1
|
Okuno D, Sakamoto N, Tagod MSO, Akiyama Y, Moriyama S, Miyamura T, Hara A, Kido T, Ishimoto H, Ishimatsu Y, Tanaka T, Ishihara J, Takeda K, Tanaka Y, Mukae H. Screening of Inhibitors Targeting Heat Shock Protein 47 Involved in the Development of Idiopathic Pulmonary Fibrosis. ChemMedChem 2021; 16:2515-2523. [PMID: 33890415 DOI: 10.1002/cmdc.202100064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/09/2021] [Indexed: 12/16/2022]
Abstract
Heat shock protein 47 (HSP47), a collagen-specific molecular chaperone, is causally related to fibrotic diseases, including idiopathic pulmonary fibrosis. The identification of Compounds that interfere with the HSP47-collagen interaction is essential for the development of relevant therapeutics. Herein, we prepared human HSP47 as a soluble fusion protein expressed in E. coli and established an assay system for HSP47 inhibitor screening. We screened a natural and synthetic Compound library established at Nagasaki University. Among 1023 Compounds, 13 exhibited inhibitory activity against human HSP47, of which three inhibited its function in a dose-dependent manner. Epigallocatechin-3-O-gallate, one of these three Compounds, is a typical polyphenol Compound derived from tea leaves. Structurally related Compounds were synthesized and examined for their activity, revealing a hydroxyl group at A-ring position 5 as important for its activity. The present findings provide valuable insight for the development of natural product-derived therapeutics for fibrotic diseases, including idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Daisuke Okuno
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Noriho Sakamoto
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Mohammed S O Tagod
- Center for Medical Innovation, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Yoshiko Akiyama
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Sakiko Moriyama
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Takuto Miyamura
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Atsuko Hara
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Takashi Kido
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Hiroshi Ishimoto
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Yuji Ishimatsu
- Department of Nursing, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8520, Japan
| | - Takashi Tanaka
- Department of Natural Product Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Jun Ishihara
- Department of Pharmaceutical Organic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Kohsuke Takeda
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
2
|
Khan ES, Sankaran S, Llontop L, Del Campo A. Exogenous supply of Hsp47 triggers fibrillar collagen deposition in skin cell cultures in vitro. BMC Mol Cell Biol 2020; 21:22. [PMID: 32228452 PMCID: PMC7106624 DOI: 10.1186/s12860-020-00267-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/20/2020] [Indexed: 12/17/2022] Open
Abstract
Background Collagen is a structural protein that provides mechanical stability and defined architectures to skin. In collagen-based skin disorders this stability is lost, either due to mutations in collagens or in the chaperones involved in collagen assembly. This leads to chronic wounds, skin fragility, and blistering. Existing approaches to treat such conditions rely on administration of small molecules to simulate collagen production, like 4-phenylbutyrate (4-PBA) or growth factors like TGF-β. However, these molecules are not specific for collagen synthesis, and result in unsolicited side effects. Hsp47 is a collagen-specific chaperone with a major role in collagen biosynthesis. Expression levels of Hsp47 correlate with collagen deposition. This article explores the stimulation of collagen deposition by exogenously supplied Hsp47 (collagen specific chaperone) to skin cells, including specific collagen subtypes quantification. Results Here we quantify the collagen deposition level and the types of deposited collagens after Hsp47 stimulation in different in vitro cultures of cells from human skin tissue (fibroblasts NHDF, keratinocytes HaCat and endothelial cells HDMEC) and mouse fibroblasts (L929 and MEF). We find upregulated deposition of fibrillar collagen subtypes I, III and V after Hsp47 delivery. Network collagen IV deposition was enhanced in HaCat and HDMECs, while fibril-associated collagen XII was not affected by the increased intracellular Hsp47 levels. The deposition levels of fibrillar collagen were cell-dependent i.e. Hsp47-stimulated fibroblasts deposited significantly higher amount of fibrillar collagen than Hsp47-stimulated HaCat and HDMECs. Conclusions A 3-fold enhancement of collagen deposition was observed in fibroblasts upon repeated dosage of Hsp47 within the first 6 days of culture. Our results provide fundamental understanding towards the idea of using Hsp47 as therapeutic protein to treat collagen disorders.
Collapse
Affiliation(s)
- Essak S Khan
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany.,Chemistry Department, Saarland University, 66123, Saarbrücken, Germany
| | | | - Lorena Llontop
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Aránzazu Del Campo
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany. .,Chemistry Department, Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
3
|
Katarkar A, Haldar PK, Chaudhuri K. De novo design based pharmacophore query generation and virtual screening for the discovery of Hsp-47 inhibitors. Biochem Biophys Res Commun 2014; 456:707-13. [PMID: 25522881 DOI: 10.1016/j.bbrc.2014.12.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/09/2014] [Indexed: 11/28/2022]
Abstract
Heat shock protein-47 (Hsp-47) is exclusive collagen specific molecular chaperone involved in the maturation, processing and secretion of procollagen. Hsp-47 is consistently upregulated in several fibrotic diseases. Till date there is no potential antifibrotic small molecule drug available and Hsp-47 is known to be potential therapeutic target for fibrotic disorder and drug designing. We used the de novo drug design approach followed by pharmacophore generation and virtual screening to propose Hsp-47 based antifibrotic molecules. We used e-LEAD server for de novo drug design and ZINCPharmer for 3D pharmacophore generation and virtual screening. The virtually screened molecule may inhibit direct recruitment of collagen triple helix to interact with Hsp-47 and act as antifibrotic drug.
Collapse
Affiliation(s)
- Atul Katarkar
- Molecular & Human Genetics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Pallab Kanti Haldar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Keya Chaudhuri
- Molecular & Human Genetics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
4
|
Molecular basis for the action of the collagen-specific chaperone Hsp47/SERPINH1 and its structure-specific client recognition. Proc Natl Acad Sci U S A 2012; 109:13243-7. [PMID: 22847422 DOI: 10.1073/pnas.1208072109] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Collagen is the most abundant protein in animals and is a major component of the extracellular matrix in tissues such as skin and bone. A distinctive structural feature of all collagen types is a unique triple-helical structure formed by tandem repeats of the consensus sequence Xaa-Yaa-Gly, in which Xaa and Yaa frequently are proline and hydroxyproline, respectively. Hsp47/SERPINH1 is a procollagen-specific molecular chaperone that, unlike other chaperones, specifically recognizes the folded conformation of its client. Reduced functional levels of Hsp47 were reported in severe recessive forms of osteogenesis imperfecta, and homozygous knockout is lethal in mice. Here we present crystal structures of Hsp47 in its free form and in complex with homotrimeric synthetic collagen model peptides, each comprising one Hsp47-binding site represented by an arginine at the Yaa-position of a Xaa-Yaa-Gly triplet. Two of these three binding sites in the triple helix are occupied by Hsp47 molecules, which bind in a head-to-head fashion, thus making extensive contacts with the leading and trailing strands of the collagen triple helix. The important arginine residue within the Xaa-Arg-Gly triplet is recognized by a conserved aspartic acid. The structures explain the stabilization of the triple helix as well as the inhibition of collagen-bundle formation by Hsp47. In addition, we propose a pH-dependent substrate release mechanism based on a cluster of histidine residues.
Collapse
|
5
|
Ono T, Miyazaki T, Ishida Y, Uehata M, Nagata K. Direct in vitro and in vivo evidence for interaction between Hsp47 protein and collagen triple helix. J Biol Chem 2012; 287:6810-8. [PMID: 22235129 DOI: 10.1074/jbc.m111.280248] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hsp47 (heat shock protein 47), a collagen-specific molecular chaperone, is essential for the maturation of various types of procollagens. Previous studies have suggested that Hsp47 may preferentially recognize the triple-helix form of procollagen rather than unfolded procollagen chains in the endoplasmic reticulum. However, the underlying mechanism has remained unclear because of limitations in the available methods for detecting in vitro and in vivo interactions between Hsp47 and collagen. In this study, we established novel methods for this purpose by adopting a time-resolved FRET technique in vitro and a bimolecular fluorescence complementation technique in vivo. Using these methods, we provide direct evidence that Hsp47 binds to collagen triple helices but not to the monomer form in vitro. We also demonstrate that Hsp47 binds a collagen model peptide in the trimer conformation in vivo. Hsp47 did not bind collagen peptides that had been modified to block their ability to form triple helices in vivo. These results conclusively indicate that Hsp47 recognizes the triple-helix form of procollagen in vitro and in vivo.
Collapse
Affiliation(s)
- Takashi Ono
- Discovery Molecular Pharmacology Department, Discovery Screening Center, Advanced Medical Research Laboratory, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho,Aoba-ku, Yokohama 227-0033, Japan
| | | | | | | | | |
Collapse
|
6
|
Mala JGS, Rose C. Interactions of heat shock protein 47 with collagen and the stress response: An unconventional chaperone model? Life Sci 2010; 87:579-86. [DOI: 10.1016/j.lfs.2010.09.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 08/31/2010] [Accepted: 09/08/2010] [Indexed: 12/25/2022]
|
7
|
A missense mutation in the SERPINH1 gene in Dachshunds with osteogenesis imperfecta. PLoS Genet 2009; 5:e1000579. [PMID: 19629171 PMCID: PMC2708911 DOI: 10.1371/journal.pgen.1000579] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 06/25/2009] [Indexed: 11/19/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a hereditary disease occurring in humans and dogs. It is characterized by extremely fragile bones and teeth. Most human and some canine OI cases are caused by mutations in the COL1A1 and COL1A2 genes encoding the subunits of collagen I. Recently, mutations in the CRTAP and LEPRE1 genes were found to cause some rare forms of human OI. Many OI cases exist where the causative mutation has not yet been found. We investigated Dachshunds with an autosomal recessive form of OI. Genotyping only five affected dogs on the 50 k canine SNP chip allowed us to localize the causative mutation to a 5.82 Mb interval on chromosome 21 by homozygosity mapping. Haplotype analysis of five additional carriers narrowed the interval further down to 4.74 Mb. The SERPINH1 gene is located within this interval and encodes an essential chaperone involved in the correct folding of the collagen triple helix. Therefore, we considered SERPINH1 a positional and functional candidate gene and performed mutation analysis in affected and control Dachshunds. A missense mutation (c.977C>T, p.L326P) located in an evolutionary conserved domain was perfectly associated with the OI phenotype. We thus have identified a candidate causative mutation for OI in Dachshunds and identified a fifth OI gene.
Collapse
|
8
|
Gnanasekar M, Dakshinamoorthy G, Ramaswamy K. Translationally controlled tumor protein is a novel heat shock protein with chaperone-like activity. Biochem Biophys Res Commun 2009; 386:333-7. [PMID: 19523440 DOI: 10.1016/j.bbrc.2009.06.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 06/06/2009] [Indexed: 01/27/2023]
Abstract
Translationally controlled tumor protein (TCTP) is often designated as a stress-related protein because of its highly regulated expression in stress conditions. Following a thermal shock, TCTP expression is highly upregulated in a variety of cells. However, at present it is not known whether this upregulation has any cell protective function similar to other heat shock proteins. In this study human TCTP (HuTCTP) and a TCTP homolog (SmTCTP) from Schistosoma mansoni were evaluated for heat shock protein-like function and molecular chaperone activity. Our results show that similar to other molecular chaperones, both human and parasite TCTPs can bind to a variety of denatured proteins and protect them from the harmful effects of thermal shock. An important observation was the ability of both HuTCTP and SmTCTP to bind to native protein and protect them from thermal denaturation. Over expression of TCTP in bacterial cells protected them from heat shock-induced death. These findings suggest that TCTP may belong to a novel small molecular weight heat shock protein.
Collapse
Affiliation(s)
- Munirathinam Gnanasekar
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA
| | | | | |
Collapse
|
9
|
Makareeva E, Leikin S. Procollagen triple helix assembly: an unconventional chaperone-assisted folding paradigm. PLoS One 2007; 2:e1029. [PMID: 17925877 PMCID: PMC2000351 DOI: 10.1371/journal.pone.0001029] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 09/21/2007] [Indexed: 12/16/2022] Open
Abstract
Fibers composed of type I collagen triple helices form the organic scaffold of bone and many other tissues, yet the energetically preferred conformation of type I collagen at body temperature is a random coil. In fibers, the triple helix is stabilized by neighbors, but how does it fold? The observations reported here reveal surprising features that may represent a new paradigm for folding of marginally stable proteins. We find that human procollagen triple helix spontaneously folds into its native conformation at 30-34 degrees C but not at higher temperatures, even in an environment emulating Endoplasmic Reticulum (ER). ER-like molecular crowding by nonspecific proteins does not affect triple helix folding or aggregation of unfolded chains. Common ER chaperones may prevent aggregation and misfolding of procollagen C-propeptide in their traditional role of binding unfolded polypeptide chains. However, such binding only further destabilizes the triple helix. We argue that folding of the triple helix requires stabilization by preferential binding of chaperones to its folded, native conformation. Based on the triple helix folding temperature measured here and published binding constants, we deduce that HSP47 is likely to do just that. It takes over 20 HSP47 molecules to stabilize a single triple helix at body temperature. The required 50-200 microM concentration of free HSP47 is not unusual for heat-shock chaperones in ER, but it is 100 times higher than used in reported in vitro experiments, which did not reveal such stabilization.
Collapse
Affiliation(s)
- Elena Makareeva
- Section on Physical Biochemistry, Department of Health and Human Services, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sergey Leikin
- Section on Physical Biochemistry, Department of Health and Human Services, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
10
|
Taguchi T, Razzaque MS. The collagen-specific molecular chaperone HSP47: is there a role in fibrosis? Trends Mol Med 2007; 13:45-53. [PMID: 17169614 DOI: 10.1016/j.molmed.2006.12.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 11/10/2006] [Accepted: 12/04/2006] [Indexed: 12/17/2022]
Abstract
Heat shock protein 47 (HSP47) is a collagen-specific molecular chaperone that is required for molecular maturation of various types of collagens. Recent studies have shown a close association between increased expression of HSP47 and excessive accumulation of collagens in scar tissues of various human and experimental fibrotic diseases. It is presumed that the increased levels of HSP47 in fibrotic diseases assist in excessive assembly and intracellular processing of procollagen molecules and, thereby, contribute to the formation of fibrotic lesions. Studies have also shown that suppression of HSP47 expression can reduce accumulation of collagens to delay the progression of fibrotic diseases in experimental animal models. Because HSP47 is a specific chaperone for collagen synthesis, it provides a selective target to manipulate collagen production, a phenomenon that might have enormous clinical impact in controlling a wide range of fibrotic diseases. Here, we outline the fibrogenic role of HSP47 and discuss the potential usefulness of HSP47 as an anti-fibrotic therapeutic target.
Collapse
Affiliation(s)
- Takashi Taguchi
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | | |
Collapse
|
11
|
Viola M, Bartolini B, Sonaggere M, Giudici C, Tenni R, Tira ME. Fibromodulin interactions with type I and II collagens. Connect Tissue Res 2007; 48:141-8. [PMID: 17522997 DOI: 10.1080/03008200701276133] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Fibromodulin is a keratan-sulfate small leucine-rich proteoglycan (SLRP) regulating collagen I and II fibril formation. In vivo studies suggest that, alongside decorin, fibromodulin plays an important role in the maintenance of mature tissues. To characterize fibromodulin/decorin differences in binding to type I and II collagen, we tested the collagen CNBr peptides in solid-phase assays. Only one peptide from collagen II and several peptides from collagen I interacted with fibromodulin, pointing to multiple binding sites in the collagen I molecule. By Scatchard-type analysis, the fibromodulin molecule showed only one class of binding sites for collagen I and both low and high affinity (classes of) binding sites for collagen II. Lys/Hyl residues in both collagens are essential for the interaction. Fibril formation assays showed the concomitant presence of fibromodulin and decorin in fibrils and a cumulative inhibitory effect. In solid-phase assays decorin seems to inhibit fibromodulin binding, whereas the contrary does not occur. We found fibromodulin and decorin have similarities and differences that may represent the biochemical basis of redundancy in SLRP function with compensation between different (classes of) SLRPs.
Collapse
Affiliation(s)
- Manuela Viola
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università dell'Insubria. Varese. Italy.
| | | | | | | | | | | |
Collapse
|
12
|
Tenni R, Sonaggere M, Viola M, Bartolini B, Tira ME, Rossi A, Orsini E, Ruggeri A, Ottani V. Self-aggregation of fibrillar collagens I and II involves lysine side chains. Micron 2006; 37:640-7. [PMID: 16714119 DOI: 10.1016/j.micron.2006.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 01/31/2006] [Accepted: 01/31/2006] [Indexed: 10/25/2022]
Abstract
Several properties of fibrillar collagens depend on abundance and position of ionic amino acids. We recently demonstrated that N-methylation and N-acetylation of Lys/Hyl amino group did not significantly alter the thermal stability of the triple helical conformation and that the binding of modified collagens I and II to decorin is lost only on N-acetylation. The positive charge at physiological pH of Lys/Hyl side chains is preserved only by N-methylation. We report here the new aspect of the influence of the same modifications on collagen self-aggregation in neutral conditions. Three collagen preparations are very differently affected by N-methylation: acid-soluble type I collagen maintains the ability to form banded fibrils with 67-nm periodicity, whereas almost no structured aggregates were detected for pepsin-soluble type I collagen; pepsin-soluble type II collagen forms a very different supramolecular species, known as segment long spacing (SLS). N-acetylation blocks the formation of banded fibrils in neutral conditions (as did all other chemical modifications reported in the literature), demonstrating that the positive charge of Lys/Hyl amino groups is essential for self-aggregation. Kinetic measurements by turbidimetry showed a sizeable increase of absorbance only for the two N-methylated samples forming specific supramolecular aggregates; however, the derivatization affects aggregation kinetics by increasing lag time and decreasing maximum slope of absorbance variation, and lowers aggregation competency. We discuss that the effects of N-methylation on self-aggregation are caused by fewer or weaker salt bridges and by decrease of hydrogen bonding potential and conclude that protonated Lys side chains are involved in the fibril formation process.
Collapse
Affiliation(s)
- Ruggero Tenni
- Dipartimento di Biochimica, A. Castellani, University of Pavia, via Taramelli 3b, 27100 Pavia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Koide T, Nishikawa Y, Asada S, Yamazaki CM, Takahara Y, Homma DL, Otaka A, Ohtani K, Wakamiya N, Nagata K, Kitagawa K. Specific recognition of the collagen triple helix by chaperone HSP47. II. The HSP47-binding structural motif in collagens and related proteins. J Biol Chem 2006; 281:11177-85. [PMID: 16484215 DOI: 10.1074/jbc.m601369200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum-resident chaperone heat-shock protein 47 (HSP47) plays an essential role in procollagen biosynthesis. The function of HSP47 relies on its specific interaction with correctly folded triple-helical regions comprised of Gly-Xaa-Yaa repeats, and Arg residues at Yaa positions have been shown to be important for this interaction. The amino acid at the Yaa position (Yaa(-3)) in the N-terminal-adjoining triplet containing the critical Arg (defined as Arg(0)) was also suggested to be directly recognized by HSP47 (Koide, T., Asada, S., Takahara, Y., Nishikawa, Y., Nagata, K., and Kitagawa, K. (2006) J. Biol. Chem. 281, 3432-3438). Based on this finding, we examined the relationship between the structure of Yaa(-3) and HSP47 binding using synthetic collagenous peptides. The results obtained indicated that the structure of Yaa(-3) determined the binding affinity for HSP47. Maximal binding was observed when Yaa(-3) was Thr. Moreover, the required relative spatial arrangement of these key residues in the triple helix was analyzed by taking advantage of heterotrimeric collagen-model peptides, each of which contains one Thr(-3) and one Arg(0). The results revealed that HSP47 recognizes the Yaa(-3) and Arg(0) residues only when they are on the same peptide strand. Taken together, the data obtained led us to define the HSP47-binding structural epitope in the collagen triple helix and also define the HSP47-binding motif in the primary structure. A motif search against human protein database predicted candidate clients for this molecular chaperone. The search result indicated that not all collagen family proteins require the chaperoning by HSP47.
Collapse
Affiliation(s)
- Takaki Koide
- Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Koide T, Asada S, Takahara Y, Nishikawa Y, Nagata K, Kitagawa K. Specific recognition of the collagen triple helix by chaperone HSP47: minimal structural requirement and spatial molecular orientation. J Biol Chem 2005; 281:3432-8. [PMID: 16326708 DOI: 10.1074/jbc.m509707200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The unique folding of procollagens in the endoplasmic reticulum is achieved with the assistance of procollagen-specific molecular chaperones. Heat-shock protein 47 (HSP47) is an endoplasmic reticulum-resident chaperone that plays an essential role in normal procollagen folding, although its molecular function has not yet been clarified. Recent advances in studies on the binding specificity of HSP47 have revealed that Arg residues at Yaa positions in collagenous Gly-Xaa-Yaa repeats are critical for its interactions (Koide, T., Takahara, Y., Asada, S., and Nagata, K. (2002) J. Biol. Chem. 277, 6178-6182; Tasab, M., Jenkinson, L., and Bulleid, N. J. (2002) J. Biol. Chem. 277, 35007-35012). In the present study, we further examined the client recognition mechanism of HSP47 by taking advantage of systems employing engineered collagen model peptides. First, in vitro binding studies using conformationally constrained collagen-like peptides revealed that HSP47 only recognized correctly folded triple helices and that the interaction with the corresponding single-chain polypeptides was negligible. Second, a binding study using heterotrimeric model clients for HSP47 demonstrated a minimal requirement for the number of Arg residues in the triple helix. Finally, a cross-linking study using photoreactive collagenous peptides provided information about the spatial orientation of an HSP47 molecule in the chaperone-collagen complex. The obtained results led to the development of a new model of HSP47-collagen complexes that differs completely from the previously proposed "flying capstan model" (Dafforn, T. R., Della, M., and Miller, A. D. (2001) J. Biol. Chem. 276, 49310-49319).
Collapse
Affiliation(s)
- Takaki Koide
- Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 950-2081, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Steplewski A, Majsterek I, McAdams E, Rucker E, Brittingham RJ, Ito H, Hirai K, Adachi E, Jimenez SA, Fertala A. Thermostability Gradient in the Collagen Triple Helix Reveals its Multi-domain Structure. J Mol Biol 2004; 338:989-98. [PMID: 15111062 DOI: 10.1016/j.jmb.2004.03.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 03/04/2004] [Accepted: 03/08/2004] [Indexed: 11/25/2022]
Abstract
A triple-helical conformation and stability at physiological temperature are critical for the mechanical and biological functions of the fibril-forming collagens. Here, we characterized the role of consecutive domains of collagen II in stabilizing the triple helix. Analysis of melting temperatures of genetically engineered collagen-like proteins consisting of tandem repeats of the D1, D2, D3 or D4 collagen II periods revealed the presence of a gradient of thermostability along the collagen molecule with thermolabile N-terminal domains and thermostable C-terminal domains. These results imply a multi-domain character of the collagen triple helix. Assays of thermostabilities of the Arg75Cys and Arg789Cys collagen II mutants suggest that, in contrast to the thermostable domains, the thermolabile domains are able to accommodate amino acid substitutions without altering the thermostability of the entire collagen molecule.
Collapse
Affiliation(s)
- Andrzej Steplewski
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|