1
|
Kuzu G, Kaye EG, Chery J, Siggers T, Yang L, Dobson JR, Boor S, Bliss J, Liu W, Jogl G, Rohs R, Singh ND, Bulyk ML, Tolstorukov MY, Larschan E. Expansion of GA Dinucleotide Repeats Increases the Density of CLAMP Binding Sites on the X-Chromosome to Promote Drosophila Dosage Compensation. PLoS Genet 2016; 12:e1006120. [PMID: 27414415 PMCID: PMC4945028 DOI: 10.1371/journal.pgen.1006120] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/23/2016] [Indexed: 12/15/2022] Open
Abstract
Dosage compensation is an essential process that equalizes transcript levels of X-linked genes between sexes by forming a domain of coordinated gene expression. Throughout the evolution of Diptera, many different X-chromosomes acquired the ability to be dosage compensated. Once each newly evolved X-chromosome is targeted for dosage compensation in XY males, its active genes are upregulated two-fold to equalize gene expression with XX females. In Drosophila melanogaster, the CLAMP zinc finger protein links the dosage compensation complex to the X-chromosome. However, the mechanism for X-chromosome identification has remained unknown. Here, we combine biochemical, genomic and evolutionary approaches to reveal that expansion of GA-dinucleotide repeats likely accumulated on the X-chromosome over evolutionary time to increase the density of CLAMP binding sites, thereby driving the evolution of dosage compensation. Overall, we present new insight into how subtle changes in genomic architecture, such as expansions of a simple sequence repeat, promote the evolution of coordinated gene expression.
Collapse
Affiliation(s)
- Guray Kuzu
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Emily G. Kaye
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Jessica Chery
- Department of Cell Biology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, United States of America
| | - Trevor Siggers
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Lin Yang
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Jason R. Dobson
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Sonia Boor
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Jacob Bliss
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Wei Liu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Gerwald Jogl
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Remo Rohs
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Nadia D. Singh
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael Y. Tolstorukov
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail: (MYT); (EL)
| | - Erica Larschan
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
- * E-mail: (MYT); (EL)
| |
Collapse
|
2
|
Sugiki T, Fujiwara T, Kojima C. Latest approaches for efficient protein production in drug discovery. Expert Opin Drug Discov 2014; 9:1189-204. [PMID: 25046062 DOI: 10.1517/17460441.2014.941801] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Pharmaceutical research looks to discover and develop new compounds which influence the function of disease-associated proteins or respective protein-protein interactions. Various scientific methods are available to discover those compounds, such as high-throughput screening of a library comprising chemical or natural compounds and computational rational drug design. The goal of these methods is to identify the seed compounds of future pharmaceuticals through the use of these technologies and laborious experiments. For every drug discovery effort made, the possession of accurate functional and structural information of the disease-associated proteins helps to assist drug development. Therefore, the investigation of the tertiary structure of disease-associated proteins and respective protein-protein interactions at the atomic level are of crucial importance for successful drug discovery. AREAS COVERED In this review article, the authors broadly outline current techniques utilized for recombinant protein production. In particular, the authors focus on bacterial expression systems using Escherichia coli as the living bioreactor. EXPERT OPINION The recently developed pCold-glutathione S-transferase (GST) system is one of the best systems for soluble protein expression in E. coli. Where the pCold-GST system does not succeed, it is preferable to change the host from E. coli to higher organisms such as yeast expression systems like Pichia pastoris and Kluyveromyces lactis. The selection of an appropriate expression system for each desired protein and the optimization of experimental conditions significantly contribute toward the successful outcome of any drug discovery study.
Collapse
Affiliation(s)
- Toshihiko Sugiki
- Osaka University, Institute for Protein Research , 3-2, Yamadaoka, Suita, Osaka 565-0871 , Japan
| | | | | |
Collapse
|
3
|
Yoshiyama KO, Kobayashi J, Ogita N, Ueda M, Kimura S, Maki H, Umeda M. ATM-mediated phosphorylation of SOG1 is essential for the DNA damage response in Arabidopsis. EMBO Rep 2013; 14:817-22. [PMID: 23907539 DOI: 10.1038/embor.2013.112] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 06/18/2013] [Accepted: 07/05/2013] [Indexed: 11/09/2022] Open
Abstract
Arabidopsis SOG1 (suppressor of gamma response 1) is a plant-specific transcription factor that governs the DNA damage response. Here we report that SOG1 is phosphorylated in response to DNA damage, and that this phosphorylation is mediated by the sensor kinase ataxia telangiectasia mutated (ATM). We show that SOG1 phosphorylation is crucial for the response to DNA damage, including transcriptional induction of downstream genes, transient arrest of cell division and programmed cell death. Although the amino-acid sequences of SOG1 and the mammalian tumour suppressor p53 show no similarity, this study demonstrates that ATM-mediated phosphorylation of a transcription factor has a pivotal role in the DNA damage response in both plants and mammals.
Collapse
Affiliation(s)
- Kaoru O Yoshiyama
- 1] Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Nara 630-0192, [2] Department of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto 603-8555
| | | | | | | | | | | | | |
Collapse
|
4
|
Gadd MS, Jacques DA, Nisevic I, Craig VJ, Kwan AH, Guss JM, Matthews JM. A structural basis for the regulation of the LIM-homeodomain protein islet 1 (Isl1) by intra- and intermolecular interactions. J Biol Chem 2013; 288:21924-35. [PMID: 23750000 DOI: 10.1074/jbc.m113.478586] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Islet 1 (Isl1) is a transcription factor of the LIM-homeodomain (LIM-HD) protein family and is essential for many developmental processes. LIM-HD proteins all contain two protein-interacting LIM domains, a DNA-binding homeodomain (HD), and a C-terminal region. In Isl1, the C-terminal region also contains the LIM homeobox 3 (Lhx3)-binding domain (LBD), which interacts with the LIM domains of Lhx3. The LIM domains of Isl1 have been implicated in inhibition of DNA binding potentially through an intramolecular interaction with or close to the HD. Here we investigate the LBD as a candidate intramolecular interaction domain. Competitive yeast-two hybrid experiments indicate that the LIM domains and LBD from Isl1 can interact with apparently low affinity, consistent with no detection of an intermolecular interaction in the same system. Nuclear magnetic resonance studies show that the interaction is specific, whereas substitution of the LBD with peptides of the same amino acid composition but different sequence is not specific. We solved the crystal structure of a similar but higher affinity complex between the LIM domains of Isl1 and the LIM interaction domain from the LIM-HD cofactor protein LIM domain-binding protein 1 (Ldb1) and used these coordinates to generate a homology model of the intramolecular interaction that indicates poorer complementarity for the weak intramolecular interaction. The intramolecular interaction in Isl1 may provide protection against aggregation, minimize unproductive DNA binding, and facilitate cofactor exchange within the cell.
Collapse
Affiliation(s)
- Morgan S Gadd
- School of Molecular Bioscience, Building G08, University of Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | |
Collapse
|
5
|
Wissmueller S, Font J, Liew CW, Cram E, Schroeder T, Turner J, Crossley M, Mackay JP, Matthews JM. Protein-protein interactions: analysis of a false positive GST pulldown result. Proteins 2011; 79:2365-71. [PMID: 21638332 DOI: 10.1002/prot.23068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 04/12/2011] [Accepted: 04/19/2011] [Indexed: 12/17/2022]
Abstract
One of the most common ways to demonstrate a direct protein-protein interaction in vitro is the glutathione-S-transferse (GST)-pulldown. Here we report the detailed characterization of a putative interaction between two transcription factor proteins, GATA-1 and Krüppel-like factor 3 (KLF3/BKLF) that show robust interactions in GST-pulldown experiments. Attempts to map the interaction interface of GATA-1 on KLF3 using a mutagenic screening approach did not yield a contiguous binding face on KLF3, suggesting that the interaction might be non-specific. NMR experiments showed that the proteins do not interact at protein concentrations of 50-100 μM. Rather, the GST tag can cause part of KLF3 to misfold. In addition to misfolding, the fact that both proteins are DNA-binding domains appears to introduce binding artifacts (possibly nucleic acid bridging) that cannot be resolved by the addition of nucleases or ethidium bromide (EtBr). This study emphasizes the need for caution in relying on GST-pulldown results and related methods, without convincing confirmation from different approaches.
Collapse
Affiliation(s)
- Sandra Wissmueller
- School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Hayashi K, Kojima C. Efficient protein production method for NMR using soluble protein tags with cold shock expression vector. JOURNAL OF BIOMOLECULAR NMR 2010; 48:147-55. [PMID: 20844927 DOI: 10.1007/s10858-010-9445-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 08/25/2010] [Indexed: 05/08/2023]
Abstract
The E. coli protein expression system is one of the most useful methods employed for NMR sample preparation. However, the production of some recombinant proteins in E. coli is often hampered by difficulties such as low expression level and low solubility. To address these problems, a modified cold-shock expression system containing a glutathione S-transferase (GST) tag, the pCold-GST system, was investigated. The pCold-GST system successfully expressed 9 out of 10 proteins that otherwise could not be expressed using a conventional E. coli expression system. Here, we applied the pCold-GST system to 84 proteins and 78 proteins were successfully expressed in the soluble fraction. Three other cold-shock expression systems containing a maltose binding protein tag (pCold-MBP), protein G B1 domain tag (pCold-GB1) or thioredoxin tag (pCold-Trx) were also developed to improve the yield. Additionally, we show that a C-terminal proline tag, which is invisible in ¹H-¹⁵N HSQC spectra, inhibits protein degradation and increases the final yield of unstable proteins. The purified proteins were amenable to NMR analyses. These data suggest that pCold expression systems combined with soluble protein tags can be utilized to improve the expression and purification of various proteins for NMR analysis.
Collapse
Affiliation(s)
- Kokoro Hayashi
- Nara Institute of Science and Technology, Takayama, Ikoma, Japan
| | | |
Collapse
|
7
|
Neira JL, Román-Trufero M, Contreras LM, Prieto J, Singh G, Barrera FN, Renart ML, Vidal M. The transcriptional repressor RYBP is a natively unfolded protein which folds upon binding to DNA. Biochemistry 2009; 48:1348-60. [PMID: 19170609 DOI: 10.1021/bi801933c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RYBP (Ring1A and YY1 binding protein) is a zinc finger protein with an essential role during embryonic development, which binds transcriptional factors, Polycomb products, and mediators of apoptosis, suggesting roles in, apparently, unrelated functions. To investigate mechanisms underlying its association with functionally diverse partners, we set out to study its structural properties using a number of biophysical (fluorescence, circular dichroism, Fourier transform infrared, and NMR spectroscopies) and hydrodynamic (analytical ultracentrifugation, DOSY-NMR, and gel filtration chromatography) techniques. We find RYBP to be a noncompact protein with little residual secondary structure, lacking a well-defined tertiary structure. These observations are also supported by theoretical calculations using neural networks and pairwise energy content, suggesting that RYBP is a natively unfolded protein. In addition, structural studies on its binding to the C-terminal region of the Polycomb protein Ring1B or to DNA show conformational changes in the complexed RYBP, consistent with the acquisition of a folded structure. The data provide a structural explanation for RYBP engagement in functionally unrelated pathways by means of its assembly into various macromolecular complexes as an unstructured protein with the ability to acquire a well-structured fold due to its association with different partners.
Collapse
Affiliation(s)
- José L Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante), Spain.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Libich DS, Schwalbe M, Kate S, Venugopal H, Claridge JK, Edwards PJB, Dutta K, Pascal SM. Intrinsic disorder and coiled-coil formation in prostate apoptosis response factor 4. FEBS J 2009; 276:3710-28. [PMID: 19490121 DOI: 10.1111/j.1742-4658.2009.07087.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prostate apoptosis response factor-4 (Par-4) is an ubiquitously expressed pro-apoptotic and tumour suppressive protein that can both activate cell-death mechanisms and inhibit pro-survival factors. Par-4 contains a highly conserved coiled-coil region that serves as the primary recognition domain for a large number of binding partners. Par-4 is also tightly regulated by the aforementioned binding partners and by post-translational modifications. Biophysical data obtained in the present study indicate that Par-4 primarily comprises an intrinsically disordered protein. Bioinformatic analysis of the highly conserved Par-4 reveals low sequence complexity and enrichment in polar and charged amino acids. The high proteolytic susceptibility and an increased hydrodynamic radius are consistent with a largely extended structure in solution. Spectroscopic measurements using CD and NMR also reveal characteristic features of intrinsic disorder. Under physiological conditions, the data obtained show that Par-4 self-associates via the C-terminal domain, forming a coiled-coil. Interruption of self-association by urea also resulted in loss of secondary structure. These results are consistent with the stabilization of the coiled-coil motif through an intramolecular association.
Collapse
Affiliation(s)
- David S Libich
- Centre for Structural Biology, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|