1
|
Hu X, Li E, Zhou Y, You Q, Jiang Z. Casitas b cell lymphoma‑B (Cbl-b): A new therapeutic avenue for small-molecule immunotherapy. Bioorg Med Chem 2024; 102:117677. [PMID: 38457911 DOI: 10.1016/j.bmc.2024.117677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Immunotherapy has revolutionized the area of cancer treatment. Although most immunotherapies now are antibodies targeting membrane checkpoint molecules, there is an increasing demand for small-molecule drugs that address intracellular pathways. The E3 ubiquitin ligase Casitas B cell lymphoma‑b (Cbl-b) has been regarded as a promising intracellular immunotherapy target. Cbl-b regulates the downstream proteins of multiple membrane receptors and co-receptors, restricting the activation of the innate and adaptive immune system. Recently, Cbl-b inhibitors have been reported with promising effects on immune surveillance activation and anti-tumor efficacy. Several molecules have entered phase Ⅰ clinical trials. In this review, the biological rationale of Cbl-b as a promising target for cancer immunotherapy and the latest research progress of Cbl-b are summarized, with special emphasis on the allosteric small-molecule inhibitors of Cbl-b.
Collapse
Affiliation(s)
- Xiuqi Hu
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Erdong Li
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yangguo Zhou
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
2
|
Zhou L, Yang J, Zhang K, Wang T, Jiang S, Zhang X. Rising Star in Immunotherapy: Development and Therapeutic Potential of Small-Molecule Inhibitors Targeting Casitas B Cell Lymphoma-b (Cbl-b). J Med Chem 2024; 67:816-837. [PMID: 38181380 DOI: 10.1021/acs.jmedchem.3c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Casitas B cell lymphoma-b (Cbl-b) is a vital negative regulator of TCR and BCR signaling pathways, playing a significant role in setting an appropriate threshold for the activation of T cells and controlling the tolerance of peripheral T cells via a variety of mechanisms. Overexpression of Cbl-b leads to immune hyporesponsiveness of T cells. Conversely, the deficiency of Cbl-b in T cells results in markedly increased production of IL-2, even in the lack of CD28 costimulation in vitro. And Cbl-b-/- mice spontaneously reject multifarious cancers. Therefore, Cbl-b may be associated with immune-mediated diseases, and blocking Cbl-b could be considered as a new antitumor immunotherapy strategy. In this review, the possible regulatory mechanisms and biological potential of Cbl-b for antitumor immunotherapy are summarized. Besides, the potential roles of Cbl-b in immune-mediated diseases are comprehensively discussed, with emphasis on Cbl-b immune-oncology agents in the preclinical stage and clinical trials.
Collapse
Affiliation(s)
- Lixin Zhou
- Department of Medicinal Chemistry, School of Pharmacy and School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Jiamei Yang
- Department of Medicinal Chemistry, School of Pharmacy and School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Kuojun Zhang
- Department of Medicinal Chemistry, School of Pharmacy and School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Tianyu Wang
- Department of Medicinal Chemistry, School of Pharmacy and School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng Jiang
- Department of Medicinal Chemistry, School of Pharmacy and School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangyu Zhang
- Department of Medicinal Chemistry, School of Pharmacy and School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
3
|
Abstract
Selective degradation of protein aggregates by macroautophagy/autophagy is an essential homeostatic process of safeguarding cells from the effects of proteotoxicity. Among the ubiquitin-like proteins, NEDD8 conjugation to misfolded proteins is prominent in stress-induced protein aggregates, albeit the function of neddylation in autophagy is unclear. Here, we report that polyneddylation functions as a post-translational modification for autophagic degradation of proteotoxic-stress induced protein aggregates. We also show that HYPK functions as an autophagy receptor in the polyneddylation-dependent aggrephagy. The scaffolding function of HYPK is facilitated by its C-terminal ubiquitin-associated domain and N-terminal tyrosine-type LC3-interacting region which bind to NEDD8 and LC3 respectively. Both NEDD8 and HYPK are positive modulators of basal and proteotoxicity-induced autophagy, leading to protection of cells from protein aggregates, such as aggregates of mutant HTT exon 1. Thus, we propose an indispensable and additive role of neddylation and HYPK in clearance of protein aggregates by autophagy, resulting in cytoprotective effect during proteotoxic stress.Abbreviations: ATG5, autophagy related 5; ATG12, autophagy related 12; ATG14, autophagy related 14; BECN1, beclin 1; CBL, casitas B-lineage lymphoma; CBLB, Cbl proto-oncogene B; GABARAP, GABA type A receptor-associated protein; GABARAPL1, GABA type A receptor associated protein like 1; GABARAPL2, GABA type A receptor associated protein like 2; GFP, green fluorescent protein; HTT, huntingtin; HTT97Q exon 1, huntingtin 97-glutamine exon 1; HUWE1, HECT, UBA and WWE domain containing E3 ubiquitin protein ligase 1; HYPK, huntingtin interacting protein K; IgG, immunoglobulin G; IMR-32, Institute for Medical Research-32; KD, knockdown; Kd, dissociation constant; LAMP1, lysosomal associated membrane protein 1; LIR, LC3 interacting region; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MAP1LC3A/LC3A, microtubule associated protein 1 light chain 3 alpha; MAP1LC3B/LC3B, microtubule associated protein 1 light chain 3 beta; MARK1, microtubule affinity regulating kinase 1; MARK2, microtubule affinity regulating kinase 2; MARK3, microtubule affinity regulating kinase 3; MARK4, microtubule affinity regulating kinase 4; MCF7, Michigan Cancer Foundation-7; MTOR, mechanistic target of rapamycin kinase; NAE1, NEDD8 activating enzyme E1 subunit 1; NBR1, NBR1 autophagy cargo receptor; NEDD8, NEDD8 ubiquitin like modifier; Ni-NTA, nickel-nitrilotriacetic acid; NUB1, negative regulator of ubiquitin like proteins 1; PIK3C3, phosphatidylinositol 3-kinase catalytic subunit type 3; PolyQ, poly-glutamine; PSMD8, proteasome 26S subunit, non-ATPase 8; RAD23A, RAD23 homolog A, nucleotide excision repair protein; RAD23B, RAD23 homolog B, nucleotide excision repair protein; RFP, red fluorescent protein; RPS27A, ribosomal protein S27a; RSC1A1, regulator of solute carriers 1; SNCA, synuclein alpha; SIK1, salt inducible kinase 1; siRNA, small interfering ribonucleic acid; SOD1, superoxide dismutase 1; SPR, surface plasmon resonance; SQSTM1, sequestosome 1; SUMO1, small ubiquitin like modifier 1; TAX1BP1, Tax1 binding protein 1; TDRD3, tudor domain containing 3; TNRC6C, trinucleotide repeat containing adaptor 6C; TOLLIP, toll interacting protein; TUBA, tubulin alpha; TUBB, tubulin beta class I; UBA, ubiquitin-associated; UBA1, ubiquitin like modifier activating enzyme 1; UBA5, ubiquitin like modifier activating enzyme 5; UBAC1, UBA domain containing 1; UBAC2, UBA domain containing 2; UBAP1, ubiquitin associated protein 1; UBAP2, ubiquitin associated protein 2; UBASH3B, ubiquitin associated and SH3 domain containing B; UBD/FAT10, ubiquitin D; UBE2K, ubiquitin conjugating enzyme E2 K; UBLs, ubiquitin-like proteins; UBL7, ubiquitin like 7; UBQLN1, ubiquilin 1; UBQLN2, ubiquilin 2; UBQLN3, ubiquilin 3; UBQLN4, ubiquilin 4; UBXN1, UBX domain protein 1; ULK1, unc-51 like autophagy activating kinase 1; URM1, ubiquitin related modifier 1; USP5, ubiquitin specific peptidase 5; USP13, ubiquitin specific peptidase 13; VPS13D, vacuolar protein sorting 13 homolog D.
Collapse
Affiliation(s)
- Debasish Kumar Ghosh
- Computational and Functional Genomics Group Centre for Dna Fingerprinting and Diagnostics Uppal Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Akash Ranjan
- Computational and Functional Genomics Group Centre for Dna Fingerprinting and Diagnostics Uppal Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
4
|
Domain interactions reveal auto-inhibition of the deubiquitinating enzyme USP19 and its activation by HSP90 in the modulation of huntingtin aggregation. Biochem J 2020; 477:4295-4312. [PMID: 33094816 DOI: 10.1042/bcj20200536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 01/25/2023]
Abstract
Ubiquitin-specific protease 19 (USP19) is a member of the deubiquitinating (DUB) enzymes that catalyze removing the ubiquitin signals from target proteins. Our previous research has demonstrated that USP19 up-regulates the protein level and aggregation of polyQ-expanded huntingtin through the involvement of heat shock protein 90 (HSP90). Here, we present solution structures of the CS1, CS2 and UbL domains of USP19 and structural insights into their domain interactions. We found that the tandem CS domains fold back to interact with the C-terminal USP domain (USPD) intra-molecularly that leads to inhibition of the catalytic core of USP19, especially CS1 interacts with the embedded UbL domain and CS2 does with the CH2 catalytic core. Moreover, CS2 specifically interacts with the NBD domain of HSP90, which can activate the DUB enzyme. A mechanism of auto-inhibition of USP19 and activation by HSP90 is proposed, on which USP19 modulates the protein level of polyQ-expanded huntingtin in cells. This study provides structural and mechanistic insights into the modulation of protein level and aggregation by USP19 with the assistance of HSP90.
Collapse
|
5
|
Mader J, Huber J, Bonn F, Dötsch V, Rogov VV, Bremm A. Oxygen-dependent asparagine hydroxylation of the ubiquitin-associated (UBA) domain in Cezanne regulates ubiquitin binding. J Biol Chem 2020; 295:2160-2174. [PMID: 31937588 DOI: 10.1074/jbc.ra119.010315] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/27/2019] [Indexed: 12/26/2022] Open
Abstract
Deubiquitinases (DUBs) are vital for the regulation of ubiquitin signals, and both catalytic activity of and target recruitment by DUBs need to be tightly controlled. Here, we identify asparagine hydroxylation as a novel posttranslational modification involved in the regulation of Cezanne (also known as OTU domain-containing protein 7B (OTUD7B)), a DUB that controls key cellular functions and signaling pathways. We demonstrate that Cezanne is a substrate for factor inhibiting HIF1 (FIH1)- and oxygen-dependent asparagine hydroxylation. We found that FIH1 modifies Asn35 within the uncharacterized N-terminal ubiquitin-associated (UBA)-like domain of Cezanne (UBACez), which lacks conserved UBA domain properties. We show that UBACez binds Lys11-, Lys48-, Lys63-, and Met1-linked ubiquitin chains in vitro, establishing UBACez as a functional ubiquitin-binding domain. Our findings also reveal that the interaction of UBACez with ubiquitin is mediated via a noncanonical surface and that hydroxylation of Asn35 inhibits ubiquitin binding. Recently, it has been suggested that Cezanne recruitment to specific target proteins depends on UBACez Our results indicate that UBACez can indeed fulfill this role as regulatory domain by binding various ubiquitin chain types. They also uncover that this interaction with ubiquitin, and thus with modified substrates, can be modulated by oxygen-dependent asparagine hydroxylation, suggesting that Cezanne is regulated by oxygen levels.
Collapse
Affiliation(s)
- Julia Mader
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jessica Huber
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Florian Bonn
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Vladimir V Rogov
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Anja Bremm
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
6
|
Regulation of cell adhesion: a collaborative effort of integrins, their ligands, cytoplasmic actors, and phosphorylation. Q Rev Biophys 2019; 52:e10. [PMID: 31709962 DOI: 10.1017/s0033583519000088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrins are large heterodimeric type 1 membrane proteins expressed in all nucleated mammalian cells. Eighteen α-chains and eight β-chains can combine to form 24 different integrins. They are cell adhesion proteins, which bind to a large variety of cellular and extracellular ligands. Integrins are required for cell migration, hemostasis, translocation of cells out from the blood stream and further movement into tissues, but also for the immune response and tissue morphogenesis. Importantly, integrins are not usually active as such, but need activation to become adhesive. Integrins are activated by outside-in activation through integrin ligand binding, or by inside-out activation through intracellular signaling. An important question is how integrin activity is regulated, and this topic has recently drawn much attention. Changes in integrin affinity for ligand binding are due to allosteric structural alterations, but equally important are avidity changes due to integrin clustering in the plane of the plasma membrane. Recent studies have partially solved how integrin cell surface structures change during activation. The integrin cytoplasmic domains are relatively short, but by interacting with a variety of cytoplasmic proteins in a regulated manner, the integrins acquire a number of properties important not only for cell adhesion and movement, but also for cellular signaling. Recent work has shown that specific integrin phosphorylations play pivotal roles in the regulation of integrin activity. Our purpose in this review is to integrate the present knowledge to enable an understanding of how cell adhesion is dynamically regulated.
Collapse
|
7
|
Tang R, Langdon WY, Zhang J. Regulation of immune responses by E3 ubiquitin ligase Cbl-b. Cell Immunol 2018; 340:103878. [PMID: 30442330 DOI: 10.1016/j.cellimm.2018.11.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022]
Abstract
Casitas B lymphoma-b (Cbl-b), a RING finger E3 ubiquitin ligase, has been identified as a critical regulator of adaptive immune responses. Cbl-b is essential for establishing the threshold for T cell activation and regulating peripheral T cell tolerance through various mechanisms. Intriguingly, recent studies indicate that Cbl-b also modulates innate immune responses, and plays a key role in host defense to pathogens and anti-tumor immunity. These studies suggest that targeting Cbl-b may represent a potential therapeutic strategy for the management of human immune-related disorders such as autoimmune diseases, infections, tumors, and allergic airway inflammation. In this review, we summarize the latest developments regarding the roles of Cbl-b in innate and adaptive immunity, and immune-mediated diseases.
Collapse
Affiliation(s)
- Rong Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Wallace Y Langdon
- School of Biological Sciences, University of Western Australia, Perth, Australia
| | - Jian Zhang
- Department of Pathology, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
8
|
Voisinne G, García-Blesa A, Chaoui K, Fiore F, Bergot E, Girard L, Malissen M, Burlet-Schiltz O, Gonzalez de Peredo A, Malissen B, Roncagalli R. Co-recruitment analysis of the CBL and CBLB signalosomes in primary T cells identifies CD5 as a key regulator of TCR-induced ubiquitylation. Mol Syst Biol 2016; 12:876. [PMID: 27474268 PMCID: PMC4965873 DOI: 10.15252/msb.20166837] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
T-cell receptor (TCR) signaling is essential for the function of T cells and negatively regulated by the E3 ubiquitin-protein ligases CBL and CBLB Here, we combined mouse genetics and affinity purification coupled to quantitative mass spectrometry to monitor the dynamics of the CBL and CBLB signaling complexes that assemble in normal T cells over 600 seconds of TCR stimulation. We identify most previously known CBL and CBLB interacting partners, as well as a majority of proteins that have not yet been implicated in those signaling complexes. We exploit correlations in protein association with CBL and CBLB as a function of time of TCR stimulation for predicting the occurrence of direct physical association between them. By combining co-recruitment analysis with biochemical analysis, we demonstrated that the CD5 transmembrane receptor constitutes a key scaffold for CBL- and CBLB-mediated ubiquitylation following TCR engagement. Our results offer an integrated view of the CBL and CBLB signaling complexes induced by TCR stimulation and provide a molecular basis for their negative regulatory function in normal T cells.
Collapse
Affiliation(s)
- Guillaume Voisinne
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - Antonio García-Blesa
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - Karima Chaoui
- Institut de Pharmacologie et de Biologie Structurale, Département Biologie Structural Biophysique, Protéomique Génopole Toulouse Midi Pyrénées, CNRS UMR 5089, Toulouse Cedex, France
| | - Frédéric Fiore
- Centre d'Immunophénomique, Aix Marseille Université UM2, Inserm US012, CNRS UMS3367, Marseille, France
| | - Elise Bergot
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - Laura Girard
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France Centre d'Immunophénomique, Aix Marseille Université UM2, Inserm US012, CNRS UMS3367, Marseille, France
| | - Marie Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France Centre d'Immunophénomique, Aix Marseille Université UM2, Inserm US012, CNRS UMS3367, Marseille, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Département Biologie Structural Biophysique, Protéomique Génopole Toulouse Midi Pyrénées, CNRS UMR 5089, Toulouse Cedex, France
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et de Biologie Structurale, Département Biologie Structural Biophysique, Protéomique Génopole Toulouse Midi Pyrénées, CNRS UMR 5089, Toulouse Cedex, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France Centre d'Immunophénomique, Aix Marseille Université UM2, Inserm US012, CNRS UMS3367, Marseille, France
| | - Romain Roncagalli
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| |
Collapse
|
9
|
A ubiquitin shuttle DC-UbP/UBTD2 reconciles protein ubiquitination and deubiquitination via linking UbE1 and USP5 enzymes. PLoS One 2014; 9:e107509. [PMID: 25207809 PMCID: PMC4160250 DOI: 10.1371/journal.pone.0107509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/12/2014] [Indexed: 11/19/2022] Open
Abstract
The ubiquitination levels of protein substrates in eukaryotic cells are delicately orchestrated by various protein cofactors and enzymes. Dendritic cell-derived ubiquitin (Ub)-like protein (DC-UbP), also named as Ub domain-containing protein 2 (UBTD2), is a potential Ub shuttle protein comprised of a Ub-like (UbL) domain and a Ub-binding domain (UBD), but its biological function remains largely unknown. We identified two Ub-related enzymes, the deubiquitinating enzyme USP5 and the Ub-activating enzyme UbE1, as interacting partners of DC-UbP from HEK 293T cells. Biochemical studies revealed that the tandem UBA domains of USP5 and the C-terminal Ub-fold domain (UFD) of UbE1 directly interacted with the C-terminal UbL domain of DC-UbP but on the distinct surfaces. Overexpression of DC-UbP in HEK 293T cells enhanced the association of these two enzymes and thus prompted cellular ubiquitination, whereas knockdown of the protein reduced the cellular ubiquitination level. Together, DC-UbP may integrate the functions of USP5 and UbE1 through interacting with them, and thus reconcile the cellular ubiquitination and deubiquitination processes.
Collapse
|
10
|
Liu Q, Zhou H, Langdon WY, Zhang J. E3 ubiquitin ligase Cbl-b in innate and adaptive immunity. Cell Cycle 2014; 13:1875-84. [PMID: 24875217 DOI: 10.4161/cc.29213] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b), a RING finger E3 ubiquitin-protein ligase, has been demonstrated to play a crucial role in establishing the threshold for T-cell activation and controlling peripheral T-cell tolerance via multiple mechanisms. Accumulating evidence suggests that Cbl-b also regulates innate immune responses and plays an important role in host defense to pathogens. Understanding the signaling pathways regulated by Cbl-b in innate and adaptive immune cells is therefore essential for efficient manipulation of Cbl-b in emerging immunotherapies for human disorders such as autoimmune diseases, allergic inflammation, infections, and cancer. In this article, we review the latest developments in the molecular structural basis of Cbl-b function, the regulation of Cbl-b expression, the signaling mechanisms of Cbl-b in immune cells, as well as the biological function of Cbl-b in physiological and pathological immune responses in animal models and human diseases.
Collapse
Affiliation(s)
- Qingjun Liu
- Laboratory of Immunohematology; Beijing Institute of Transfusion Medicine; Beijing, PR China; Department of Microbial Infection and Immunity; The Ohio State University; Columbus, OH USA
| | - Hong Zhou
- Laboratory of Immunohematology; Beijing Institute of Transfusion Medicine; Beijing, PR China
| | - Wallace Y Langdon
- School of Pathology and Laboratory Medicine; University of Western Australia; Crawley, Western Australia, Australia
| | - Jian Zhang
- Department of Microbial Infection and Immunity; The Ohio State University; Columbus, OH USA
| |
Collapse
|
11
|
Bunda S, Qin K, Kommaraju K, Heir P, Ohh M. Juvenile myelomonocytic leukaemia-associated mutation in Cbl promotes resistance to apoptosis via the Lyn-PI3K/AKT pathway. Oncogene 2014; 34:789-97. [DOI: 10.1038/onc.2013.596] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 11/07/2013] [Accepted: 12/16/2013] [Indexed: 12/19/2022]
|
12
|
Lee H, Tsygankov AY. Cbl-family proteins as regulators of cytoskeleton-dependent phenomena. J Cell Physiol 2013; 228:2285-93. [DOI: 10.1002/jcp.24412] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/29/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Hojin Lee
- Department of Microbiology and Immunology; Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research; Temple University School of Medicine; Philadelphia Pennsylvania
| | - Alexander Y. Tsygankov
- Department of Microbiology and Immunology; Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research; Temple University School of Medicine; Philadelphia Pennsylvania
| |
Collapse
|
13
|
Bunda S, Kang MW, Sybingco SS, Weng J, Favre H, Shin DH, Irwin MS, Loh ML, Ohh M. Inhibition of SRC corrects GM-CSF hypersensitivity that underlies juvenile myelomonocytic leukemia. Cancer Res 2013; 73:2540-50. [PMID: 23400592 DOI: 10.1158/0008-5472.can-12-3425] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative neoplasm in children characterized by the overproduction of monocytic cells that infiltrate the spleen, lung, and liver. JMML remains a disease for which few curative therapies are available other than myeloablative hematopoietic stem cell transplant (HSCT); however, relapse remains a major cause of treatment failure and the long-term morbidities of HSCT for survivors are substantial. A hallmark feature of JMML is acquired hypersensitivity by clonal myeloid progenitor cells to granulocyte macrophage-colony stimulating factor (GM-CSF) via a largely unknown mechanism. Here, we identify c-Cbl (henceforth referred to as Cbl) as a GM-CSF receptor (GMR) adaptor protein that targets Src for ubiquitin-mediated destruction upon GM-CSF stimulation and show that a loss of negative regulation of Src is pivotal in the hyperactivation of GMR signaling in Cbl-mutated JMML cells. Notably, dasatinib, an U.S. Food and Drug Administration-approved multikinase inhibitor that also targets Src family, dramatically attenuated the spontaneous and GM-CSF-induced hypersensitive growth phenotype of mononuclear cells from peripheral blood and bone marrow collected from JMML patients harboring Cbl or other known JMML-associated mutations. These findings reveal Src kinase as a critical oncogenic driver underlying JMML.
Collapse
Affiliation(s)
- Severa Bunda
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Husnjak K, Dikic I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu Rev Biochem 2012; 81:291-322. [PMID: 22482907 DOI: 10.1146/annurev-biochem-051810-094654] [Citation(s) in RCA: 583] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ubiquitin acts as a versatile cellular signal that controls a wide range of biological processes including protein degradation, DNA repair, endocytosis, autophagy, transcription, immunity, and inflammation. The specificity of ubiquitin signaling is achieved by alternative conjugation signals (monoubiquitin and ubiquitin chains) and interactions with ubiquitin-binding proteins (known as ubiquitin receptors) that decode ubiquitinated target signals into biochemical cascades in the cell. Herein, we review the current knowledge pertaining to the structural and functional features of ubiquitin-binding proteins and the mechanisms by which they recognize various types of ubiquitin topologies. The combinatorial use of diverse ubiquitin-binding domains (UBDs) in full-length proteins, selective recognition of chains with distinct linkages and length, and posttranslational modifications of ubiquitin receptors or multivalent interactions within protein complexes illustrate a few mechanisms by which a circuitry of signaling networks can be rewired by ubiquitin-binding proteins to control cellular functions in vivo.
Collapse
Affiliation(s)
- Koraljka Husnjak
- Institute of Biochemistry II, School of Medicine, Goethe University, 60590 Frankfurt am Main, Germany.
| | | |
Collapse
|
15
|
Ye M, Khoo KK, Xu S, Zhou M, Boonyalai N, Perugini MA, Shao X, Chi C, Galea CA, Wang C, Norton RS. A helical conotoxin from Conus imperialis has a novel cysteine framework and defines a new superfamily. J Biol Chem 2012; 287:14973-83. [PMID: 22399292 DOI: 10.1074/jbc.m111.334615] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cone snail venoms are a rich source of peptides, many of which are potent and selective modulators of ion channels and receptors. Here we report the isolation and characterization of two novel conotoxins from the venom of Conus imperialis. These two toxins contain a novel cysteine framework, C-C-C-CC-C, which has not been found in other conotoxins described to date. We name it framework XXIII and designate the two toxins im23a and im23b; cDNAs of these toxins exhibit a novel signal peptide sequence, which defines a new K-superfamily. The disulfide connectivity of im23a has been mapped by chemical mapping of partially reduced intermediates and by NMR structure calculations, both of which establish a I-II, III-IV, V-VI pattern of disulfide bridges. This pattern was also confirmed by synthesis of im23a with orthogonal protection of individual cysteine residues. The solution structure of im23a reveals that im23a adopts a novel helical hairpin fold. A cluster of acidic residues on the surface of the molecule is able to bind calcium. The biological activity of the native and recombinant peptides was tested by injection into mice intracranially and intravenously to assess the effects on the central and peripheral nervous systems, respectively. Intracranial injection of im23a or im23b into mice induced excitatory symptoms; however, the biological target of these new toxins has yet to be identified.
Collapse
Affiliation(s)
- Mingyu Ye
- Institute of Protein Research, Tongji University, 1239 Siping Road, Shanghai 20092, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tse MK, Hui SK, Yang Y, Yin ST, Hu HY, Zou B, Wong BCY, Sze KH. Structural analysis of the UBA domain of X-linked inhibitor of apoptosis protein reveals different surfaces for ubiquitin-binding and self-association. PLoS One 2011; 6:e28511. [PMID: 22194841 PMCID: PMC3240630 DOI: 10.1371/journal.pone.0028511] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 11/09/2011] [Indexed: 12/18/2022] Open
Abstract
Background Inhibitor of apoptosis proteins (IAPs) belong to a pivotal antiapoptotic protein family that plays a crucial role in tumorigenesis, cancer progression, chemoresistance and poor patient-survival. X-linked inhibitor of apoptosis protein (XIAP) is a prominent member of IAPs attracting intense research because it has been demonstrated to be a physiological inhibitor of caspases and apoptosis. Recently, an evolutionarily conserved ubiquitin-associated (UBA) domain was identified in XIAP and a number of RING domain-bearing IAPs. This has placed the IAPs in the group of ubiquitin binding proteins. Here, we explore the three-dimensional structure of the XIAP UBA domain (XIAP-UBA) and how it interacts with mono-ubiquitin and diubiquitin conjugates. Principal Findings The solution structure of the XIAP-UBA domain was determined by NMR spectroscopy. XIAP-UBA adopts a typical UBA domain fold of three tightly packed α-helices but with an additional N-terminal 310 helix. The XIAP-UBA binds mono-ubiquitin as well as Lys48-linked and linear-linked diubiquitins at low-micromolar affinities. NMR analysis of the XIAP-UBA–ubiquitin interaction reveals that it involves the classical hydrophobic patches surrounding Ile44 of ubiquitin and the conserved MGF/LV motif surfaces on XIAP-UBA. Furthermore, dimerization of XIAP-UBA was observed. Mapping of the self-association surface of XIAP-UBA reveals that the dimerization interface is formed by residues in the N-terminal 310 helix, helix α1 and helix α2, separate from the ubiquitin-binding surface. Conclusion Our results provide the first structural information of XIAP-UBA and map its interaction with mono-ubiquitin, Lys48-linked and linear-linked diubiquitins. The notion that XIAP-UBA uses different surfaces for ubiquitin-binding and self-association provides a plausible model to explain the reported selectivity of XIAP in binding polyubiquitin chains with different linkages.
Collapse
Affiliation(s)
- Man Kit Tse
- Department of Microbiology and State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Yin ST, Huang H, Zhang YH, Zhou ZR, Song AX, Hong FS, Hu HY. A fluorescence assay for elucidating the substrate specificities of deubiquitinating enzymes. Biochem Biophys Res Commun 2011; 416:76-9. [PMID: 22086173 DOI: 10.1016/j.bbrc.2011.10.147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 10/31/2011] [Indexed: 01/23/2023]
Abstract
Ubiquitin C-terminal hydrolases (UCHs) are a representative family of deubiquitinating enzymes (DUBs), which specifically cleave ubiquitin (Ub) chains or extensions. Here we present a convenient method for characterizing the substrate specificities of various UCHs by fluorescently mutated Ub-fusion proteins (Ub(F45W)-Xaa) and di-ubiquitin chains (Ub(F45W)-diUb). After removal of the intact substrate by Ni(2+)-NTA affinity, the enzymatic activities of UCHs were quantitatively determined by recording fluorescence of the Ub(F45W) product. The results show that three UCHs, i.e. UCH-L1, UCH-L3 and UCH37/UCH-L5, are distinct in their substrate specificities for the Ub-fusions and diUb chains. This assay method may also be applied to study the enzymatic activities and substrate specificities of other DUBs.
Collapse
Affiliation(s)
- Si-Tao Yin
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Song AX, Zhou CJ, Guan X, Sze KH, Hu HY. Solution structure of the N-terminal domain of DC-UbP/UBTD2 and its interaction with ubiquitin. Protein Sci 2010; 19:1104-9. [PMID: 20440844 DOI: 10.1002/pro.386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DC-UbP/UBTD2 is a ubiquitin (Ub) domain-containing protein first identified from dendritic cells, and is implicated in ubiquitination pathway. The solution structure and backbone dynamics of the C-terminal Ub-like (UbL) domain were elucidated in our previous work. To further understand the biological function of DC-UbP, we then solved the solution structure of the N-terminal domain of DC-UbP (DC-UbP_N) and studied its Ub binding properties by NMR techniques. The results show that DC-UbP_N holds a novel structural fold and acts as a Ub-binding domain (UBD) but with low affinity. This implies that the DC-UbP protein, composing of a combination of both UbL and UBD domains, might play an important role in regulating protein ubiquitination and delivery of ubiquitinated substrates in eukaryotic cells.
Collapse
Affiliation(s)
- Ai-Xin Song
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
19
|
Mitra P, Pal D. dockYard–a repository to assist modeling of protein-protein docking. J Mol Model 2010; 17:599-606. [DOI: 10.1007/s00894-010-0758-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 05/12/2010] [Indexed: 02/02/2023]
|
20
|
Dimerisation of the UBA domain of p62 inhibits ubiquitin binding and regulates NF-kappaB signalling. J Mol Biol 2009; 396:178-94. [PMID: 19931284 DOI: 10.1016/j.jmb.2009.11.032] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 11/11/2009] [Accepted: 11/12/2009] [Indexed: 11/24/2022]
Abstract
The ubiquitin (Ub)-binding p62 scaffold protein (encoded by the SQSTM1 gene) regulates a diverse range of signalling pathways leading to activation of the nuclear factor kappa B (NF-kappaB) family of transcription factors and is an important regulator of macroautophagy. Mutations within the gene encoding p62 are commonly found in patients with Paget's disease of bone and largely cluster within the C-terminal ubiquitin-associated (UBA) domain, impairing its ability to bind Ub, resulting in dysregulated NF-kappaB signalling. However, precisely how Ub-binding is regulated at the molecular level is unclear. NMR relaxation dispersion experiments, coupled with concentration-dependent NMR, CD, isothermal titration calorimetry and fluorescence kinetic measurements, reveal that the p62 UBA domain forms a highly stable dimer (K(dim) approximately 4-12 microM at 298 K). NMR analysis shows that the dimer interface partially occludes the Ub-binding surface, particularly at the C-terminus of helix 3, making UBA dimerisation and Ub-binding mutually exclusive processes. Somewhat unusually, the monomeric UBA appears to be the biologically active form and the dimer appears to be the inactive one. Engineered point mutations in loop 1 (E409K and G410K) are shown to destabilise the dimer interface, lead to a higher proportion of the bound monomer and, in NF-kappaB luciferase reporter assays, are associated with reduced NF-kappaB activity compared with wt-p62.
Collapse
|
21
|
Xie YY, Zhou CJ, Zhou ZR, Hong J, Che MX, Fu QS, Song AX, Lin DH, Hu HY. Interaction with synphilin-1 promotes inclusion formation of alpha-synuclein: mechanistic insights and pathological implication. FASEB J 2009; 24:196-205. [PMID: 19762560 DOI: 10.1096/fj.09-133082] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
alpha-Synuclein (alpha-Syn) is the major component of Lewy bodies (LBs) deposited in the brains of patients with Parkinson's disease. Synphilin-1 (Sph1) is a novel alpha-Syn-interacting protein also present in the LBs. However, the roles of alpha-Syn-Sph1 interaction in LB formation and in the related pathogenesis are still unclear. We have studied the interaction between alpha-Syn and Sph1 by biochemical and structural approaches and found that the central coiled-coil domain of Sph1 specifically interacts with the N-terminal stretch of alpha-Syn. When overexpressed in HEK 293T cells, Sph1 forms inclusions together with alpha-Syn, but the Sph1-positive inclusions cannot recruit the N-terminally truncated alpha-Syn. The central portion of Sph1 can also recruit alpha-Syn and induce inclusion formation through its coiled-coil domain. These observations demonstrate that the alpha-Syn-Sph1 interaction significantly promotes the formation of cytoplasmic alpha-Syn inclusions, which may have implications for LB formation in neural cells. We have also elucidated solution structure of the coiled-coil domain of Sph1 and its interaction with the N-terminal peptide of alpha-Syn. The specific interaction between alpha-Syn and Sph1 provides mechanistic insights into the inclusion-body formation in cells and pathological implication in Parkinson's disease.
Collapse
Affiliation(s)
- Yuan-Yuan Xie
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|