oligomerization and in vivo activity. Mga from a divergent serotype was found to behave similarly, suggesting that this study describes a general mechanism for Mga regulation of target virulence genes within GAS and provides insight into related regulators in other Gram-positive pathogens.
Collapse
Affiliation(s)
- Elise R Hondorp
- Department of Cell Biology & Molecular Genetics andMaryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | |
Collapse
|
27
|
Dasgupta A, Udgaonkar JB. Four-State Folding of a SH3 Domain: Salt-Induced Modulation of the Stabilities of the Intermediates and Native State. Biochemistry 2012; 51:4723-34. [DOI: 10.1021/bi300223b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amrita Dasgupta
- National Centre for Biological
Sciences, Tata Institute of Fundamental Research, Bangalore 560065,
India
| | - Jayant B. Udgaonkar
- National Centre for Biological
Sciences, Tata Institute of Fundamental Research, Bangalore 560065,
India
| |
Collapse
|
28
|
Reyes-Alcaraz A, Martínez-Archundia M, Ramon E, Garriga P. Salt effects on the conformational stability of the visual G-protein-coupled receptor rhodopsin. Biophys J 2012; 101:2798-806. [PMID: 22261069 DOI: 10.1016/j.bpj.2011.09.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 09/21/2011] [Accepted: 09/26/2011] [Indexed: 11/28/2022] Open
Abstract
Membrane protein stability is a key parameter with important physiological and practical implications. Inorganic salts affect protein stability, but the mechanisms of their interactions with membrane proteins are not completely understood. We have undertaken the study of a prototypical G-protein-coupled receptor, the α-helical membrane protein rhodopsin from vertebrate retina, and explored the effects of inorganic salts on the thermal decay properties of both its inactive and photoactivated states. Under high salt concentrations, rhodopsin significantly increased its activation enthalpy change for thermal bleaching, whereas acid denaturation affected the formation of a denatured loose-bundle state for both the active and inactive conformations. This behavior seems to correlate with changes in protonated Schiff-base hydrolysis. However, chromophore regeneration with the 11-cis-retinal chromophore and MetarhodopsinII decay kinetics were slower only in the presence of sodium chloride, suggesting that in this case, the underlying phenomenon may be linked to the activation of rhodopsin and the retinal release processes. Furthermore, the melting temperature, determined by means of circular dichroism and differential scanning calorimetry measurements, was increased in the presence of high salt concentrations. The observed effects on rhodopsin could indicate that salts favor electrostatic interactions in the retinal binding pocket and indirectly favor hydrophobic interactions at the membrane protein receptor core. These effects can be exploited in applications where the stability of membrane proteins in solution is highly desirable.
Collapse
Affiliation(s)
- Arfaxad Reyes-Alcaraz
- Group of Molecular and Industrial Biotechnology, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Terrassa, Catalonia, Spain
| | | | | | | |
Collapse
|
29
|
Zhang L, Tan H, Matthew Fesinmeyer R, Li C, Catrone D, Le D, Remmele RL, Zhang J. Antibody Solubility Behavior in Monovalent Salt Solutions Reveals Specific Anion Effects at Low Ionic Strength. J Pharm Sci 2012; 101:965-77. [DOI: 10.1002/jps.22826] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 10/17/2011] [Accepted: 11/02/2011] [Indexed: 11/10/2022]
|
30
|
Airoldi M, Gennaro G, Giomini M, Giuliani AM, Giustini M. Effect of the Alkaline Cations on the Stability of the Model Polynucleotide Poly(dG-dC)·Poly(dG-dC). J Biomol Struct Dyn 2011. [DOI: 10.1080/07391102.2011.10507395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
Miao L, Qin H, Koehl P, Song J. Selective and specific ion binding on proteins at physiologically-relevant concentrations. FEBS Lett 2011; 585:3126-32. [PMID: 21907714 DOI: 10.1016/j.febslet.2011.08.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 08/25/2011] [Accepted: 08/29/2011] [Indexed: 12/13/2022]
Abstract
Insoluble proteins dissolved in unsalted water appear to have no well-folded tertiary structures. This raises a fundamental question as to whether being unstructured is due to the absence of salt ions. To address this issue, we solubilized the insoluble ephrin-B2 cytoplasmic domain in unsalted water and first confirmed using NMR spectroscopy that it is only partially folded. Using NMR HSQC titrations with 14 different salts, we further demonstrate that the addition of salt triggers no significant folding of the protein within physiologically relevant ion concentrations. We reveal however that their 8 anions bind to the ephrin-B2 protein with high affinity and specificity at biologically-relevant concentrations. Interestingly, the binding is found to be both salt- and residue-specific.
Collapse
Affiliation(s)
- Linlin Miao
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
32
|
Gokarn YR, Fesinmeyer RM, Saluja A, Razinkov V, Chase SF, Laue TM, Brems DN. Effective charge measurements reveal selective and preferential accumulation of anions, but not cations, at the protein surface in dilute salt solutions. Protein Sci 2011; 20:580-7. [PMID: 21432935 DOI: 10.1002/pro.591] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Specific-ion effects are ubiquitous in nature; however, their underlying mechanisms remain elusive. Although Hofmeister-ion effects on proteins are observed at higher (>0.3 M) salt concentrations, in dilute (<0.1 M) salt solutions nonspecific electrostatic screening is considered to be dominant. Here, using effective charge (Q*) measurements of hen-egg white lysozyme (HEWL) as a direct and differential measure of ion-association, we experimentally show that anions selectively and preferentially accumulate at the protein surface even at low (<100 mM) salt concentrations. At a given ion normality (50 mN), the HEWL Q* was dependent on anion, but not cation (Li(+), Na(+), K(+), Rb(+), Cs(+), GdnH(+), and Ca(2+)), identity. The Q* decreased in the order F(-) > Cl(-) > Br(-) > NO(3)(-) ∼ I(-) > SCN(-) > ClO(4)(-) ≫ SO(4)(2-), demonstrating progressively greater binding of the monovalent anions to HEWL and also show that the SO(4)(2-) anion, despite being strongly hydrated, interacts directly with the HEWL surface. Under our experimental conditions, we observe a remarkable asymmetry between anions and cations in their interactions with the HEWL surface.
Collapse
Affiliation(s)
- Yatin R Gokarn
- Process and Product Development, Amgen Inc. Seattle, Washington 98119, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Goulet DR, Knee KM, King JA. Inhibition of unfolding and aggregation of lens protein human gamma D crystallin by sodium citrate. Exp Eye Res 2011; 93:371-81. [PMID: 21600897 DOI: 10.1016/j.exer.2011.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 03/20/2011] [Accepted: 04/19/2011] [Indexed: 11/15/2022]
Abstract
Cataract affects 1 in 6 Americans over the age of 40, and represents a global health problem. Mature onset cataract is associated with the aggregation of partially unfolded or damaged proteins in the lens, which accumulate as an individual ages. Currently, surgery is the primary effective treatment for cataract. As an alternative preventive approach, small molecules have been suggested as potential therapeutic agents. In this work, we study the effect of sodium citrate on the stability of Human γD Crystallin (HγD-Crys), a structural protein of the eye lens, and two cataract-related mutants, L5S HγD-Crys and I90F HγD-Crys. In equilibrium unfolding-refolding studies, the presence of 250 mM sodium citrate increased the transition midpoint of the N-terminal domain (N-td) of WT HγD-Crys and L5S HγD-Crys by 0.3 M GuHCl, the C-terminal domain (C-td) by 0.6 M GuHCl, and the single transition of I90F HγD-Crys by 0.4 M GuHCl. In kinetic unfolding reactions, sodium citrate stabilization effect was observed only for the mutant I90F HγD-Crys. In the presence of citrate, a kinetic unfolding intermediate of I90F HγD-Crys was observed, which was not populated in the absence of citrate. The rates of aggregation were measured using solution turbidity. Sodium citrate demonstrated negligible effect on rate of aggregation of WT HγD-Crys, but considerably slowed the rate of aggregation of both L5S HγD-Crys and I90F HγD-Crys. The presence of sodium citrate dramatically slowed refolding of WT HγD-Crys and I90F HγD-Crys, but had a significantly smaller effect on the refolding of L5S HγD-Crys. The differential stabilizing effect of sodium citrate suggests that the ion is binding to a partially unfolded conformation of the C-td, but a solution-based Hofmeister effect cannot be eliminated as a possible explanation for the effects observed. These results indicate that assessment of potential anti-cataract agents needs to include effects on the unfolding and aggregation pathways, as well as the native state.
Collapse
Affiliation(s)
- Daniel R Goulet
- Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Ave., 68-330, Cambridge, MA 02139, United States
| | | | | |
Collapse
|
34
|
Ercole C, López-Alonso JP, Font J, Ribó M, Vilanova M, Picone D, Laurents DV. Crowding agents and osmolytes provide insight into the formation and dissociation of RNase A oligomers. Arch Biochem Biophys 2011; 506:123-9. [DOI: 10.1016/j.abb.2010.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 11/15/2010] [Indexed: 11/24/2022]
|
35
|
Bončina M, Lah J, Reščič J, Vlachy V. Thermodynamics of the Lysozyme−Salt Interaction from Calorimetric Titrations. J Phys Chem B 2010; 114:4313-9. [DOI: 10.1021/jp9071845] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matjaž Bončina
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Jurij Lah
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Jurij Reščič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Vojko Vlachy
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
36
|
Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS. Stability of protein pharmaceuticals: an update. Pharm Res 2010; 27:544-75. [PMID: 20143256 DOI: 10.1007/s11095-009-0045-6] [Citation(s) in RCA: 767] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 12/27/2009] [Indexed: 12/16/2022]
Abstract
In 1989, Manning, Patel, and Borchardt wrote a review of protein stability (Manning et al., Pharm. Res. 6:903-918, 1989), which has been widely referenced ever since. At the time, recombinant protein therapy was still in its infancy. This review summarizes the advances that have been made since then regarding protein stabilization and formulation. In addition to a discussion of the current understanding of chemical and physical instability, sections are included on stabilization in aqueous solution and the dried state, the use of chemical modification and mutagenesis to improve stability, and the interrelationship between chemical and physical instability.
Collapse
|
37
|
Vorobyev DY, Kuo CH, Chen JX, Kuroda DG, Scott JN, Vanderkooi JM, Hochstrasser RM. Ultrafast vibrational spectroscopy of a degenerate mode of guanidinium chloride. J Phys Chem B 2010; 113:15382-91. [PMID: 19905022 DOI: 10.1021/jp9069256] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nearly degenerate asymmetric stretches with perpendicular transition dipole moments of the deuterated guanidinium cation (DGdm(+)) in D(2)O and D-glycerol/D(2)O mixtures at 1600 cm(-1) were investigated by linear FTIR spectroscopy and polarization dependent femtosecond pump-probe spectroscopy. The vibrational coupling of the asymmetric stretches of guanidinium occurs within 0.5 ps and leads to fast decay of the anisotropy to a level of 0.1. A systematic study of the influence of the coherence transfer on pump-probe signals is given. Following this decay, the anisotropy decays with a time constant of 4.1 ps in D(2)O by rotational diffusion about an axis perpendicular to the DGdm(+) mean plane. The presence of aggregation was demonstrated for concentrations higher than 0.2 M.
Collapse
Affiliation(s)
- Dmitriy Yu Vorobyev
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Varhač R, Tomášková N, Fabián M, Sedlák E. Kinetics of cyanide binding as a probe of local stability/flexibility of cytochrome c. Biophys Chem 2009; 144:21-6. [DOI: 10.1016/j.bpc.2009.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Revised: 05/30/2009] [Accepted: 06/01/2009] [Indexed: 10/20/2022]
|
39
|
Gokarn YR, Fesinmeyer RM, Saluja A, Cao S, Dankberg J, Goetze A, Remmele RL, Narhi LO, Brems DN. Ion-specific modulation of protein interactions: anion-induced, reversible oligomerization of a fusion protein. Protein Sci 2009; 18:169-79. [PMID: 19177361 DOI: 10.1002/pro.20] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ions can significantly modulate the solution interactions of proteins. We aim to demonstrate that the salt-dependent reversible heptamerization of a fusion protein called peptibody A or PbA is governed by anion-specific interactions with key arginyl and lysyl residues on its peptide arms. Peptibody A, an E. coli expressed, basic (pI = 8.8), homodimer (65.2 kDa), consisted of an IgG1-Fc with two, C-terminal peptide arms linked via penta-glycine linkers. Each peptide arm was composed of two, tandem, active sequences (SEYQGLPPQGWK) separated by a spacer (GSGSATGGSGGGASSGSGSATG). PbA was monomeric in 10 mM acetate, pH 5.0 but exhibited reversible self-association upon salt addition. The sedimentation coefficient (s(w)) and hydrodynamic diameter (D(H)) versus PbA concentration isotherms in the presence of 140 mM NaCl (A5N) displayed sharp increases in s(w) and D(H), reaching plateau values of 9 s and 16 nm by 10 mg/mL PbA. The D(H) and sedimentation equilibrium data in the plateau region (>12 mg/mL) indicated the oligomeric ensemble to be monodisperse (PdI = 0.05) with a z-average molecular weight (M(z)) of 433 kDa (stoichiometry = 7). There was no evidence of reversible self-association for an IgG1-Fc molecule in A5N by itself or in a mixture containing fluorescently labeled IgG1-Fc and PbA, indicative of PbA self-assembly being mediated through its peptide arms. Self-association increased with pH, NaCl concentration, and anion size (I(-) > Br(-) > Cl(-) > F(-)) but could be inhibited using soluble Trp-, Phe-, and Leu-amide salts (Trp > Phe > Leu). We propose that in the presence of salt (i) anion binding renders PbA self-association competent by neutralizing the peptidyl arginyl and lysyl amines, (ii) self-association occurs via aromatic and hydrophobic interactions between the ..xxCTRWPWMC..xxxCTRWPWMCxx.. motifs, and (iii) at >10 mg/mL, PbA predominantly exists as heptameric clusters.
Collapse
Affiliation(s)
- Yatin R Gokarn
- Process and Product Development, Amgen Inc., Seattle, Washington 98119, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chakraborty T, Chakraborty I, Moulik SP, Ghosh S. Physicochemical and conformational studies on BSA-surfactant interaction in aqueous medium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:3062-74. [PMID: 19437713 DOI: 10.1021/la803797x] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In this paper, results of physicochemical studies on the interaction of bovine serum albumin (BSA) with alkyltrimethylammonium bromide (ATAB), pentaethylene glycol mono-n-dodecyl ether (C12E5), and sodium dodecyl sulfate (SDS) under the experimental conditions of phosphate buffer at pH 7 in the presence of 10 mM sodium bromide (NaBr), maintaining the ionic strength of the overall solution at micro = 0.015 M, have been presented and discussed. Here, BSA-ATAB corresponds to a polyion-surfactant system bearing opposite charges. BSA precipitated out of the solution on addition of ATAB solution over a certain range of ATAB concentration, the concentration range being dependent on the particular member of the ATAB family. In our earlier reports on the precipitation of oppositely charged polymer-surfactant, the tensiometric profile for surfactant addition in polymer solution differed significantly from that expected from addition of surfactant in the dispersion medium. In the present study, the precipitation process could hardly affect the smoothness of the tensiometric profile. This indicates the interaction process is operative in bulk solution. Microcalorimetric profiles also evidenced an extra hump in the interaction profile at lower surfactant concentrations, without much affecting the dilution enthalpograms beyond micellization. This interaction appeared unimodal and the extent of interaction increased with increasing tail length of ATAB, evidencing the hydrophobic effect to be an important factor. Addition of salt (NaBr) also affected the nature of interaction: at lower concentration of NaBr, the interaction was mildly assisted, whereas 50 mM NaBr fairly assisted the interaction. The nonionic surfactant C12E5 modestly interacted with BSA. The anionic amphiphile SDS, on the other hand, interacted with BSA in two distinctly different stages, as evidenced from the tensiometric profile. The complexity of the BSA-SDS tensiometric isotherm compared to that of BSA-ATAB arose from the presence of cationic binding sites adjacent to hydrophobic patches of BSA in its native state, so that electrostatic and hydrophobic interactions can cooperatively operate side by side. The interfacial saturation occurred at a lower concentration in the presence of BSA compared to the normal cmc of SDS under identical solution conditions in the absence of BSA, which was slightly delayed for nonionic C12E5. The multitechnique approach evidenced that different experimental techniques probe different physicochemical phenomena and an attempt to show the concurrence of the break points in different techniques is only diluting the essence of this area.
Collapse
Affiliation(s)
- Tanushree Chakraborty
- Centre for Surface Science, Department of Chemistry, Jadavpur University, Kolkata-700 032, India
| | | | | | | |
Collapse
|
41
|
Mason PE, Dempsey CE, Vrbka L, Heyda J, Brady JW, Jungwirth P. Specificity of Ion−Protein Interactions: Complementary and Competitive Effects of Tetrapropylammonium, Guanidinium, Sulfate, and Chloride Ions. J Phys Chem B 2009; 113:3227-34. [DOI: 10.1021/jp8112232] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Philip E. Mason
- Department of Food Science, Cornell University, Ithaca, New York 14853, Department of Biochemistry, Bristol University, Bristol BS8 1TD, U.K., Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2, 16610 Prague 6, Czech Republic, and Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Christopher E. Dempsey
- Department of Food Science, Cornell University, Ithaca, New York 14853, Department of Biochemistry, Bristol University, Bristol BS8 1TD, U.K., Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2, 16610 Prague 6, Czech Republic, and Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Luboš Vrbka
- Department of Food Science, Cornell University, Ithaca, New York 14853, Department of Biochemistry, Bristol University, Bristol BS8 1TD, U.K., Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2, 16610 Prague 6, Czech Republic, and Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Jan Heyda
- Department of Food Science, Cornell University, Ithaca, New York 14853, Department of Biochemistry, Bristol University, Bristol BS8 1TD, U.K., Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2, 16610 Prague 6, Czech Republic, and Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - John W. Brady
- Department of Food Science, Cornell University, Ithaca, New York 14853, Department of Biochemistry, Bristol University, Bristol BS8 1TD, U.K., Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2, 16610 Prague 6, Czech Republic, and Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Pavel Jungwirth
- Department of Food Science, Cornell University, Ithaca, New York 14853, Department of Biochemistry, Bristol University, Bristol BS8 1TD, U.K., Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2, 16610 Prague 6, Czech Republic, and Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
42
|
Effect of Hofmeister ions on protein thermal stability: Roles of ion hydration and peptide groups? Arch Biochem Biophys 2008; 479:69-73. [DOI: 10.1016/j.abb.2008.08.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 08/17/2008] [Accepted: 08/20/2008] [Indexed: 11/22/2022]
|
43
|
Huang YC, Misquitta S, Blond SY, Adams E, Colman RF. Catalytically active monomer of glutathione S-transferase pi and key residues involved in the electrostatic interaction between subunits. J Biol Chem 2008; 283:32880-8. [PMID: 18796433 DOI: 10.1074/jbc.m805484200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human glutathione transferase pi (GST pi) has been crystallized as a homodimer, with a subunit molecular mass of approximately 23 kDa; however, in solution the average molecular mass depends on protein concentration, approaching that of monomer at <0.03 mg/ml, concentrations typically used to measure catalytic activity of the enzyme. Electrostatic interaction at the subunit interface greatly influences the dimer-monomer equilibrium of the enzyme and is an important force for holding subunits together. Arg-70, Arg-74, Asp-90, Asp-94, and Thr-67 were selected as target sites for mutagenesis, because they are at the subunit interface. R70Q, R74Q, D90N, D94N, and T67A mutant enzymes were constructed, expressed in Escherichia coli, and purified. The construct of N-terminal His tag enzyme facilitates the purification of GST pi, resulting in a high yield of enzyme, but does not alter the kinetic parameters or secondary structure of the enzyme. Our results indicate that these mutant enzymes show no appreciable changes in K(m) for 1-chloro-2,4-dinitrobenzene and have similar CD spectra to that of wild-type enzyme. However, elimination of the charges of either Arg-70, Arg-74, Asp-90, or Asp-94 shifts the dimer-monomer equilibrium toward monomer. In addition, replacement of Asp-94 or Arg-70 causes a large increase in the K(m)(GSH), whereas substitution for Asp-90 or Arg-74 primarily results in a marked decrease in V(max). The GST pi retains substantial catalytic activity as a monomer probably because the glutathione and electrophilic substrate sites (such as for 1-chloro-2,4-dinitrobenzene) are predominantly located within each subunit.
Collapse
Affiliation(s)
- Yu-chu Huang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | | | |
Collapse
|
44
|
Faria TQ, Mingote A, Siopa F, Ventura R, Maycock C, Santos H. Design of new enzyme stabilizers inspired by glycosides of hyperthermophilic microorganisms. Carbohydr Res 2008; 343:3025-33. [PMID: 18822412 DOI: 10.1016/j.carres.2008.08.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 08/14/2008] [Accepted: 08/31/2008] [Indexed: 11/25/2022]
Abstract
In response to stressful conditions like supra-optimal salinity in the growth medium or temperature, many microorganisms accumulate low-molecular-mass organic compounds known as compatible solutes. In contrast with mesophiles that accumulate neutral or zwitterionic compounds, the solutes of hyperthermophiles are typically negatively charged. (2R)-2-(alpha-D-Mannopyranosyl)glycerate (herein abbreviated as mannosylglycerate) is one of the most widespread solutes among thermophilic and hyperthermophilic prokaryotes. In this work, several molecules chemically related to mannosylglycerate were synthesized, namely (2S)-2-(1-O-alpha-D-mannopyranosyl)propionate, 2-(1-O-alpha-D-mannopyranosyl)acetate, (2R)-2-(1-O-alpha-D-glucopyranosyl)glycerate and 1-O-(2-glyceryl)-alpha-D-mannopyranoside. The effectiveness of the newly synthesized compounds for the protection of model enzymes against heat-induced denaturation, aggregation and inactivation was evaluated, using differential scanning calorimetry, light scattering and measurements of residual activity. For comparison, the protection induced by natural compatible solutes, either neutral (e.g., trehalose, glycerol, ectoine) or negatively charged (di-myo-inositol-1,3'-phosphate and diglycerol phosphate), was assessed. Phosphate, sulfate, acetate and KCl were also included in the assays to rank the solutes and new compounds in the Hofmeister series. The data demonstrate the superiority of charged organic solutes as thermo-stabilizers of enzymes and strongly support the view that the extent of protein stabilization rendered by those solutes depends clearly on the specific solute/enzyme examined. The relevance of these findings to our knowledge on the mode of action of charged solutes is discussed.
Collapse
Affiliation(s)
- Tiago Q Faria
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Biology Division, Rua da Quinta Grande 6, Apartado 127, 2780-156 Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
45
|
Xiang L, Ishii T, Hosoda K, Kamiya A, Enomoto M, Nameki N, Inoue Y, Kubota K, Kohno T, Wakamatsu K. Interaction of anti-aggregation agent dimethylethylammonium propane sulfonate with acidic fibroblast growth factor. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2008; 194:147-151. [PMID: 18617428 DOI: 10.1016/j.jmr.2008.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 05/30/2008] [Accepted: 06/10/2008] [Indexed: 05/26/2023]
Abstract
Prevention of aggregation is critical for analyzing protein structure. Non-detergent sulfobetaines (NDSBs) are known to prevent protein aggregation, but the molecular mechanisms of their anti-aggregation effect are poorly understood. To elucidate the underlying mechanisms, we analyzed the effects of dimethylethylammonium propane sulfonate (NDSB-195) on acidic fibroblast growth factor (aFGF). NDSB-195 (0.5M) increased both aggregation and denaturation temperatures of aFGF by 4 degrees C. Chemical shift perturbation analyses indicated that many affected residues were located at the junction between a beta-strand (or 3(10)-helix) and a loop, irrespective of the chemical properties of the residue. The apparent dissociation constants of the interaction ranged from 0.04 to 3M, indicating weak interactions between NDSB and protein molecules.
Collapse
Affiliation(s)
- Long Xiang
- Department of Chemistry and Chemical Biology, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Role of cations in stability of acidic protein Desulfovibrio desulfuricans apoflavodoxin. Arch Biochem Biophys 2008; 474:128-35. [DOI: 10.1016/j.abb.2008.02.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 02/22/2008] [Accepted: 02/25/2008] [Indexed: 11/20/2022]
|
47
|
Sulfate stabilizes the folding intermediate more than the native structure of endostatin. Arch Biochem Biophys 2008; 471:232-9. [DOI: 10.1016/j.abb.2007.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2007] [Revised: 12/10/2007] [Accepted: 12/17/2007] [Indexed: 12/15/2022]
|
48
|
De Zoysa Ariyananda L, Colman RF. Evaluation of Types of Interactions in Subunit Association in Bacillus subtilis Adenylosuccinate Lyase. Biochemistry 2008; 47:2923-34. [DOI: 10.1021/bi701400c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Roberta F. Colman
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
49
|
Kinetic folding of Haloferax volcanii and Escherichia coli dihydrofolate reductases: haloadaptation by unfolded state destabilization at high ionic strength. J Mol Biol 2008; 376:1451-62. [PMID: 18207162 DOI: 10.1016/j.jmb.2007.12.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 12/15/2007] [Accepted: 12/20/2007] [Indexed: 11/24/2022]
Abstract
Salts affect protein stability by multiple mechanisms (e.g., the Hofmeister effect, preferential hydration, electrostatic effects and weak ion binding). These mechanisms can affect the stability of both the native state and the unfolded state. Previous equilibrium stability studies demonstrated that KCl stabilizes dihydrofolate reductases (DHFRs) from Escherichia coli (ecDHFR, E. coli DHFR) and Haloferax volcanii (hvDHFR1, H. volcanii DHFR encoded by the hdrA gene) with similar efficacies, despite adaptation to disparate physiological ionic strengths (0.2 M versus 2 M). Kinetic studies can provide insights on whether equilibrium effects reflect native state stabilization or unfolded state destabilization. Similar kinetic mechanisms describe the folding of urea-denatured ecDHFR and hvDHFR1: a 5-ms stopped-flow burst-phase species that folds to the native state through two sequential intermediates with relaxation times of 0.1-3 s and 25-100 s. The latter kinetic step is very similar to that observed for the refolding of hvDHFR1 from low ionic strength. The unfolding of hvDHFR1 at low ionic strength is relatively slow, suggesting kinetic stabilization as observed for some thermophilic enzymes. Increased KCl concentrations slow the urea-induced unfolding of ecDHFR and hvDHFR1, but much less than expected from equilibrium studies. Unfolding rates extrapolated to 0 M denaturant, k(unf)(H(2)O), are relatively independent of ionic strength, demonstrating that the KCl-induced stabilization of ecDHFR and hvDHFR1 results predominantly from destabilization of the unfolded state. This supports the hypothesis from previous equilibrium studies that haloadaptation harnesses the effects of elevated salt concentrations on the properties of the aqueous solvent to enhance protein stability.
Collapse
|
50
|
Yang F, Zhou BR, Zhang P, Zhao YF, Chen J, Liang Y. Binding of ferulic acid to cytochrome c enhances stability of the protein at physiological pH and inhibits cytochrome c-induced apoptosis. Chem Biol Interact 2007; 170:231-43. [PMID: 17875304 DOI: 10.1016/j.cbi.2007.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 07/21/2007] [Accepted: 08/08/2007] [Indexed: 10/23/2022]
Abstract
Ferulic acid (FA) is one of the most effective components of a traditional Chinese medicine, angelica, and cytochrome c plays a vital role in apoptosis. Here we report the application of fluorescence spectroscopy, isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC), and circular dichroism (CD) to investigate the mechanism for the interaction of bovine heart cytochrome c with FA and the effect of the binding on native state stability of the protein at physiological pH. Fluorescence spectroscopic studies together with ITC measurements indicate that FA binds to cytochrome c with moderate affinity and quenches the intrinsic fluorescence of the protein in a static way. ITC experiments show that the interaction of cytochrome c with FA is driven by a moderately favorable entropy increase in combination with a less favorable enthalpy decrease for the first binding site of the protein. The melting temperature of cytochrome c in the presence of FA measured by DSC and CD increases 4.0 and 5.0 degrees C, respectively, compared with that in the absence of FA. Taken together, these results indicate that FA binds to and stabilizes cytochrome c at physiological pH. Furthermore, binding of FA to cytochrome c inhibits cytochrome c-induce apoptosis of human hepatoma cell line SMMC-7721. Our data provide insight into the mechanism of drug-protein interactions, and will be helpful to the understanding of the mechanism for FA-inhibited and cytochrome c-induced apoptosis.
Collapse
Affiliation(s)
- Fang Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | |
Collapse
|