1
|
Marchetti M, Ronda L, Percudani R, Bettati S. Immobilization of Allantoinase for the Development of an Optical Biosensor of Oxidative Stress States. SENSORS 2019; 20:s20010196. [PMID: 31905788 PMCID: PMC6983136 DOI: 10.3390/s20010196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 02/04/2023]
Abstract
Allantoin, the natural end product of purine catabolism in mammals, is non-enzymatically produced from the scavenging of reactive oxygen species through the degradation of uric acid. Levels of allantoin in biological fluids are sensitively influenced by the presence of free radicals, making this molecule a candidate marker of acute oxidative stress in clinical analyses. With this aim, we exploited allantoinase—the enzyme responsible for allantoin hydrolization in plants and lower organisms—for the development of a biosensor exploiting a fast enzymatic-chemical assay for allantoin quantification. Recombinant allantoinase was entrapped in a wet nanoporous silica gel matrix and its structural properties, function, and stability were characterized through fluorescence spectroscopy and circular dichroism measurements, and compared to the soluble enzyme. Physical immobilization in silica gel minimally influences the structure and the catalytic efficiency of entrapped allantoinase, which can be reused several times and stored for several months with good activity retention. These results, together with the relative ease of the sol-gel preparation and handling, make the encapsulated allantoinase a good candidate for the development of an allantoin biosensor.
Collapse
Affiliation(s)
- Marialaura Marchetti
- Centro Interdipartimentale Biopharmanet-TEC, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.M.); (S.B.)
| | - Luca Ronda
- Centro Interdipartimentale Biopharmanet-TEC, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.M.); (S.B.)
- Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy
- Correspondence: ; Tel.: +39-0521-905502
| | - Riccardo Percudani
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Via Parco Area delle Scienze 11/A, 43124 Parma, Italy;
| | - Stefano Bettati
- Centro Interdipartimentale Biopharmanet-TEC, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.M.); (S.B.)
- Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
2
|
Phillips RS, Buisman AA, Choi S, Hussaini A, Wood ZA. The crystal structure of Proteus vulgaris tryptophan indole-lyase complexed with oxindolyl-L-alanine: implications for the reaction mechanism. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:748-759. [DOI: 10.1107/s2059798318003352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 02/26/2018] [Indexed: 12/27/2022]
Abstract
Tryptophan indole-lyase (TIL) is a bacterial enzyme which catalyzes the reversible formation of indole and ammonium pyruvate from L-tryptophan. Oxindolyl-L-alanine (OIA) is an inhibitor of TIL, with a K
i value of about 5 µM. The crystal structure of the complex of Proteus vulgaris TIL with OIA has now been determined at 2.1 Å resolution. The ligand forms a closed quinonoid complex with the pyridoxal 5′-phosphate (PLP) cofactor. The small domain rotates about 10° to close the active site, bringing His458 into position to donate a hydrogen bond to Asp133, which also accepts a hydrogen bond from the heterocyclic NH of the inhibitor. This brings Phe37 and Phe459 into van der Waals contact with the aromatic ring of OIA. Mutation of the homologous Phe464 in Escherichia coli TIL to Ala results in a 500-fold decrease in k
cat/K
m for L-tryptophan, with less effect on the reaction of other nonphysiological β-elimination substrates. Stopped-flow kinetic experiments of F464A TIL show that the mutation has no effect on the formation of quinonoid intermediates. An aminoacrylate intermediate is observed in the reaction of F464A TIL with S-ethyl-L-cysteine and benzimidazole. A model of the L-tryptophan quinonoid complex with PLP in the active site of P. vulgaris TIL shows that there would be a severe clash of Phe459 (∼1.5 Å apart) and Phe37 (∼2 Å apart) with the benzene ring of the substrate. It is proposed that this creates distortion of the substrate aromatic ring out of plane and moves the substrate upwards on the reaction coordinate towards the transition state, thus reducing the activation energy and accelerating the enzymatic reaction.
Collapse
|
3
|
Snapshots of C-S Cleavage in Egt2 Reveals Substrate Specificity and Reaction Mechanism. Cell Chem Biol 2018; 25:519-529.e4. [PMID: 29503207 DOI: 10.1016/j.chembiol.2018.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/13/2017] [Accepted: 02/05/2018] [Indexed: 11/22/2022]
Abstract
Sulfur incorporation in the biosynthesis of ergothioneine, a histidine thiol derivative, differs from other well-characterized transsulfurations. A combination of a mononuclear non-heme iron enzyme-catalyzed oxidative C-S bond formation and a subsequent pyridoxal 5'-phosphate (PLP)-mediated C-S lyase reaction leads to the net transfer of a sulfur atom from a cysteine to a histidine. In this study, we structurally and mechanistically characterized a PLP-dependent C-S lyase Egt2, which mediates the sulfoxide C-S bond cleavage in ergothioneine biosynthesis. A cation-π interaction between substrate and enzyme accounts for Egt2's preference of sulfoxide over thioether as a substrate. Using mutagenesis and structural biology, we captured three distinct states of the Egt2 C-S lyase reaction cycle, including a labile sulfenic intermediate captured in Egt2 crystals. Chemical trapping and high-resolution mass spectrometry were used to confirm the involvement of the sulfenic acid intermediate in Egt2 catalysis.
Collapse
|
4
|
Allegrini A, Astegno A, La Verde V, Dominici P. Characterization of C-S lyase from Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 and its potential role in food flavour applications. J Biochem 2017; 161:349-360. [PMID: 28003427 DOI: 10.1093/jb/mvw079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/17/2016] [Indexed: 01/07/2023] Open
Abstract
Volatile thiols have substantial impact on the aroma of many beverages and foods. Thus, the control of their formation, which has been linked to C-S lyase enzymatic activities, is of great significance in industrial applications involving food flavours. Herein, we have carried out a spectroscopic and functional characterization of a putative pyridoxal 5'-phosphate (PLP)-dependent C-S lyase from the lactic acid bacterium Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 (LDB C-S lyase). Recombinant LDB C-S lyase exists as a tetramer in solution and shows spectral properties of enzymes containing PLP as cofactor. The enzyme has a broad substrate specificity toward sulphur-containing amino acids with aminoethyl-L-cysteine and L-cystine being the most effective substrates over L-cysteine and L-cystathionine. Notably, the protein also reveals cysteine-S-conjugate β-lyase activity in vitro, and is able to cleave a cysteinylated substrate precursor into the corresponding flavour-contributing thiol, with a catalytic efficiency higher than L-cystathionine. Contrary to similar enzymes of other lactic acid bacteria however, LDB C-S lyase is not capable of α,γ-elimination activity towards L-methionine to produce methanethiol, which is a significant compound in flavour development. Based on our results, future developments can be expected regarding the flavour-forming potential of Lactobacillus C-S lyase and its use in enhancing food flavours.
Collapse
|
5
|
Stojanovski BM, Breydo L, Uversky VN, Ferreira GC. The unfolding pathways of the native and molten globule states of 5-aminolevulinate synthase. Biochem Biophys Res Commun 2016; 480:321-327. [DOI: 10.1016/j.bbrc.2016.10.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 10/13/2016] [Indexed: 11/17/2022]
|
6
|
Ronda L, Bruno S, Bettati S, Storici P, Mozzarelli A. From protein structure to function via single crystal optical spectroscopy. Front Mol Biosci 2015; 2:12. [PMID: 25988179 PMCID: PMC4428442 DOI: 10.3389/fmolb.2015.00012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/31/2015] [Indexed: 11/23/2022] Open
Abstract
The more than 100,000 protein structures determined by X-ray crystallography provide a wealth of information for the characterization of biological processes at the molecular level. However, several crystallographic “artifacts,” including conformational selection, crystallization conditions and radiation damages, may affect the quality and the interpretation of the electron density maps, thus limiting the relevance of structure determinations. Moreover, for most of these structures, no functional data have been obtained in the crystalline state, thus posing serious questions on their validity in infereing protein mechanisms. In order to solve these issues, spectroscopic methods have been applied for the determination of equilibrium and kinetic properties of proteins in the crystalline state. These methods are UV-vis spectrophotometry, spectrofluorimetry, IR, EPR, Raman, and resonance Raman spectroscopy. Some of these approaches have been implemented with on-line instruments at X-ray synchrotron beamlines. Here, we provide an overview of investigations predominantly carried out in our laboratory by single crystal polarized absorption UV-vis microspectrophotometry, the most applied technique for the functional characterization of proteins in the crystalline state. Studies on hemoglobins, pyridoxal 5′-phosphate dependent enzymes and green fluorescent protein in the crystalline state have addressed key biological issues, leading to either straightforward structure-function correlations or limitations to structure-based mechanisms.
Collapse
Affiliation(s)
- Luca Ronda
- Department of Neurosciences, University of Parma Parma, Italy
| | - Stefano Bruno
- Department of Pharmacy, University of Parma Parma, Italy
| | - Stefano Bettati
- Department of Neurosciences, University of Parma Parma, Italy ; National Institute of Biostructures and Biosystems Rome, Italy
| | | | - Andrea Mozzarelli
- Department of Pharmacy, University of Parma Parma, Italy ; National Institute of Biostructures and Biosystems Rome, Italy ; Institute of Biophysics, Consiglio Nazionale delle Ricerche Pisa, Italy
| |
Collapse
|
7
|
Astegno A, Allegrini A, Piccoli S, Giorgetti A, Dominici P. Role of active-site residues Tyr55 and Tyr114 in catalysis and substrate specificity of Corynebacterium diphtheriae C-S lyase. Proteins 2014; 83:78-90. [PMID: 25354840 DOI: 10.1002/prot.24707] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/29/2014] [Accepted: 10/18/2014] [Indexed: 11/07/2022]
Abstract
In recent years, there has been increased interest in bacterial methionine biosynthesis enzymes as antimicrobial targets because of their pivotal role in cell metabolism. C-S lyase from Corynebacterium diphtheriae is a pyridoxal 5'-phosphate-dependent enzyme in the transsulfuration pathway that catalyzes the α,β-elimination of sulfur-containing amino acids, such as L-cystathionine, to generate ammonia, pyruvate, and homocysteine, the immediate precursor of L-methionine. In order to gain deeper insight into the functional and dynamic properties of the enzyme, mutants of two highly conserved active-site residues, Y55F and Y114F, were characterized by UV-visible absorbance, fluorescence, and CD spectroscopy in the absence and presence of substrates and substrate analogs, as well as by steady-state kinetic studies. Substitution of Tyr55 with Phe apparently causes a 130-fold decrease in K(d)(PLP) at pH 8.5 providing evidence that Tyr55 plays a role in cofactor binding. Moreover, spectral data show that the mutant accumulates the external aldimine intermediate suggesting that the absence of interaction between the hydroxyl moiety and PLP-binding residue Lys222 causes a decrease in the rate of substrate deprotonation. Mutation of Tyr114 with Phe slightly influences hydrolysis of L-cystathionine, and causes a change in substrate specificity towards L-serine and O-acetyl-L-serine compared to the wild type enzyme. These findings, together with computational data, provide useful insights in the substrate specificity of C-S lyase, which seems to be regulated by active-site architecture and by the specific conformation in which substrates are bound, and will aid in development of inhibitors.
Collapse
Affiliation(s)
- Alessandra Astegno
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona, Italy
| | | | | | | | | |
Collapse
|
8
|
Stojanovski BM, Breydo L, Hunter GA, Uversky VN, Ferreira GC. Catalytically active alkaline molten globular enzyme: Effect of pH and temperature on the structural integrity of 5-aminolevulinate synthase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2145-54. [PMID: 25240868 DOI: 10.1016/j.bbapap.2014.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/27/2014] [Accepted: 09/10/2014] [Indexed: 11/30/2022]
Abstract
5-Aminolevulinate synthase (ALAS), a pyridoxal-5'phosphate (PLP)-dependent enzyme, catalyzes the first step of heme biosynthesis in mammals. Circular dichroism (CD) and fluorescence spectroscopies were used to examine the effects of pH (1.0-3.0 and 7.5-10.5) and temperature (20 and 37°C) on the structural integrity of ALAS. The secondary structure, as deduced from far-UV CD, is mostly resilient to pH and temperature changes. Partial unfolding was observed at pH2.0, but further decreasing pH resulted in acid-induced refolding of the secondary structure to nearly native levels. The tertiary structure rigidity, monitored by near-UV CD, is lost under acidic and specific alkaline conditions (pH10.5 and pH9.5/37°C), where ALAS populates a molten globule state. As the enzyme becomes less structured with increased alkalinity, the chiral environment of the internal aldimine is also modified, with a shift from a 420nm to 330nm dichroic band. Under acidic conditions, the PLP cofactor dissociates from ALAS. Reaction with 8-anilino-1-naphthalenesulfonic acid corroborates increased exposure of hydrophobic clusters in the alkaline and acidic molten globules, although the reaction is more pronounced with the latter. Furthermore, quenching the intrinsic fluorescence of ALAS with acrylamide at pH1.0 and 9.5 yielded subtly different dynamic quenching constants. The alkaline molten globule state of ALAS is catalytically active (pH9.5/37°C), although the kcat value is significantly decreased. Finally, the binding of 5-aminolevulinate restricts conformational fluctuations in the alkaline molten globule. Overall, our findings prove how the structural plasticity of ALAS contributes to reaching a functional enzyme.
Collapse
Affiliation(s)
- Bosko M Stojanovski
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Leonid Breydo
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Gregory A Hunter
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; USF Health Byrd Alzheimer's Research Institute, University of South Florida, Tampa, FL 33612, USA; Biology Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Gloria C Ferreira
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; Department of Chemistry, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
9
|
Characterization of C-S Lyase from C. diphtheriae: a possible target for new antimicrobial drugs. BIOMED RESEARCH INTERNATIONAL 2013; 2013:701536. [PMID: 24106714 PMCID: PMC3784150 DOI: 10.1155/2013/701536] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/16/2013] [Indexed: 12/28/2022]
Abstract
The emergence of antibiotic resistance in microbial pathogens requires the identification of new antibacterial drugs. The biosynthesis of methionine is an attractive target because of its central importance in cellular metabolism. Moreover, most of the steps in methionine biosynthesis pathway are absent in mammals, lowering the probability of unwanted side effects. Herein, detailed biochemical characterization of one enzyme required for methionine biosynthesis, a pyridoxal-5′-phosphate (PLP-) dependent C-S lyase from Corynebacterium diphtheriae, a pathogenic bacterium that causes diphtheria, has been performed. We overexpressed the protein in E. coli and analyzed substrate specificity, pH dependence of steady state kinetic parameters, and ligand-induced spectral transitions of the protein. Structural comparison of the enzyme with cystalysin from Treponema denticola indicates a similarity in overall folding. We used site-directed mutagenesis to highlight the importance of active site residues Tyr55, Tyr114, and Arg351, analyzing the effects of amino acid replacement on catalytic properties of enzyme. Better understanding of the active site of C. diphtheriae C-S lyase and the determinants of substrate and reaction specificity from this work will facilitate the design of novel inhibitors as antibacterial therapeutics.
Collapse
|
10
|
Campanini B, Pioselli B, Raboni S, Felici P, Giordano I, D'Alfonso L, Collini M, Chirico G, Bettati S. Role of histidine 148 in stability and dynamics of a highly fluorescent GFP variant. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:770-9. [PMID: 23357652 DOI: 10.1016/j.bbapap.2013.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 01/11/2013] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
Abstract
The armory of GFP mutants available to biochemists and molecular biologists is huge. Design and selection of mutants are usually driven by tailored spectroscopic properties, but some key aspects of stability, folding and dynamics of selected GFP variants still need to be elucidated. We have prepared, expressed and characterized three H148 mutants of the highly fluorescent variant GFPmut2. H148 is known to be involved in the H-bonding network surrounding the chromophore, and all the three mutants, H148G, H148R and H148K, show increased pKa values of the chromophore. Only H148G GFPmut2 (Mut2G) gave good expression and purification yields, indicating that position 148 is critical for efficient folding in vivo. The chemical denaturation of Mut2G was monitored by fluorescence emission, absorbance and far-UV circular dichroism spectroscopy. The mutation has little effect on the spectroscopic properties of the protein and on its stability in solution. However, the unfolding kinetics of the protein encapsulated in wet nanoporous silica gels, a system that allows to stabilize conformations that are poorly or only transiently populated in solution, indicate that the unfolding pathway of Mut2G is markedly different from the parent molecule. In particular, encapsulation allowed to identify an unfolding intermediate that retains a native-like secondary structure despite a destructured chromophore environment. Thus, H148 is a critical residue not only for the chromophoric and photodynamic properties, but also for the correct folding of GFP, and its substitution has great impact on expression yields and stability of the mature protein.
Collapse
Affiliation(s)
- Barbara Campanini
- Dipartimento di Farmacia, Università degli Studi di Parma, Parma, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ronda L, Bruno S, Bettati S, Mozzarelli A. Protein crystal microspectrophotometry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:734-41. [PMID: 21184848 DOI: 10.1016/j.bbapap.2010.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 12/10/2010] [Accepted: 12/11/2010] [Indexed: 11/16/2022]
Abstract
Single crystal microspectrophotometry has emerged as a valuable technique for monitoring molecular events that take place within protein crystals, thus tightly coupling structure to function. Absorption and fluorescence spectra, ligand binding affinities and kinetic constants can be determined, allowing i) the definition of the experimental conditions for X-ray crystallography experiments and their interpretation, ii) the assessment of whether crystal lattice forces have altered conformational equilibria, iii) the comparison with data obtained in solution. Microspectrophotometric measurements using oriented crystals and linearly polarized light are carried out usually off-line with respect to X-ray data collection and are aimed at an in- depth characterization of protein function in the crystal, leading to robust structure-function relationships. The power of this approach is highlighted by reporting a few case studies, including hemoglobins, pyridoxal 5'-phosphate-dependent enzymes and acetylcholinesterases. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.
Collapse
Affiliation(s)
- Luca Ronda
- Department of Biochemistry and Molecular Biology, University of Parma, Parma, Italy
| | | | | | | |
Collapse
|
12
|
Morozova EA, Bazhulina NP, Anufrieva NV, Mamaeva DV, Tkachev YV, Streltsov SA, Timofeev VP, Faleev NG, Demidkina TV. Kinetic and spectral parameters of interaction of Citrobacter freundii methionine γ-lyase with amino acids. BIOCHEMISTRY (MOSCOW) 2010; 75:1272-80. [DOI: 10.1134/s0006297910100093] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
López C, Ríos SD, López-Santín J, Caminal G, Álvaro G. Immobilization of PLP-dependent enzymes with cofactor retention and enhanced stability. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2010.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Domach MM, Walker LM. Stabilizing Biomacromolecules in Nontoxic Nano-Structured Materials. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.jala.2010.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Increases in the use of protein-based pharmaceuticals require the development of cost-effective methods of storage and transport of sensitive biomolecules. In this article, we review the general problems of protein stabilization, aspects specific to antibodies, and a proposed method for protecting proteins based on nanostructured hydrogels. This review is not intended to be comprehensive, but instead to provide the reader with specific examples that capture some of the key challenges and opportunities of the field.
Collapse
Affiliation(s)
- Michael M. Domach
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA
| | - Lynn M. Walker
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA
| |
Collapse
|
15
|
Demidkina TV, Antson AA, Faleev NG, Phillips RS, Zakomirdina LN. Spatial structure and the mechanism of tyrosine phenol-lyase and tryptophan indole-lyase. Mol Biol 2009. [DOI: 10.1134/s0026893309020101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Zhang SQ, Cheung MS. Manipulating biopolymer dynamics by anisotropic nanoconfinement. NANO LETTERS 2007; 7:3438-3442. [PMID: 17939726 DOI: 10.1021/nl071948v] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
How the geometry of nanosized confinement affects dynamics of biomaterials is interesting yet poorly understood. An elucidation of structural details upon nanosized confinement may benefit manufacturing pharmaceuticals in biomaterial sciences and medicine. The behavior of biopolymers in nanosized confinement is investigated using coarse-grained models and molecular simulations. Particularly, we address the effects of shapes of a confinement on protein-folding dynamics by measuring folding rates and dissecting structural properties of the transition states in nanosized spheres and ellipsoids. We find that when the form of a confinement resembles the geometrical properties of the transition states, the rates of folding kinetics are most enhanced. This knowledge of shape selectivity in identifying optimal conditions for reactions will have a broad impact in nanotechnology and pharmaceutical sciences.
Collapse
Affiliation(s)
- Shao-Qing Zhang
- Department of Physics, University of Houston, 4800 Calhoun Road, Houston, Texas 77204, USA
| | | |
Collapse
|
17
|
Campanini B, Schiaretti F, Abbruzzetti S, Kessler D, Mozzarelli A. Sulfur Mobilization in Cyanobacteria. J Biol Chem 2006; 281:38769-80. [PMID: 17020883 DOI: 10.1074/jbc.m607098200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sulfur mobilization represents one of the key steps in ubiquitous Fe-S clusters assembly and is performed by a recently characterized set of proteins encompassing cysteine desulfurases, assembly factors, and shuttle proteins. Despite the evolutionary conservation of these proteins, some degree of variability among organisms was observed, which might reflect functional specialization. L-Cyst(e)ine lyase (C-DES), a pyridoxal 5'-phosphatedependent enzyme identified in the cyanobacterium Synechocystis, was reported to use preferentially cystine over cysteine with production of cysteine persulfide, pyruvate, and ammonia. In this study, we demonstrate that C-DES sequences are present in all cyanobacterial genomes and constitute a new family of sulfur-mobilizing enzymes, distinct from cysteine desulfurases. The functional properties of C-DES from Synechocystis sp. PCC 6714 were investigated under pre-steady-state and steady-state conditions. Single wavelength and rapid scanning stopped-flow kinetic data indicate that the internal aldimine reacts with cystine forming an external aldimine that rapidly decays to a transient quinonoid species and stable tautomers of the alpha-aminoacrylate Schiff base. In the presence of cysteine, the transient formation of a dipolar species precedes the selective and stable accumulation of the enolimine tautomer of the external aldimine, with no formation of the alpha-aminoacrylate Schiff base under reducing conditions. Effective sulfur mobilization from cystine might represent a mechanism that allows adaptation of cyanobacteria to different environmental conditions and to light-dark cycles.
Collapse
Affiliation(s)
- Barbara Campanini
- Department of Biochemistry and Molecular Biology, University of Parma, 43100 Parma, Italy
| | | | | | | | | |
Collapse
|
18
|
Kulikova VV, Zakomirdina LN, Dementieva IS, Phillips RS, Gollnick PD, Demidkina TV, Faleev NG. Tryptophanase from Proteus vulgaris: The conformational rearrangement in the active site, induced by the mutation of Tyrosine 72 to Phenylalanine, and its mechanistic consequences. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:750-7. [PMID: 16455316 DOI: 10.1016/j.bbapap.2005.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 12/02/2005] [Accepted: 12/05/2005] [Indexed: 10/25/2022]
Abstract
Tyr72 is located at the active site of tryptophanase (Trpase) from Proteus vulgaris. For the wild-type Trpase Tyr72 might be considered as the general acid catalyst at the stage of elimination of the leaving groups. The replacement of Tyr72 by Phe leads to a decrease in activity for L-tryptophan by 50,000-fold and to a considerable rearrangement of the active site of Trpase. This rearrangement leads to an increase of room around the alpha-C atom of any bound amino acid, such that covalent binding of alpha-methyl-substituted amino acids becomes possible (which cannot be realized in wild-type Trpase). The changes in reactivities of S-alkyl-L-cysteines provide evidence for an increase of congestion in the proximity of their side groups in the mutant enzyme as compared to wild-type enzyme. The observed alteration of catalytic properties in a large degree originates from a conformational change in the active site. The Y72F Trpase retains significant activity for L-serine, which allowed us to conclude that in the mutant enzyme, some functional group is present which fulfills the role of the general acid catalyst in reactions associated with elimination of small leaving groups.
Collapse
Affiliation(s)
- Vitalia V Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Pyridoxal 5'-phosphate (PLP)-dependent enzymes represent about 4% of the enzymes classified by the Enzyme Commission. The versatility of PLP in carrying out a large variety of reactions exploiting the electron sink effect of the pyridine ring, the conformational changes accompanying the chemical steps and stabilizing distinct catalytic intermediates, and the spectral properties of the different coenzyme-substrate derivatives signaling the reaction progress, are some of the features that have attracted our interest to investigate the structure-dynamics-function relationships of PLP-dependent enzymes. To this goal, an integrated approach combining biochemical, biophysical, computational, and molecular biology methods was used. The extensive work carried out on two enzymes, tryptophan synthase and O-acetylserine sulfhydrylase, is presented and discussed as representative of other PLP-dependent enzymes we have investigated. Finally, perspectives of PLP-dependent enzymes functional genomics and drug targeting highlight the continuous novelty of an "old" class of enzymes.
Collapse
Affiliation(s)
- Andrea Mozzarelli
- Department of Biochemistry and Molecular Biology, University of Parma, 43100 Parma, Italy.
| | | |
Collapse
|
20
|
Cannone F, Bologna S, Campanini B, Diaspro A, Bettati S, Mozzarelli A, Chirico G. Tracking unfolding and refolding of single GFPmut2 molecules. Biophys J 2005; 89:2033-45. [PMID: 15994904 PMCID: PMC1366706 DOI: 10.1529/biophysj.105.064584] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The unfolding and refolding kinetics of >600 single GFPmut2 molecules, entrapped in wet nanoporous silica gels, were followed by monitoring simultaneously the fluorescence emission of the anionic and neutral state of the chromophore, primed by two-photon excitation. The rate of unfolding, induced by guanidinium chloride, was determined by counting the number of single molecules that disappear in fluorescence images, under conditions that do not cause bleaching or photoinduced conversion between chromophore protonation states. The unfolding rate is of the order of 0.01 min(-1), and its dependence on denaturant concentration is very similar to that previously reported for high protein load gels. Upon rinsing the gels with denaturant-free buffer, the GFPmut2 molecules refold with rates >10 min(-1), with an apparently random distribution between neutral and anionic states, that can be very different from the preunfolding equilibrium. A subsequent very slow (lifetime of approximately 70 min) relaxation leads to the equilibrium distribution of the protonation states. This mechanism, involving one or more native-like refolding intermediates, is likely rate limited by conformational rearrangements that are undetectable in circular dichroism experiments. Several unfolding/refolding cycles can be followed on the same molecules, indicating full reversibility of the process and, noticeably, a bias of denaturated molecules toward refolding in the original protonation state.
Collapse
Affiliation(s)
- Fabio Cannone
- Department of Physics, University of Milan Bicocca, 20126 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
Pioselli B, Bettati S, Mozzarelli A. Confinement and crowding effects on tryptophan synthase alpha2beta2 complex. FEBS Lett 2005; 579:2197-202. [PMID: 15811341 DOI: 10.1016/j.febslet.2005.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 02/07/2005] [Accepted: 03/04/2005] [Indexed: 11/25/2022]
Abstract
Biological molecules experience in vivo a highly crowded environment. The investigation of the functional properties of the tryptophan synthase alpha(2)beta(2) complex either entrapped in wet nanoporous silica gels or in the presence of the crowding agents dextran 70 and ficoll 70 indicates that the rates of the conformational transitions associated to catalysis and regulation are reduced, and an open and less catalytically active conformation is stabilized.
Collapse
Affiliation(s)
- Barbara Pioselli
- Department of Biochemistry and Molecular Biology, University of Parma, 43100 Parma, Italy
| | | | | |
Collapse
|
22
|
Campanini B, Bologna S, Cannone F, Chirico G, Mozzarelli A, Bettati S. Unfolding of Green Fluorescent Protein mut2 in wet nanoporous silica gels. Protein Sci 2005; 14:1125-33. [PMID: 15802645 PMCID: PMC2253256 DOI: 10.1110/ps.041190805] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Many of the effects exerted on protein structure, stability, and dynamics by molecular crowding and confinement in the cellular environment can be mimicked by encapsulation in polymeric matrices. We have compared the stability and unfolding kinetics of a highly fluorescent mutant of Green Fluorescent Protein, GFPmut2, in solution and in wet, nanoporous silica gels. In the absence of denaturant, encapsulation does not induce any observable change in the circular dichroism and fluorescence emission spectra of GFPmut2. In solution, the unfolding induced by guanidinium chloride is well described by a thermodynamic and kinetic two-state process. In the gel, biphasic unfolding kinetics reveal that at least two alternative conformations of the native protein are significantly populated. The relative rates for the unfolding of each conformer differ by almost two orders of magnitude. The slower rate, once extrapolated to native solvent conditions, superimposes to that of the single unfolding phase observed in solution. Differences in the dependence on denaturant concentration are consistent with restrictions opposed by the gel to possibly expanded transition states and to the conformational entropy of the denatured ensemble. The observed behavior highlights the significance of investigating protein function and stability in different environments to uncover structural and dynamic properties that can escape detection in dilute solution, but might be relevant for proteins in vivo.
Collapse
Affiliation(s)
- Barbara Campanini
- Department of Public Health, University of Parma, Via Volturno 39, 43100 Parma, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Raboni S, Bettati S, Mozzarelli A. Identification of the geometric requirements for allosteric communication between the alpha- and beta-subunits of tryptophan synthase. J Biol Chem 2005; 280:13450-6. [PMID: 15691828 DOI: 10.1074/jbc.m414521200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pyridoxal 5'-phosphate-dependent tryptophan synthase alpha2beta2 complex is a paradigmatic protein for substrate channeling and allosteric regulation. The enzymatic activity is modulated by a ligand-mediated equilibrium between open (inactive) and closed (active) conformations of the alpha- and beta-subunit, predominantly involving the mobile alpha loop 6 and the beta-COMM domain that contains beta helix 6. The alpha ligand-triggered intersubunit communication seems to rely on a single hydrogen bond formed between the carbonyl oxygen of betaSer-178 of beta helix 6 and the NH group of alphaGly-181 of alpha loop 6. We investigated whether and to what extent mutations of alphaGly-181 and betaSer-178 affect allosteric regulation by the replacement of betaSer-178 with Pro or Ala and of alphaGly-181 with either Pro to remove the amidic proton that forms the hydrogen bond or Ala, Val, and Phe to analyze the dependence on steric hindrance of the open-closed conformational transition. The alpha and beta activity assays and the equilibrium distribution of beta-subunit catalytic intermediates indicate that mutations do not significantly influence the intersubunit catalytic activation but completely abolish ligand-induced alpha-to beta-subunit signaling, demonstrating distinct pathways for alpha-beta-site communication. Limited proteolysis experiments indicate that the removal of the interaction between betaSer-178 and alphaGly-181 strongly favors the more trypsin-accessible open conformation of the alpha-active site. When the hydrogen bond cannot be formed, the alpha-subunit is unable to attain the closed conformation, and consequently, the allosteric signal is aborted at the subunit interface.
Collapse
Affiliation(s)
- Samanta Raboni
- Department of Biochemistry and Molecular Biology, University of Parma, 43100 Parma, Italy
| | | | | |
Collapse
|