1
|
Asakawa D, Iwamoto S, Tanaka K. Discrimination of Aspartic and Isoaspartic Acid Residues in Peptides by Tandem Mass Spectrometry with Hydrogen Attachment Dissociation. Anal Chem 2024; 96:8552-8559. [PMID: 38741470 DOI: 10.1021/acs.analchem.4c00561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Long-lived proteins undergo chemical modifications that can cause age-related diseases. Among these chemical modifications, isomerization is the most difficult to identify. Isomerization often occurs at the aspartic acid (Asp) residues. In this study, we used tandem mass spectrometry equipped with a newly developed ion activation method, hydrogen attachment dissociation (HAD), to analyze peptides containing Asp isomers. Although HAD preferentially produces [cn + 2H]+ and [zm + 2H]+ via N-Cα bond cleavage, [cn + 58 + 2H]+ and [zm - 58 + 2H]+ originate from the fragmentation of the isoAsp residue. Notably, [cn + 58 + 2H]+ and [zm - 58 + 2H]+ could be used as diagnostic fragment ions for the isoAsp residue because these fragment ions did not originate from the Asp residue. The detailed fragmentation mechanism was investigated by computational analysis using density functional theory. According to the results, hydrogen attachment to the carbonyl oxygen in the isoAsp residue results in the Cα-Cβ bond cleavage. The experimental and theoretical joint study indicates that the present method allows us to discriminate Asp and isoAsp residues, including site identification of the isoAsp residue. Moreover, we demonstrated that the molar ratio of peptide isomers in the mixture could be estimated from their fragment ion abundance. Therefore, tandem mass spectrometry with HAD is a useful method for the rapid discrimination and semiquantitative analysis of peptides containing isoAsp residues.
Collapse
Affiliation(s)
- Daiki Asakawa
- National Institute of Advanced Industrial Science and Technology (AIST), National Metrology Institute of Japan (NMIJ), Tsukuba 305-8568, Japan
| | - Shinich Iwamoto
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Koichi Tanaka
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| |
Collapse
|
2
|
Bashyal A, Hui JO, Flick T, Dykstra AB, Zhang Q, Campuzano IDG, Brodbelt JS. Differentiation of Aspartic and Isoaspartic Acid Using 193 nm Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2023; 95:11510-11517. [PMID: 37458293 PMCID: PMC10588209 DOI: 10.1021/acs.analchem.3c02025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Spontaneous conversion of aspartic acid (Asp) to isoaspartic acid (isoAsp) is a ubiquitous modification that influences the structure and function of proteins. This modification of Asp impacts the stability of biotherapeutics and has been linked to the development of neurodegenerative diseases. We explored the use of 193 nm ultraviolet photodissociation (UVPD) to distinguish Asp and isoAsp in the protonated and deprotonated peptides. The differences in the relative abundances of several fragment ions uniquely generated by UVPD were used to differentiate isomeric peptide standards containing Asp or isoAsp. These fragment ions result from the cleavage of bonds N-terminal to Asp/isoAsp residues in addition to the side-chain losses from Asp/isoAsp or the losses of COOH, CO2, CO, or H2O from y-ions. Fragmentation of Asp-containing tryptic peptides using UVPD resulted in more enhanced w/w + 1/y - 1/x ions, while isoAsp-containing peptides yielded more enhanced y - 18/y - 45/y - 46 ions. UVPD was also used to identify an isomerized peptide from a tryptic digest of a monoclonal antibody. Moreover, UVPD of a protonated nontryptic peptide resulted in more enhanced y ions N- and C-terminal to isoAsp and differences in b/y ion ratios that were used to identify the isoAsp peptide.
Collapse
Affiliation(s)
- Aarti Bashyal
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - John O Hui
- Amgen Research, Molecular Analytics, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Tawnya Flick
- Process Development, Attribute Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Andrew B Dykstra
- Process Development, Attribute Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Qingchun Zhang
- Process Development, Attribute Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Iain D G Campuzano
- Amgen Research, Molecular Analytics, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
VanAernum ZL, Sergi JA, Dey M, Toner T, Kilgore B, Lay-Fortenbery A, Wang Y, Bian S, Kochert BA, Bothe JR, Gao X, Richardson D, Schuessler HA. Discovery and Control of Succinimide Formation and Accumulation at Aspartic Acid Residues in The Complementarity-Determining Region of a Therapeutic Monoclonal Antibody. Pharm Res 2023; 40:1411-1423. [PMID: 36627449 DOI: 10.1007/s11095-022-03462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Succinimide formation and isomerization alter the chemical and physical properties of aspartic acid residues in a protein. Modification of aspartic acid residues within complementarity-determining regions (CDRs) of therapeutic monoclonal antibodies (mAbs) can be particularly detrimental to the efficacy of the molecule. The goal of this study was to characterize the site of succinimide accumulation in the CDR of a therapeutic mAb and understand its effects on potency. Furthermore, we aimed to mitigate succinimide accumulation through changes in formulation. METHODS Accumulation of succinimide was identified through intact and reduced LC-MS mass measurements. A low pH peptide mapping method was used for relative quantitation and localization of succinimide formation in the CDR. Statistical modeling was used to correlate levels of succinimide with basic variants and potency measurements. RESULTS Succinimide accumulation in Formulation A was accelerated when stored at elevated temperatures. A strong correlation between succinimide accumulation in the CDR, an increase in basic charge variants, and a decrease in potency was observed. Statistical modeling suggest that a combination of ion exchange chromatography and potency measurements can be used to predict succinimide levels in a given sample. Reformulation of the mAb to Formulation B mitigates succinimide accumulation even after extended storage at elevated temperatures. CONCLUSION Succinimide formation in the CDR of a therapeutic mAb can have a strong negative impact on potency of the molecule. We demonstrate that thorough characterization of the molecule by LC-MS, ion exchange chromatography, and potency measurements can facilitate changes in formulation that mitigate succinimide formation and the corresponding detrimental changes in potency.
Collapse
Affiliation(s)
- Zachary L VanAernum
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA.
| | - Joseph A Sergi
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Monisha Dey
- Biostatistics and Research Decision Sciences, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Timothy Toner
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Bruce Kilgore
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Ashley Lay-Fortenbery
- Preclinical Development, Merck & Co., Inc, 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Yi Wang
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
- Biologics Process and Analytical Development, National Resilience, Inc, Waltham, MA, 02451, USA
| | - Shengjie Bian
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
- CMC Regulatory & Technical Strategy, Amicus Therapeutics Inc. Philadelphia, Philadelphia, PA, 19104, USA
| | - Brent A Kochert
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Jameson R Bothe
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Xinliu Gao
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Douglas Richardson
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Hillary A Schuessler
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| |
Collapse
|
4
|
Lichti CF, Wan X. Using mass spectrometry to identify neoantigens in autoimmune diseases: The type 1 diabetes example. Semin Immunol 2023; 66:101730. [PMID: 36827760 PMCID: PMC10324092 DOI: 10.1016/j.smim.2023.101730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
In autoimmune diseases, recognition of self-antigens presented by major histocompatibility complex (MHC) molecules elicits unexpected attack of tissue by autoantibodies and/or autoreactive T cells. Post-translational modification (PTM) may alter the MHC-binding motif or TCR contact residues in a peptide antigen, transforming the tolerance to self to autoreactivity. Mass spectrometry-based immunopeptidomics provides a valuable mechanism for identifying MHC ligands that contain PTMs and can thus provide valuable insights into pathogenesis and therapeutics of autoimmune diseases. A plethora of PTMs have been implicated in this process, and this review highlights their formation and identification.
Collapse
Affiliation(s)
- Cheryl F Lichti
- Department of Pathology and Immunology, Division of Immunobiology, The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8118, St. Louis, MO 63110, USA.
| | - Xiaoxiao Wan
- Department of Pathology and Immunology, Division of Immunobiology, The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, 660 S. Euclid Ave, Campus Box 8118, St. Louis, MO 63110, USA.
| |
Collapse
|
5
|
Bickel F, Griaud F, Kern W, Kroener F, Gritsch M, Dayer J, Barteau S, Denefeld B, Kao-Scharf CY, Lang M, Slupska-Muanza I, Schmidt C, Berg M, Sigg J, Boado L, Chelius D. Restoring the biological activity of crizanlizumab at physiological conditions through a pH-dependent aspartic acid isomerization reaction. MAbs 2023; 15:2151075. [PMID: 36519228 PMCID: PMC9762811 DOI: 10.1080/19420862.2022.2151075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In this study, we report the isomerization of an aspartic acid residue in the complementarity-determining region (CDR) of crizanlizumab as a major degradation pathway. The succinimide intermediate and iso-aspartic acid degradation products were successfully isolated by ion exchange chromatography for characterization. The isomerization site was identified at a DG motif in the CDR by peptide mapping. The biological characterization of the isolated variants showed that the succinimide variant exhibited a loss in target binding and biological activity compared to the aspartic acid and iso-aspartic acid variants of the molecule. The influence of pH on this isomerization reaction was investigated using capillary zone electrophoresis. Below pH 6.3, the succinimide formation was predominant, whereas at pH values above 6.3, iso-aspartic acid was formed and the initial amounts of succinimide dropped to levels even lower than those observed in the starting material. Importantly, while the succinimide accumulated at long-term storage conditions of 2 to 8°C at pH values below 6.3, a complete hydrolysis of succinimide was observed at physiological conditions (pH 7.4, 37°C), resulting in full recovery of the biological activity. In this study, we demonstrate that the critical quality attribute succinimide with reduced potency has little or no impact on the efficacy of crizanlizumab due to the full recovery of the biological activity within a few hours under physiological conditions.
Collapse
Affiliation(s)
- Fabian Bickel
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - François Griaud
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Wolfram Kern
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Frieder Kroener
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Manuela Gritsch
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Jérôme Dayer
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Samuel Barteau
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Blandine Denefeld
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Chi-Ya Kao-Scharf
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Manuel Lang
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Izabela Slupska-Muanza
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Carla Schmidt
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Matthias Berg
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Jürgen Sigg
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Lina Boado
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| | - Dirk Chelius
- Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland,CONTACT Dirk Chelius Analytical Development, Technical Research and Development Biologics, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
6
|
Pittalà MGG, Reina S, Nibali SC, Cucina A, Cubisino SAM, Cunsolo V, Amodeo GF, Foti S, De Pinto V, Saletti R, Messina A. Specific Post-Translational Modifications of VDAC3 in ALS-SOD1 Model Cells Identified by High-Resolution Mass Spectrometry. Int J Mol Sci 2022; 23:ijms232415853. [PMID: 36555496 PMCID: PMC9784795 DOI: 10.3390/ijms232415853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Damage induced by oxidative stress is a key driver of the selective motor neuron death in amyotrophic lateral sclerosis (ALS). Mitochondria are among the main producers of ROS, but they also suffer particularly from their harmful effects. Voltage-dependent anion-selective channels (VDACs) are the most represented proteins of the outer mitochondrial membrane where they form pores controlling the permeation of metabolites responsible for mitochondrial functions. For these reasons, VDACs contribute to mitochondrial quality control and the entire energy metabolism of the cell. In this work we assessed in an ALS cell model whether disease-related oxidative stress induces post-translational modifications (PTMs) in VDAC3, a member of the VDAC family of outer mitochondrial membrane channel proteins, known for its role in redox signaling. At this end, protein samples enriched in VDACs were prepared from mitochondria of an ALS model cell line, NSC34 expressing human SOD1G93A, and analyzed by nUHPLC/High-Resolution nESI-MS/MS. Specific over-oxidation, deamidation, succination events were found in VDAC3 from ALS-related NSC34-SOD1G93A but not in non-ALS cell lines. Additionally, we report evidence that some PTMs may affect VDAC3 functionality. In particular, deamidation of Asn215 alone alters single channel behavior in artificial membranes. Overall, our results suggest modifications of VDAC3 that can impact its protective role against ROS, which is particularly important in the ALS context. Data are available via ProteomeXchange with identifier PXD036728.
Collapse
Affiliation(s)
- Maria Gaetana Giovanna Pittalà
- Organic Mass Spectrometry Laboratory, Department of Chemical Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Simona Reina
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Stefano Conti Nibali
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Annamaria Cucina
- Organic Mass Spectrometry Laboratory, Department of Chemical Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | | | - Vincenzo Cunsolo
- Organic Mass Spectrometry Laboratory, Department of Chemical Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | | | - Salvatore Foti
- Organic Mass Spectrometry Laboratory, Department of Chemical Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Vito De Pinto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Rosaria Saletti
- Organic Mass Spectrometry Laboratory, Department of Chemical Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy
- Correspondence: ; Tel.: +39-095-738-5026
| | - Angela Messina
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| |
Collapse
|
7
|
Edwards HM, Wu HT, Julian RR, Jackson GP. Differentiating aspartic acid isomers and epimers with charge transfer dissociation mass spectrometry (CTD-MS). Analyst 2022; 147:1159-1168. [PMID: 35188507 DOI: 10.1039/d1an02279b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability to understand the function of a protein often relies on knowledge about its detailed structure. Sometimes, seemingly insignificant changes in the primary structure of a protein, like an amino acid substitution, can completely disrupt a protein's function. Long-lived proteins (LLPs), which can be found in critical areas of the human body, like the brain and eye, are especially susceptible to primary sequence alterations in the form of isomerization and epimerization. Because long-lived proteins do not have the corrective regeneration capabilities of most other proteins, points of isomerism and epimerization that accumulate within the proteins can severely hamper their functions and can lead to serious diseases like Alzheimer's disease, cancer and cataracts. Whereas tandem mass spectrometry (MS/MS) in the form of collision-induced dissociation (CID) generally excels at peptide characterization, MS/MS often struggles to pinpoint modifications within LLPs, especially when the differences are only isomeric or epimeric in nature. One of the most prevalent and difficult-to-identify modifications is that of aspartic acid between its four isomeric forms: L-Asp, L-isoAsp, D-Asp, and D-isoAsp. In this study, peptides containing isomers of Asp were analyzed by charge transfer dissociation (CTD) mass spectrometry to identify spectral features that could discriminate between the different isomers. For the four isomers of Asp in three model peptides, CTD produced diagnostic ions of the form cn+57 on the N-terminal side of iso-Asp residues, but not on the N-terminal side of Asp residues. Using CTD, the L- and D forms of Asp and isoAsp could also be differentiated based on the relative abundance of y- and z ions on the C-terminal side of Asp residues. Differentiation was accomplished through a chiral discrimination factor, R, which compares an ion ratio in a spectrum of one epimer or isomer to the same ion ratio in the spectrum of a different epimer or isomer. The R values obtained using CTD are as robust and statistically significant as other fragmentation techniques, like radical directed dissociation (RDD). In summary, the extent of backbone and side-chain fragments produced by CTD enabled the differentiation of isomers and epimers of Asp in a variety of peptides.
Collapse
Affiliation(s)
- Halle M Edwards
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA.
| | - Hoi-Ting Wu
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Ryan R Julian
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Glen P Jackson
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA. .,Department of Forensic and Investigative Science, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
8
|
Lebedev AT, Vasileva ID, Samgina TY. FT-MS in the de novo top-down sequencing of natural nontryptic peptides. MASS SPECTROMETRY REVIEWS 2022; 41:284-313. [PMID: 33347655 DOI: 10.1002/mas.21678] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
The present review covers available results on the application of FT-MS for the de novo sequencing of natural peptides of various animals: cones, bees, snakes, amphibians, scorpions, and so forth. As these peptides are usually bioactive, the animals efficiently use them as a weapon against microorganisms or higher animals including predators. These peptides represent definite interest as drugs of future generations since the mechanism of their activity is completely different in comparison with that of the modern antibiotics. Utilization of those peptides as antibiotics can eliminate the problem of the bacterial resistance development. Sequence elucidation of these bioactive peptides becomes even more challenging when the species genome is not available and little is known about the protein origin and other properties of those peptides in the study. De novo sequencing may be the only option to obtain sequence information. The benefits of FT-MS for the top-down peptide sequencing, the general approaches of the de novxxo sequencing, the difficult cases involving sequence coverage, isobaric and isomeric amino acids, cyclization of short peptides, the presence of posttranslational modifications will be discussed in the review.
Collapse
Affiliation(s)
- Albert T Lebedev
- Organic Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Irina D Vasileva
- Organic Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana Y Samgina
- Organic Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
9
|
Zhang J, Li Y, Liu H, Zhang J, Wang J, Xia J, Zhang Y, Yu X, Ma J, Huang M, Wang J, Wang L, Li Q, Cui R, Yang W, Xu Y, Feng W. Genome-wide CRISPR/Cas9 library screen identifies PCMT1 as a critical driver of ovarian cancer metastasis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:24. [PMID: 35033172 PMCID: PMC8760697 DOI: 10.1186/s13046-022-02242-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023]
Abstract
Background The development of lethal cancer metastasis depends on the dynamic interactions between cancer cells and the tumor microenvironment, both of which are embedded in the extracellular matrix (ECM). The acquisition of resistance to detachment-induced apoptosis, also known as anoikis, is a critical step in the metastatic cascade. Thus, a more in-depth and systematic analysis is needed to identify the key drivers of anoikis resistance. Methods Genome-wide CRISPR/Cas9 knockout screen was used to identify critical drivers of anoikis resistance using SKOV3 cell line and found protein-L-isoaspartate (D-aspartate) O-methyltransferase (PCMT1) as a candidate. Quantitative real-time PCR (qRT-PCR) and immune-histochemistry (IHC) were used to measure differentially expressed PCMT1 in primary tissues and metastatic cancer tissues. PCMT1 knockdown/knockout and overexpression were performed to investigate the functional role of PCMT1 in vitro and in vivo. The expression and regulation of PCMT1 and integrin-FAK-Src pathway were evaluated using immunoprecipitation followed by mass spectrometry (IP-MS), western blot analysis and live cell imaging. Results We found that PCMT1 enhanced cell migration, adhesion, and spheroid formation in vitro. Interestingly, PCMT1 was released from ovarian cancer cells, and interacted with the ECM protein LAMB3, which binds to integrin and activates FAK-Src signaling to promote cancer progression. Strikingly, treatment with an antibody against extracellular PCMT1 effectively reduced ovarian cancer cell invasion and adhesion. Our in vivo results indicated that overexpression of PCMT1 led to increased ascites formation and distant metastasis, whereas knockout of PCMT1 had the opposite effect. Importantly, PCMT1 was highly expressed in late-stage metastatic tumors compared to early-stage primary tumors. Conclusions Through systematically identifying the drivers of anoikis resistance, we uncovered the contribution of PCMT1 to focal adhesion (FA) dynamics as well as cancer metastasis. Our study suggested that PCMT1 has the potential to be a therapeutic target in metastatic ovarian cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02242-3.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Yun Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Jiahui Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Jie Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Jia Xia
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China
| | - Yu Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Xiang Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Jinyan Ma
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Masha Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Jiahui Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Liangzhe Wang
- Department of Pathology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Qian Li
- Center for Brain Science, Shanghai Children's Medical Center, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China
| | - Rutao Cui
- Department of Dermatology, Boston University School of Medicine, Boston, MA, USA
| | - Wen Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China. .,State Key Laboratory of Oncogenes and Related Genes, Shanghai, 200032, P.R. China.
| | - Yingjie Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China.
| | - Weiwei Feng
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China.
| |
Collapse
|
10
|
Hubbard EE, Heil LR, Merrihew GE, Chhatwal JP, Farlow MR, McLean CA, Ghetti B, Newell KL, Frosch MP, Bateman RJ, Larson EB, Keene CD, Perrin RJ, Montine TJ, MacCoss MJ, Julian RR. Does Data-Independent Acquisition Data Contain Hidden Gems? A Case Study Related to Alzheimer's Disease. J Proteome Res 2022; 21:118-131. [PMID: 34818016 PMCID: PMC8741752 DOI: 10.1021/acs.jproteome.1c00558] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the potential benefits of using data-independent acquisition (DIA) proteomics protocols is that information not originally targeted by the study may be present and discovered by subsequent analysis. Herein, we reanalyzed DIA data originally recorded for global proteomic analysis to look for isomerized peptides, which occur as a result of spontaneous chemical modifications to long-lived proteins. Examination of a large set of human brain samples revealed a striking relationship between Alzheimer's disease (AD) status and isomerization of aspartic acid in a peptide from tau. Relative to controls, a surprising increase in isomer abundance was found in both autosomal dominant and sporadic AD samples. To explore potential mechanisms that might account for these observations, quantitative analysis of proteins related to isomerization repair and autophagy was performed. Differences consistent with reduced autophagic flux in AD-related samples relative to controls were found for numerous proteins, including most notably p62, a recognized indicator of autophagic inhibition. These results suggest, but do not conclusively demonstrate, that lower autophagic flux may be strongly associated with loss of function in AD brains. This study illustrates that DIA data may contain unforeseen results of interest and may be particularly useful for pilot studies investigating new research directions. In this case, a promising target for future investigations into the therapy and prevention of AD has been identified.
Collapse
Affiliation(s)
- Evan E. Hubbard
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Lilian R. Heil
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, United States
| | - Gennifer E. Merrihew
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, United States
| | - Jasmeer P. Chhatwal
- Harvard Medical School, Massachusetts General Hospital, Department of Neurology, 15 Parkman St, Suite 835, Boston MA 02114
| | - Martin R. Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | | | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Kathy L. Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Matthew P. Frosch
- C.S. Kubik Laboratory for Neuropathology, and Massachusetts Alzheimer Disease Research Center, Massachusetts General Hospital, Boston, MA 02114
| | - Randall J. Bateman
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8111, St. Louis, 63110, Missouri, USA
| | - Eric B. Larson
- Kaiser Permanente Washington Health Research Institute and Department of Medicine, University of Washington, Seattle WA
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, 98195, United States
| | - Richard J. Perrin
- Department of Pathology and Immunology, Department of Neurology, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Thomas J. Montine
- Department of Pathology, Stanford University, Stanford, CA, 94305, United States
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, 98195, United States
| | - Ryan R. Julian
- Department of Chemistry, University of California, Riverside, California 92521, United States,corresponding author:
| |
Collapse
|
11
|
Boudier-Lemosquet A, Mahler A, Bobo C, Dufossée M, Priault M. Introducing protein deamidation: Landmark discoveries, societal outreach, and tentative priming workflow to address deamidation. Methods 2021; 200:3-14. [PMID: 34843979 DOI: 10.1016/j.ymeth.2021.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/17/2022] Open
Abstract
Our current knowledge on protein deamidation results from a journey that started almost 100 years ago, when a handful of researchers first described the non-enzymatic "desamidation" of glutamine, and the effect of different anions on the catalytic rate of the reaction. Since then, the field has tremendously expended and now finds outreach in very diverse areas. In light of all the recent articles published in these areas, it seemed timely to propose an integrated review on the subject, including a short historical overview of the landmark discoveries in the field, highlighting the current global positioning of protein deamidation in biology and non-biology fields, and concluding with a workflow for those asking if a protein can deamidate, and identify the residues involved. This review is essentially intended to provide newcomers in the field with an overview of how deamidation has penetrated our society and what tools are currently at hand to identify and quantify protein deamidation.
Collapse
Affiliation(s)
| | - Adrien Mahler
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Claude Bobo
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Mélody Dufossée
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Muriel Priault
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France.
| |
Collapse
|
12
|
Wang J, Lundström SL, Seelow S, Rodin S, Meng Z, Astorga-Wells J, Jia Q, Zubarev RA. First Immunoassay for Measuring Isoaspartate in Human Serum Albumin. Molecules 2021; 26:molecules26216709. [PMID: 34771115 PMCID: PMC8587401 DOI: 10.3390/molecules26216709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 01/01/2023] Open
Abstract
Isoaspartate (isoAsp) is a damaging amino acid residue formed in proteins mostly as a result of spontaneous deamidation of asparaginyl residues. An association has been found between isoAsp in human serum albumin (HSA) and Alzheimer’s disease (AD). Here we report on a novel monoclonal antibody (mAb) 1A3 with excellent specificity to isoAsp in the functionally important domain of HSA. Based on 1A3 mAb, an indirect enzyme-linked immunosorbent assay (ELISA) was developed, and the isoAsp occupancy in 100 healthy plasma samples was quantified for the first time, providing the average value of (0.74 ± 0.13)%. These results suggest potential of isoAsp measurements for supplementary AD diagnostics as well as for assessing the freshness of stored donor blood and its suitability for transfusion.
Collapse
Affiliation(s)
- Jijing Wang
- Department of Medical Biophysics and Biochemistry, Karolinska Institute, 171 77 Stockholm, Sweden; (J.W.); (S.L.L.); (S.S.); (S.R.); (Z.M.); (J.A.-W.); (Q.J.)
| | - Susanna L. Lundström
- Department of Medical Biophysics and Biochemistry, Karolinska Institute, 171 77 Stockholm, Sweden; (J.W.); (S.L.L.); (S.S.); (S.R.); (Z.M.); (J.A.-W.); (Q.J.)
| | - Sven Seelow
- Department of Medical Biophysics and Biochemistry, Karolinska Institute, 171 77 Stockholm, Sweden; (J.W.); (S.L.L.); (S.S.); (S.R.); (Z.M.); (J.A.-W.); (Q.J.)
| | - Sergey Rodin
- Department of Medical Biophysics and Biochemistry, Karolinska Institute, 171 77 Stockholm, Sweden; (J.W.); (S.L.L.); (S.S.); (S.R.); (Z.M.); (J.A.-W.); (Q.J.)
- Department of Surgical Sciences, Uppsala University, 752 36 Uppsala, Sweden
- Endocrinology Research Centre, 115478 Moscow, Russia
| | - Zhaowei Meng
- Department of Medical Biophysics and Biochemistry, Karolinska Institute, 171 77 Stockholm, Sweden; (J.W.); (S.L.L.); (S.S.); (S.R.); (Z.M.); (J.A.-W.); (Q.J.)
| | - Juan Astorga-Wells
- Department of Medical Biophysics and Biochemistry, Karolinska Institute, 171 77 Stockholm, Sweden; (J.W.); (S.L.L.); (S.S.); (S.R.); (Z.M.); (J.A.-W.); (Q.J.)
- HDXperts AB, 183 48 Danderyd, Sweden
| | - Qinyu Jia
- Department of Medical Biophysics and Biochemistry, Karolinska Institute, 171 77 Stockholm, Sweden; (J.W.); (S.L.L.); (S.S.); (S.R.); (Z.M.); (J.A.-W.); (Q.J.)
- HDXperts AB, 183 48 Danderyd, Sweden
| | - Roman A. Zubarev
- Department of Medical Biophysics and Biochemistry, Karolinska Institute, 171 77 Stockholm, Sweden; (J.W.); (S.L.L.); (S.S.); (S.R.); (Z.M.); (J.A.-W.); (Q.J.)
- Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
- The National Medical Research Center for Endocrinology, 115478 Moscow, Russia
- Correspondence:
| |
Collapse
|
13
|
Magami K, Hachiya N, Morikawa K, Fujii N, Takata T. Isomerization of Asp is essential for assembly of amyloid-like fibrils of αA-crystallin-derived peptide. PLoS One 2021; 16:e0250277. [PMID: 33857260 PMCID: PMC8049310 DOI: 10.1371/journal.pone.0250277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/01/2021] [Indexed: 11/22/2022] Open
Abstract
Post-translational modifications are often detected in age-related diseases associated with protein misfolding such as cataracts from aged lenses. One of the major post-translational modifications is the isomerization of aspartate residues (L-isoAsp), which could be non-enzymatically and spontaneously occurring in proteins, resulting in various effects on the structure and function of proteins including short peptides. We have reported that the structure and function of an αA66–80 peptide, corresponding to the 66–80 (66SDRDKFVIFLDVKHF80) fragment of human lens αA-crystallin, was dramatically altered by the isomerization of aspartate residue (Asp) at position 76. In the current study, we observed amyloid-like fibrils of L-isoAsp containing αA66–80 using electron microscopy. The contribution of each amino acid for the peptide structure was further evaluated by circular dichroism (CD), bis-ANS, and thioflavin T fluorescence using 14 alanine substituents of αA66–80, including L-isoAsp at position 76. CD of 14 alanine substituents demonstrated random coiled structures except for the substituents of positively charged residues. Bis-ANS fluorescence of peptide with substitution of hydrophobic residue with alanine revealed decreased hydrophobicity of the peptide. Thioflavin T fluorescence also showed that the hydrophobicity around Asp76 of the peptide is important for the formation of amyloid-like fibrils. One of the substitutes, H79A (SDRDKFVIFL(L-isoD)VKAF) demonstrated an exact β-sheet structure in CD and highly increased Thioflavin T fluorescence. This phenomenon was inhibited by the addition of protein-L-isoaspartate O-methyltransferase (PIMT), which is an enzyme that changes L-isoAsp into Asp. These interactions were observed even after the formation of amyloid-like fibrils. Thus, isomerization of Asp in peptide is key to form fibrils of αA-crystallin-derived peptide, and L-isoAsp on fibrils can be a candidate for disassembling amyloid-like fibrils of αA-crystallin-derived peptides.
Collapse
Affiliation(s)
- Kosuke Magami
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Naomi Hachiya
- Tokyo Metropolitan Industrial Technology Research Institute, Aomi, Koto-ku, Tokyo, Japan
| | - Kazuo Morikawa
- Tokyo Metropolitan Industrial Technology Research Institute, Aomi, Koto-ku, Tokyo, Japan
| | - Noriko Fujii
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, Japan
| | - Takumi Takata
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, Japan
- * E-mail:
| |
Collapse
|
14
|
Mukherjee S, Perez KA, Lago LC, Klatt S, McLean CA, Birchall IE, Barnham KJ, Masters CL, Roberts BR. Quantification of N-terminal amyloid-β isoforms reveals isomers are the most abundant form of the amyloid-β peptide in sporadic Alzheimer's disease. Brain Commun 2021; 3:fcab028. [PMID: 33928245 PMCID: PMC8062259 DOI: 10.1093/braincomms/fcab028] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 12/30/2022] Open
Abstract
Plaques that characterize Alzheimer's disease accumulate over 20 years as a result of decreased clearance of amyloid-β peptides. Such long-lived peptides are subjected to multiple post-translational modifications, in particular isomerization. Using liquid chromatography ion mobility separations mass spectrometry, we characterized the most common isomerized amyloid-β peptides present in the temporal cortex of sporadic Alzheimer's disease brains. Quantitative assessment of amyloid-β N-terminus revealed that > 80% of aspartates (Asp-1 and Asp-7) in the N-terminus was isomerized, making isomerization the most dominant post-translational modification of amyloid-β in Alzheimer's disease brain. Total amyloid-β1-15 was ∼85% isomerized at Asp-1 and/or Asp-7 residues, with only 15% unmodified amyloid-β1-15 left in Alzheimer's disease. While amyloid-β4-15 the next most abundant N-terminus found in Alzheimer's disease brain, was only ∼50% isomerized at Asp-7 in Alzheimer's disease. Further investigations into different biochemically defined amyloid-β-pools indicated a distinct pattern of accumulation of extensively isomerized amyloid-β in the insoluble fibrillar plaque and membrane-associated pools, while the extent of isomerization was lower in peripheral membrane/vesicular and soluble pools. This pattern correlated with the accumulation of aggregation-prone amyloid-β42 in Alzheimer's disease brains. Isomerization significantly alters the structure of the amyloid-β peptide, which not only has implications for its degradation, but also for oligomer assembly, and the binding of therapeutic antibodies that directly target the N-terminus, where these modifications are located.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Keyla A Perez
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Larissa C Lago
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Stephan Klatt
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Catriona A McLean
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Anatomical Pathology, Alfred Hospital, Prahran, VIC 3004, Australia
| | - Ian E Birchall
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kevin J Barnham
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Colin L Masters
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Blaine R Roberts
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
15
|
Boles GC, Kempkes LJM, Martens J, Berden G, Oomens J, Armentrout PB. Influence of a Hydroxyl Group on the Deamidation and Dehydration Reactions of Protonated Asparagine-Serine Investigated by Combined Spectroscopic, Guided Ion Beam, and Theoretical Approaches. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:786-805. [PMID: 33570934 DOI: 10.1021/jasms.0c00468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Deamidation of asparaginyl (Asn) peptides is a spontaneous post-translational modification that plays a significant role in degenerative diseases and other biological processes under physiological conditions. In the gas phase, deamidation of protonated peptides is a major fragmentation channel upon activation by collision-induced dissociation. Here, we present a full description of the deamidation process from protonated asparagine-serine, [AsnSer+H]+, via infrared (IR) action spectroscopy and threshold collision-induced dissociation (TCID) experiments in combination with theoretical calculations. The IR results demonstrate that deamidation proceeds via bifurcating reaction pathways leading to furanone- and succinimide-type product ion structures, with a population analysis indicating the latter product dominates. Theory demonstrates that nucleophilic attack of the peptidyl amide oxygen onto the Asn side chain leads to furanone formation, whereas nucleophilic attack by the peptidyl amide nitrogen onto the Asn side-chain carbonyl carbon leads to the formation of the succinimide product structure. TCID experiments find that furanone formation has a threshold energy of 145 ± 12 kJ/mol and succinimide formation occurs with a threshold energy of 131 ± 12 kJ/mol, consistent with theoretical energies and with the spectroscopic results indicating that succinimide dominates. The results provide information regarding the inductive and steric effects of the Ser side chain on the deamidation process. The other major channel observed in the TCID experiments of [AsnSer+H]+ is dehydration, where a threshold energy of 104 ± 10 kJ/mol is determined. A complete IR and theoretical analysis of this pathway is also provided. As for deamidation, a bifurcating pathway is found with both dominant oxazoline and minor diketopiperazine products identified. Here, the Ser side chain is directly involved in both pathways.
Collapse
Affiliation(s)
- Georgia C Boles
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Lisanne J M Kempkes
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jonathan Martens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Giel Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jos Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - P B Armentrout
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
16
|
Kuang J, Tao Y, Song Y, Chemmalil L, Mussa N, Ding J, Li ZJ. Understanding the pathway and kinetics of aspartic acid isomerization in peptide mapping methods for monoclonal antibodies. Anal Bioanal Chem 2021; 413:2113-2123. [PMID: 33543314 DOI: 10.1007/s00216-021-03176-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/28/2020] [Accepted: 01/13/2021] [Indexed: 11/26/2022]
Abstract
Isomerization of aspartic acid (Asp) in therapeutic proteins could lead to safety and efficacy concerns. Thus, accurate quantitation of various Asp isomerization along with kinetic understanding of the variant formations is needed to ensure optimal process development and sufficient product quality control. In this study, we first observed Asp-succinimide conversion in complementarity-determining regions (CDRs) Asp-Gly motif of a recombinant mAb through ion exchange chromatography, intact protein analysis by mass spectrometry, and LC-MS/MS. Then, we developed a specific peptide mapping method, with optimized sample digestion conditions, to accurately quantitate Asp-succinimide-isoAsp variants at peptide level without method-induced isomerization. Various kinetics of Asp-succinimide-isoAsp isomerization pathways were elucidated using 18O labeling followed by LC-MS analysis. Molecular modeling and molecular dynamic simulation provide additional insight on the kinetics of Asp-succinimide formation and stability of succinimide intermediate. Findings of this work shed light on the molecular construct and the kinetics of the formation of isoAsp and succinimide in peptides and proteins, which facilitates analytical method development, protein engineering, and late phase development for commercialization of therapeutic proteins.
Collapse
Affiliation(s)
- June Kuang
- Biologics Development Organization, Bristol-Myers Squibb Company, Devens, MA, 01434, USA
| | - Yuanqi Tao
- Biologics Development Organization, Bristol-Myers Squibb Company, Devens, MA, 01434, USA
- Analytical Science Biologics, Takeda Pharmaceutical Company, Lexington, MA, 02421, USA
| | - Yuanli Song
- Biologics Development Organization, Bristol-Myers Squibb Company, Devens, MA, 01434, USA
- Process Development & Manufacture Operations, GSK, MA, 02451, Waltham, USA
| | - Letha Chemmalil
- Biologics Development Organization, Bristol-Myers Squibb Company, Devens, MA, 01434, USA
| | - Nesredin Mussa
- Biologics Development Organization, Bristol-Myers Squibb Company, Devens, MA, 01434, USA
- Ultragenyx, CA, 94005, Brisbane, USA
| | - Julia Ding
- Biologics Development Organization, Bristol-Myers Squibb Company, Devens, MA, 01434, USA.
| | - Zheng Jian Li
- Biologics Development Organization, Bristol-Myers Squibb Company, Devens, MA, 01434, USA
| |
Collapse
|
17
|
La JW, Dhanasingh I, Jang H, Lee SH, Lee DW. Functional Characterization of Primordial Protein Repair Enzyme M38 Metallo-Peptidase From Fervidobacterium islandicum AW-1. Front Mol Biosci 2021; 7:600634. [PMID: 33392259 PMCID: PMC7774594 DOI: 10.3389/fmolb.2020.600634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/25/2020] [Indexed: 12/02/2022] Open
Abstract
The NA23_RS08100 gene of Fervidobacterium islandicum AW-1 encodes a keratin-degrading β-aspartyl peptidase (FiBAP) that is highly expressed under starvation conditions. Herein, we expressed the gene in Escherichia coli, purified the recombinant enzyme to homogeneity, and investigated its function. The 318 kDa recombinant FiBAP enzyme exhibited maximal activity at 80°C and pH 7.0 in the presence of Zn2+. Size-exclusion chromatography revealed that the native enzyme is an octamer comprising a tetramer of dimers; this was further supported by determination of its crystal structure at 2.6 Å resolution. Consistently, the structure of FiBAP revealed three additional salt bridges in each dimer, involving 12 ionic interactions that might contribute to its high thermostability. In addition, the co-crystal structure containing the substrate analog N-carbobenzoxy-β-Asp-Leu at 2.7 Å resolution revealed binuclear Zn2+-mediated substrate binding, suggesting that FiBAP is a hyperthermophilic type-I IadA, in accordance with sequence-based phylogenetic analysis. Indeed, complementation of a Leu auxotrophic E. coli mutant strain (ΔiadA and ΔleuB) with FiBAP enabled the mutant strain to grow on isoAsp-Leu peptides. Remarkably, LC-MS/MS analysis of soluble keratin hydrolysates revealed that FiBAP not only cleaves the C-terminus of isoAsp residues but also has a relatively broad substrate specificity toward α-peptide bonds. Moreover, heat shock-induced protein aggregates retarded bacterial growth, but expression of BAP alleviated the growth defect by degrading damaged proteins. Taken together, these results suggest that the viability of hyperthermophiles under stressful conditions may rely on the activity of BAP within cellular protein repair systems.
Collapse
Affiliation(s)
- Jae Won La
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Immanuel Dhanasingh
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, South Korea
| | - Hyeonha Jang
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Sung Haeng Lee
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, South Korea
| | - Dong-Woo Lee
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| |
Collapse
|
18
|
Hinterholzer A, Stanojlovic V, Regl C, Huber CG, Cabrele C, Schubert M. Detecting aspartate isomerization and backbone cleavage after aspartate in intact proteins by NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2021; 75:71-82. [PMID: 33475951 PMCID: PMC7897204 DOI: 10.1007/s10858-020-00356-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/23/2020] [Indexed: 05/14/2023]
Abstract
The monitoring of non-enzymatic post-translational modifications (PTMs) in therapeutic proteins is important to ensure drug safety and efficacy. Together with methionine and asparagine, aspartic acid (Asp) is very sensitive to spontaneous alterations. In particular, Asp residues can undergo isomerization and peptide-bond hydrolysis, especially when embedded in sequence motifs that are prone to succinimide formation or when followed by proline (Pro). As Asp and isoAsp have the same mass, and the Asp-Pro peptide-bond cleavage may lead to an unspecific mass difference of + 18 Da under native conditions or in the case of disulfide-bridged cleavage products, it is challenging to directly detect and characterize such modifications by mass spectrometry (MS). Here we propose a 2D NMR-based approach for the unambiguous identification of isoAsp and the products of Asp-Pro peptide-bond cleavage, namely N-terminal Pro and C-terminal Asp, and demonstrate its applicability to proteins including a therapeutic monoclonal antibody (mAb). To choose the ideal pH conditions under which the NMR signals of isoAsp and C-terminal Asp are distinct from other random coil signals, we determined the pKa values of isoAsp and C-terminal Asp in short peptides. The characteristic 1H-13C chemical shift correlations of isoAsp, N-terminal Pro and C-terminal Asp under standardized conditions were used to identify these PTMs in lysozyme and in the therapeutic mAb rituximab (MabThera) upon prolonged storage under acidic conditions (pH 4-5) and 40 °C. The results show that the application of our 2D NMR-based protocol is straightforward and allows detecting chemical changes of proteins that may be otherwise unnoticed with other analytical methods.
Collapse
Affiliation(s)
- Arthur Hinterholzer
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Vesna Stanojlovic
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Christof Regl
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
- Department of Biosciences, Division of Chemistry and Bioanalytics, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| | - Christian G Huber
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
- Department of Biosciences, Division of Chemistry and Bioanalytics, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| | - Chiara Cabrele
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Mario Schubert
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria.
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria.
| |
Collapse
|
19
|
Drake JL, Whitelegge JP, Jacobs DK. First sequencing of ancient coral skeletal proteins. Sci Rep 2020; 10:19407. [PMID: 33173075 PMCID: PMC7655939 DOI: 10.1038/s41598-020-75846-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Here we report the first recovery, sequencing, and identification of fossil biomineral proteins from a Pleistocene fossil invertebrate, the stony coral Orbicella annularis. This fossil retains total hydrolysable amino acids of a roughly similar composition to extracts from modern O. annularis skeletons, with the amino acid data rich in Asx (Asp + Asn) and Glx (Glu + Gln) typical of invertebrate skeletal proteins. It also retains several proteins, including a highly acidic protein, also known from modern coral skeletal proteomes that we sequenced by LC-MS/MS over multiple trials in the best-preserved fossil coral specimen. A combination of degradation or amino acid racemization inhibition of trypsin digestion appears to limit greater recovery. Nevertheless, our workflow determines optimal samples for effective sequencing of fossil coral proteins, allowing comparison of modern and fossil invertebrate protein sequences, and will likely lead to further improvements of the methods. Sequencing of endogenous organic molecules in fossil invertebrate biominerals provides an ancient record of composition, potentially clarifying evolutionary changes and biotic responses to paleoenvironments.
Collapse
Affiliation(s)
- Jeana L Drake
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA.
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, USA.
- Department of Marine Biology, University of Haifa, Haifa, Israel.
| | | | - David K Jacobs
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA.
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, USA.
| |
Collapse
|
20
|
Mass spectrometric analysis of protein deamidation – A focus on top-down and middle-down mass spectrometry. Methods 2020; 200:58-66. [DOI: 10.1016/j.ymeth.2020.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/16/2020] [Accepted: 08/06/2020] [Indexed: 11/22/2022] Open
|
21
|
Ying Y, Li H. Recent progress in the analysis of protein deamidation using mass spectrometry. Methods 2020; 200:42-57. [PMID: 32544593 DOI: 10.1016/j.ymeth.2020.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/15/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Deamidation is a nonenzymatic and spontaneous posttranslational modification (PTM) that introduces changes in both structure and charge of proteins, strongly associated with aging proteome instability and degenerative diseases. Deamidation is also a common PTM occurring in biopharmaceutical proteins, representing a major cause of degradation. Therefore, characterization of deamidation alongside its inter-related modifications, isomerization and racemization, is critically important to understand their roles in protein stability and diseases. Mass spectrometry (MS) has become an indispensable tool in site-specific identification of PTMs for proteomics and structural studies. In this review, we focus on the recent advances of MS analysis in protein deamidation. In particular, we provide an update on sample preparation, chromatographic separation, and MS technologies at multi-level scales, for accurate and reliable characterization of protein deamidation in both simple and complex biological samples, yielding important new insight on how deamidation together with isomerization and racemization occurs. These technological progresses will lead to a better understanding of how deamidation contributes to the pathology of aging and other degenerative diseases and the development of biopharmaceutical drugs.
Collapse
Affiliation(s)
- Yujia Ying
- School of Pharmaceutical Sciences, University of Sun Yat-sen University, No.132 Wai Huan Dong Lu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Huilin Li
- School of Pharmaceutical Sciences, University of Sun Yat-sen University, No.132 Wai Huan Dong Lu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
22
|
Sze SK, JebaMercy G, Ngan SC. Profiling the 'deamidome' of complex biosamples using mixed-mode chromatography-coupled tandem mass spectrometry. Methods 2020; 200:31-41. [PMID: 32418626 DOI: 10.1016/j.ymeth.2020.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 04/26/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Deamidation is a spontaneous degenerative protein modification (DPM) that disrupts the structure and function of both endogenous proteins and various therapeutic agents. While deamidation has long been recognized as a critical event in human aging and multiple degenerative diseases, research progress in this field has been restricted by the technical challenges associated with studying this DPM in complex biological samples. Asparagine (Asn) deamidation generates L-aspartic acid (L-Asp), D-aspartic acid (D-Asp), L-isoaspartic acid (L-isoAsp) or D-isoaspartic acid (D-isoAsp) residues at the same position of Asn in the affected protein, but each of these amino acids displays similar hydrophobicity and cannot be effectively separated by reverse phase liquid chromatography. The Asp and isoAsp isoforms are also difficult to resolve using mass spectrometry since they have the same mass and fragmentation pattern in MS/MS. Moreover, the 13C peaks of the amidated peptide are often misassigned as monoisotopic peaks of the corresponding deamidated peptides in protein database searches. Furthermore, typical protein isolation and proteomic sample preparation methods induce artificial deamidation that cannot be distinguished from the physiological forms. To better understand the role of deamidation in biological aging and degenerative pathologies, new technologies are now being developed to address these analytical challenges, including mixed mode electrostatic-interaction modified hydrophilic interaction liquid chromatography (emHILIC). When coupled to high resolution, high accuracy tandem mass spectrometry this technology enables unprecedented, proteome-wide study of the 'deamidome' of complex samples. The current article therefore reviews recent advances in sample preparation methods, emHILIC-MS/MS technology, and MS instrumentation / data processing approaches to achieving accurate and reliable characterization of protein deamidation in complex biological and clinical samples.
Collapse
Affiliation(s)
- Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Gnanasekaran JebaMercy
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - SoFong Cam Ngan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
23
|
Du S, Readel ER, Wey M, Armstrong DW. Complete identification of all 20 relevant epimeric peptides in β-amyloid: a new HPLC-MS based analytical strategy for Alzheimer's research. Chem Commun (Camb) 2020; 56:1537-1540. [PMID: 31922154 DOI: 10.1039/c9cc09080k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although the underlying cause of Alzheimer's disease (AD) is not known, the extracellular deposition of β-amyloid (Aβ) is considered as a hallmark of AD brains. Evidence has shown the occurrence of d-Asp, isoAsp, and d-Ser residues in Aβ, which may be indicative of and/or contribute to the neurodegeneration in AD patients. Herein, we have developed the first high-throughput profiling technique for all 20 isobaric Aβ peptide epimers containing Asp, isoAsp, and Ser isomers using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). This new analytical strategy allows the direct detection and identification of all possible Asp, isoAsp, and Ser stereoisomers in Aβ, and may contribute to a better understanding of the pathogenesis of AD.
Collapse
Affiliation(s)
- Siqi Du
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA.
| | | | | | | |
Collapse
|
24
|
Meltretter J, Wüst J, Dittrich D, Lach J, Ludwig J, Eichler J, Pischetsrieder M. Untargeted Proteomics-Based Profiling for the Identification of Novel Processing-Induced Protein Modifications in Milk. J Proteome Res 2020; 19:805-818. [PMID: 31902209 DOI: 10.1021/acs.jproteome.9b00630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonenzymatic post-translational protein modifications (nePTMs) affect the nutritional, physiological, and technological properties of proteins in food and in vivo. In contrast to the usual targeted analyses, the present study determined nePTMs in processed milk in a truly untargeted proteomic approach. Thus, it was possible to determine to which extent known nePTM structures explain protein modifications in processed milk and to detect and identify novel products. The method combined ultrahigh-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry with bioinformatic data analysis by the software XCMS. The nePTMs detected by untargeted profiling of a β-lactoglobulin-lactose model were incorporated in a sensitive scheduled multiple reaction monitoring method to analyze these modifications in milk samples and to monitor their reaction kinetics during thermal treatment. Additionally, we identified the structures of unknown modifications. Lactosylation, carboxymethylation, formylation of lysine and N-terminus, glycation of arginine, oxidation of methionine, tryptophan, and cysteine, oxidative deamination of N-terminus, and deamidation of asparagine and glutamine were the most important reactions of β-lactoglobulin during milk processing. The isomerization of aspartic acid was observed for the first time in milk products, and N-terminal 4-imidazolidinone was identified as a novel nePTM.
Collapse
Affiliation(s)
- Jasmin Meltretter
- Department of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Nikolaus-Fiebiger-Str. 10 , 91058 Erlangen , Germany
| | - Johannes Wüst
- Department of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Nikolaus-Fiebiger-Str. 10 , 91058 Erlangen , Germany
| | - Daniel Dittrich
- Department of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Nikolaus-Fiebiger-Str. 10 , 91058 Erlangen , Germany
| | - Johannes Lach
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Nikolaus-Fiebiger-Str. 10 , 91058 Erlangen , Germany
| | - Jonas Ludwig
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Nikolaus-Fiebiger-Str. 10 , 91058 Erlangen , Germany
| | - Jutta Eichler
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Nikolaus-Fiebiger-Str. 10 , 91058 Erlangen , Germany
| | - Monika Pischetsrieder
- Department of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Nikolaus-Fiebiger-Str. 10 , 91058 Erlangen , Germany
| |
Collapse
|
25
|
Ivleva VB, Cooper JW, Arnold FJ, Lei QP. Overcoming Challenges in Structural Characterization of HIV-1 Envelope Glycoprotein by LC-MS/MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1663-1678. [PMID: 31111416 PMCID: PMC7476438 DOI: 10.1007/s13361-019-02225-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 05/30/2023]
Abstract
Characterization of HIV Env glycoprotein with 28 glycosylation sites is the essential step of structure-based vaccine design programs. A comprehensive LC-MS/MS peptide mapping analysis was applied to assess the primary sequence, glycosylation profiles, and glycosite occupancy of Env to ensure the adequate mimicking of the native immunogen. Another structural feature was reported, related to its cleaved subunits within the trimeric assembly. We bring attention to the importance of thorough inspection of the results generated by the informatics tools which are currently available for the biopharmaceutical characterization. The complexity of Env translates into a vast amount of data with occasional information gaps that could not possibly be filled by means of the automatic data analysis. A series of data validation steps was applied, followed by the illustrations on how the high-quality results may be misinterpreted. It was shown that the glycan sites can only be characterized to a certain limit, and that any claim of full structural characterization of this molecule beyond these limits should be treated with caution. Following the result verification, the percent glycan occupancy was reported for 25 N-glycan sites, including 3 critical antibody-recognition sites. The exact glycan profiles were provided for 20 individual sites, whereas only the glycosylation type could be deduced for 5 sites, dictated by their location within Env sequence. The distribution of the unprocessed high mannose-type glycans correlated with the expected "mannose patch." Experimental procedure optimization and a workflow for glycan characterization with a focus on stringent data testing are presented in the current study.
Collapse
Affiliation(s)
- Vera B Ivleva
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Jonathan W Cooper
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Frank J Arnold
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Q Paula Lei
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA.
| |
Collapse
|
26
|
Nagy G, Kedia K, Attah IK, Garimella SVB, Ibrahim YM, Petyuk VA, Smith RD. Separation of β-Amyloid Tryptic Peptide Species with Isomerized and Racemized l-Aspartic Residues with Ion Mobility in Structures for Lossless Ion Manipulations. Anal Chem 2019; 91:4374-4380. [PMID: 30816701 PMCID: PMC6596305 DOI: 10.1021/acs.analchem.8b04696] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Accumulation of β-amyloid (Aβ) is one of the hallmarks of Alzheimer's disease. The deposition of β-amyloid plaques is likely to start years in advance of manifestation of clinical symptoms, although the exact timing is unknown. Over the years, Aβ peptides undergo both post-translational modification and stereoisomerization. Analysis of the resulting stereoisomers is particularly challenging because of their identical elemental composition and similar physicochemical properties. Herein, we have utilized our recently developed structures for lossless ion manipulations ion mobility-mass spectrometry platform (SLIM IM-MS), in conjunction with serpentine ultralong path with extended routing (SUPER), to baseline resolve four distinct sets of Aβ17-28 tryptic peptide epimers on a rapid (∼1 s) time scale. We discovered that sodium adduct ions, [M + H + Na]2+, allowed baseline SLIM SUPER IM resolution for all Aβ epimer sets assessed, while such baseline separations were unachievable for their [M + 2H]2+ doubly protonated ions.
Collapse
Affiliation(s)
- Gabe Nagy
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Komal Kedia
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Isaac K. Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sandilya V. B. Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yehia M. Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Vladislav A. Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
27
|
Lam YPY, Wootton CA, Hands-Portman I, Wei J, Chiu CKC, Romero-Canelon I, Lermyte F, Barrow MP, O'Connor PB. Does deamidation of islet amyloid polypeptide accelerate amyloid fibril formation? Chem Commun (Camb) 2019; 54:13853-13856. [PMID: 30474090 DOI: 10.1039/c8cc06675b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mass spectrometry has been applied to determine the deamidation sites and the aggregation region of the deamidated human islet amyloid polypeptide (hIAPP). Mutant hIAPP with iso-aspartic residue mutations at possible deamidation sites showed very different fibril formation behaviour, which correlates with the observed deamidation-induced acceleration of hIAPP aggregation.
Collapse
Affiliation(s)
- Yuko P Y Lam
- Department of Chemistry, University of Warwick, Coventry, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Łącki MK, Lermyte F, Miasojedow B, Startek MP, Sobott F, Valkenborg D, Gambin A. masstodon: A Tool for Assigning Peaks and Modeling Electron Transfer Reactions in Top-Down Mass Spectrometry. Anal Chem 2019; 91:1801-1807. [DOI: 10.1021/acs.analchem.8b01479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mateusz K. Łącki
- University Medical Center, Johannes Gutenberg University, Mainz D-55131, Germany
| | - Frederik Lermyte
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium
- Centre for Proteomics, University of Antwerp, Antwerp 2000, Belgium
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Błażej Miasojedow
- Department of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw 02-097, Poland
| | - Michał P. Startek
- Department of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw 02-097, Poland
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Dirk Valkenborg
- Centre for Proteomics, University of Antwerp, Antwerp 2000, Belgium
- Flemish Institute for Technological Research (VITO), Mol 2400, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Hasselt 3500, Belgium
| | - Anna Gambin
- Department of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw 02-097, Poland
| |
Collapse
|
29
|
Lermyte F, Valkenborg D, Loo JA, Sobott F. Radical solutions: Principles and application of electron-based dissociation in mass spectrometry-based analysis of protein structure. MASS SPECTROMETRY REVIEWS 2018; 37:750-771. [PMID: 29425406 PMCID: PMC6131092 DOI: 10.1002/mas.21560] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 05/11/2023]
Abstract
In recent years, electron capture (ECD) and electron transfer dissociation (ETD) have emerged as two of the most useful methods in mass spectrometry-based protein analysis, evidenced by a considerable and growing body of literature. In large part, the interest in these methods is due to their ability to induce backbone fragmentation with very little disruption of noncovalent interactions which allows inference of information regarding higher order structure from the observed fragmentation behavior. Here, we review the evolution of electron-based dissociation methods, and pay particular attention to their application in "native" mass spectrometry, their mechanism, determinants of fragmentation behavior, and recent developments in available instrumentation. Although we focus on the two most widely used methods-ECD and ETD-we also discuss the use of other ion/electron, ion/ion, and ion/neutral fragmentation methods, useful for interrogation of a range of classes of biomolecules in positive- and negative-ion mode, and speculate about how this exciting field might evolve in the coming years.
Collapse
Affiliation(s)
- Frederik Lermyte
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Dirk Valkenborg
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Agoralaan, Diepenbeek, Belgium
- Applied Bio and Molecular Systems, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Joseph A Loo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California
- UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, California
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
30
|
Háda V, Bagdi A, Bihari Z, Timári SB, Fizil Á, Szántay C. Recent advancements, challenges, and practical considerations in the mass spectrometry-based analytics of protein biotherapeutics: A viewpoint from the biosimilar industry. J Pharm Biomed Anal 2018; 161:214-238. [PMID: 30205300 DOI: 10.1016/j.jpba.2018.08.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 01/22/2023]
Abstract
The extensive analytical characterization of protein biotherapeutics, especially of biosimilars, is a critical part of the product development and registration. High-resolution mass spectrometry became the primary analytical tool used for the structural characterization of biotherapeutics. Its high instrumental sensitivity and methodological versatility made it possible to use this technique to characterize both the primary and higher-order structure of these proteins. However, even by using high-end instrumentation, analysts face several challenges with regard to how to cope with industrial and regulatory requirements, that is, how to obtain accurate and reliable analytical data in a time- and cost-efficient way. New sample preparation approaches, measurement techniques and data evaluation strategies are available to meet those requirements. The practical considerations of these methods are discussed in the present review article focusing on hot topics, such as reliable and efficient sequencing strategies, minimization of artefact formation during sample preparation, quantitative peptide mapping, the potential of multi-attribute methodology, the increasing role of mass spectrometry in higher-order structure characterization and the challenges of MS-based identification of host cell proteins. On the basis of the opportunities in new instrumental techniques, methodological advancements and software-driven data evaluation approaches, for the future one can envision an even wider application area for mass spectrometry in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Viktor Háda
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary.
| | - Attila Bagdi
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | - Zsolt Bihari
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | | | - Ádám Fizil
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | - Csaba Szántay
- Spectroscopic Research Department, Gedeon Richter Plc, Hungary.
| |
Collapse
|
31
|
Hao P, Adav SS, Gallart-Palau X, Sze SK. Recent advances in mass spectrometric analysis of protein deamidation. MASS SPECTROMETRY REVIEWS 2017; 36:677-692. [PMID: 26763661 DOI: 10.1002/mas.21491] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 12/28/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
Protein deamidation has been proposed to represent a "molecular clock" that progressively disrupts protein structure and function in human degenerative diseases and natural aging. Importantly, this spontaneous process can also modify therapeutic proteins by altering their purity, stability, bioactivity, and antigenicity during drug synthesis and storage. Deamidation occurs non-enzymatically in vivo, but can also take place spontaneously in vitro, hence artificial deamidation during proteomic sample preparation can hamper efforts to identify and quantify endogenous deamidation of complex proteomes. To overcome this, mass spectrometry (MS) can be used to conduct rigorous site-specific characterization of protein deamidation due to the high sensitivity, speed, and specificity offered by this technique. This article reviews recent progress in MS analysis of protein deamidation and discusses the strengths and limitations of common "top-down" and "bottom-up" approaches. Recent advances in sample preparation methods, chromatographic separation, MS technology, and data processing have for the first time enabled the accurate and reliable characterization of protein modifications in complex biological samples, yielding important new data on how deamidation occurs across the entire proteome of human cells and tissues. These technological advances will lead to a better understanding of how deamidation contributes to the pathology of biological aging and major degenerative diseases. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:677-692, 2017.
Collapse
Affiliation(s)
- Piliang Hao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Sunil S Adav
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Xavier Gallart-Palau
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| |
Collapse
|
32
|
Jansson ET. Strategies for analysis of isomeric peptides. J Sep Sci 2017; 41:385-397. [PMID: 28922569 DOI: 10.1002/jssc.201700852] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 01/09/2023]
Abstract
This review presents an overview and recent progress of strategies for detecting isomerism in peptides, with focus on d/l epimerization and the various isomers that the presence of an aspartic acid residue may yield in a protein or peptide. While mass spectrometry has become a majorly used method of choice within proteomics, isomerism is inherently difficult to analyze because it is a modification that does not yield any change in mass of the analyte. Here, several techniques used for analysis of peptide isomerism are discussed, including enzymatic assays, liquid chromatography, and capillary electrophoresis. Recent progress in method development using mass spectrometry is also discussed, including labeling strategies, fragmentation techniques, and ion-mobility spectrometry.
Collapse
Affiliation(s)
- Erik T Jansson
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
Wang H, Shu Q, Frieden C, Gross ML. Deamidation Slows Curli Amyloid-Protein Aggregation. Biochemistry 2017; 56:2865-2872. [PMID: 28497950 DOI: 10.1021/acs.biochem.7b00241] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nonenzymatic deamidation of asparagine and glutamine in peptides and proteins is a frequent modification both in vivo and in vitro. The biological effect is not completely understood, but it is often associated with protein degradation and loss of biological function. Here we describe the deamidation of CsgA, the major protein subunit of curli, which are important proteinaceous components of biofilms. CsgA has a high content of Asn and Gln, a feature seen in a few proteins that self-aggregate. We have implemented an approach to monitor deamidation rapidly by following the globally centroid mass shift, providing guidance for studies at the residue level. From the global mass measurement, we identified, using LC-MS/MS, extensive deamidation of several Asn residues and discovered three "Asn-Gly" sites to be the hottest spots for deamidation. The fibrillization of deamidated CsgA was measured using thioflavin T (ThT) fluorescence, circular dichroism (CD), and a previously reported hydrogen-deuterium exchange (HDX) platform. Deamidated proteins exhibit a longer lag phase and lower final ThT fluorescence, strongly suggesting slower and less amyloid fibril formation. CD spectra show that extensively deamidated CsgA remains unstructured and loses its ability to form amyloids. Mass-spectrometry-based HDX also shows that deamidated CsgA aggregates more slowly than wild-type CsgA. Taken together, the results show that deamidation of CsgA slows its fibrillization and disrupts its function, suggesting an opportunity to modulate CsgA fibrillization and affect curli and biofilm formation.
Collapse
Affiliation(s)
- Hanliu Wang
- Department of Chemistry, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Qin Shu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Carl Frieden
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| |
Collapse
|
34
|
Faserl K, Sarg B, Maurer V, Lindner HH. Exploiting charge differences for the analysis of challenging post-translational modifications by capillary electrophoresis-mass spectrometry. J Chromatogr A 2017; 1498:215-223. [DOI: 10.1016/j.chroma.2017.01.086] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/25/2017] [Accepted: 01/29/2017] [Indexed: 12/27/2022]
|
35
|
Young C, Podtelejnikov AV, Nielsen ML. Improved Reversed Phase Chromatography of Hydrophilic Peptides from Spatial and Temporal Changes in Column Temperature. J Proteome Res 2017; 16:2307-2317. [DOI: 10.1021/acs.jproteome.6b01055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Clifford Young
- The
Novo Nordisk Foundation Center for Protein Research, Proteomics Program,
Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | | | - Michael L. Nielsen
- The
Novo Nordisk Foundation Center for Protein Research, Proteomics Program,
Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| |
Collapse
|
36
|
Lyon YA, Sabbah GM, Julian RR. Identification of Sequence Similarities among Isomerization Hotspots in Crystallin Proteins. J Proteome Res 2017; 16:1797-1805. [PMID: 28234481 PMCID: PMC5387677 DOI: 10.1021/acs.jproteome.7b00073] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The eye lens crystallins represent
an ideal target for studying
the effects of aging on protein structure. Herein we examine separately
the water-soluble (WS) and water-insoluble (WI) crystallin fractions
and identify sites of isomerization and epimerization. Both collision-induced
dissociation and radical-directed dissociation are needed for detection
of these non-mass-shifting post-translational modifications. Isomerization
levels differ significantly between the WS and the WI fractions from
sheep, pig, and cow eye lenses. Residues that are most susceptible
to isomerization are identified site-specifically and are found to
reside in structurally disordered regions. However, isomerization
in structured domains, although less common, often yields more dramatic
effects on solubility. Numerous isomerization hotspots were also identified
and occur in regions with aspartic acid and serine repeats. For example, 128KMEIVDDDVPSLW140 in βB3
crystallin contains three sequential aspartic acid residues and is
isomerized heavily in the WI fractions, while it is not modified at
all in the WS fractions. Potential causes for enhanced isomerization
at sites with acidic residue repeats are presented. The importance
of acidic residue repeats extends beyond the lens, as they are found
in many other long-lived proteins associated with disease.
Collapse
Affiliation(s)
- Yana A Lyon
- Department of Chemistry, University of California , Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | - Georgette M Sabbah
- Department of Chemistry, University of California , Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| | - Ryan R Julian
- Department of Chemistry, University of California , Riverside, 501 Big Springs Road, Riverside, California 92521, United States
| |
Collapse
|
37
|
Qi Y, Volmer DA. Electron-based fragmentation methods in mass spectrometry: An overview. MASS SPECTROMETRY REVIEWS 2017; 36:4-15. [PMID: 26445267 DOI: 10.1002/mas.21482] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/03/2015] [Accepted: 07/03/2015] [Indexed: 05/21/2023]
Abstract
Tandem mass spectrometry (MS/MS) provides detailed information for structural characterization of biomolecules. The combination of electron capture dissociation (ECD) techniques with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) often provides unique ion-electron reactions and fragmentation channels in MS/MS. ECD is often a complimentary, sometimes even a superior tool to conventional MS/MS techniques. This article is aimed at providing a short overview of ECD-based fragmentation techniques (ExD) and optimization of ECD experiments for FTICR mass analyzers. Most importantly, it is meant to pique the interest of potential users for this exciting research field. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:4-15, 2017.
Collapse
Affiliation(s)
- Yulin Qi
- Institute of Bioanalytical Chemistry, Saarland University, Campus B2.2, Saarbrücken, 66123, Germany
| | - Dietrich A Volmer
- Institute of Bioanalytical Chemistry, Saarland University, Campus B2.2, Saarbrücken, 66123, Germany
| |
Collapse
|
38
|
DeGraan-Weber N, Zhang J, Reilly JP. Distinguishing Aspartic and Isoaspartic Acids in Peptides by Several Mass Spectrometric Fragmentation Methods. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:2041-2053. [PMID: 27613306 PMCID: PMC5748252 DOI: 10.1007/s13361-016-1487-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 05/21/2023]
Abstract
Six ion fragmentation techniques that can distinguish aspartic acid from its isomer, isoaspartic acid, were compared. MALDI post-source decay (PSD), MALDI 157 nm photodissociation, tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP) charge tagging in PSD and photodissociation, ESI collision-induced dissociation (CID), electron transfer dissociation (ETD), and free-radical initiated peptide sequencing (FRIPS) with CID were applied to peptides containing either aspartic or isoaspartic acid. Diagnostic ions, such as the y-46 and b+H2O, are present in PSD, photodissociation, and charge tagging. c•+57 and z-57 ions are observed in ETD and FRIPS experiments. For some molecules, aspartic and isoaspartic acid yield ion fragments with significantly different intensities. ETD and charge tagging appear to be most effective at distinguishing these residues. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Nick DeGraan-Weber
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Jun Zhang
- Pre-Pivotal Drug Product Technologies, Amgen Inc., Thousand Oaks, CA, 91320, USA
| | - James P Reilly
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN, 47405, USA.
| |
Collapse
|
39
|
Lin Z, Lin Z, Mu Y, Yan D. Comparison of collision-induced dissociation and electron-induced dissociation of phillyrin using FT-ICR MS. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 167:84-88. [PMID: 27258687 DOI: 10.1016/j.saa.2016.05.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 05/05/2016] [Accepted: 05/23/2016] [Indexed: 06/05/2023]
Abstract
Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry using collision-induced dissociation (CID) and electron capture dissociation (ECD) at high mass resolution was first applied to investigate the characteristic fragment ions of phillyrin. The CID experimental results demonstrated the elemental composition of fragment ions unambiguously, so a reasonable fragmentation pathway of phillyrin was proposed. The ECD fragmentation mechanism was believed to be fundamentally different from the CID method. ECD could be used not only in the biological field but also as a powerful complement to the structural identification of small molecular compounds. The characteristic fragmentation pathways were helpful in analyzing and interpreting the stability and property of the parent ion.
Collapse
Affiliation(s)
- Zhenguang Lin
- Shandong Academy of Pharmaceutical Sciences, 250001, PR China
| | - Zhiwei Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China.
| | - Yingdi Mu
- Institute for Drug Control of Jinan City, Jinan 250001, Shandong, PR China
| | - Dong Yan
- Shandong Academy of Pharmaceutical Sciences, 250001, PR China
| |
Collapse
|
40
|
Parr MK, Montacir O, Montacir H. Physicochemical characterization of biopharmaceuticals. J Pharm Biomed Anal 2016; 130:366-389. [DOI: 10.1016/j.jpba.2016.05.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/26/2022]
|
41
|
Kuznetsova KG, Trufanov PV, Moysa AA, Pyatnitskiy MA, Zgoda VG, Gorshkov MV, Moshkovskii SA. Threonine versus isothreonine in synthetic peptides analyzed by high-resolution liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:1323-1331. [PMID: 27173114 DOI: 10.1002/rcm.7566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
RATIONALE One of the problems in proteogenomic research aimed at identification of variant peptides is the presence of peptides with amino acid isomers of different origin in the analyzed samples. Among the most challenging examples are peptides with threonine and isothreonine (homoserine) in their sequences. Indeed, the latter residue may appear in vitro as a methionine substitution during sample preparation for shotgun proteome analysis. Yet, this substitution of Met to isoThr is not encoded genetically and should be unambiguously distinguished from, e.g., point mutations in proteins that result in Met conversion to Thr. METHODS In this work we compared tandem mass (MS/MS) spectra produced by an Orbitrap mass spectrometer of Thr- and isoThr-containing tryptic peptides and found a distinctive feature in their collisionally activated fragmentation patterns. RESULTS Up to 84% of MS/MS spectra for peptides containing isoThr residues have been positively specified. We also studied the differences in retention times for peptides containing Thr isoforms that can be further used for their distinction. CONCLUSIONS Threonine can be distinguished from isothreonine by its retention time and HCD fragmentation pattern, specifically relative intensity of the bn - product ion, which can be further used in proteomic research. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Pavel V Trufanov
- Institute of Biomedical Chemistry, Moscow, Russia
- Moscow State University, Biological Faculty, Moscow, Russia
| | - Alexander A Moysa
- Institute of Biomedical Chemistry, Moscow, Russia
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Mikhail V Gorshkov
- Institute of Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russia
| | - Sergei A Moshkovskii
- Institute of Biomedical Chemistry, Moscow, Russia
- Pirogov Russian National Medical University, Moscow, Russia
| |
Collapse
|
42
|
Yu X, Zhong W. Differentiation of Norvaline and Valine in Peptides by Hot Electron Capture Dissociation. Anal Chem 2016; 88:5914-9. [DOI: 10.1021/acs.analchem.6b00823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xiang Yu
- Department of Pharmacokinetics, Pharmacodynamics, & Drug Metabolism (PPDM), Merck Research Laboratories, 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Wendy Zhong
- Process/Analytical
Chemistry, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
43
|
Dallongeville S, Garnier N, Rolando C, Tokarski C. Proteins in Art, Archaeology, and Paleontology: From Detection to Identification. Chem Rev 2015; 116:2-79. [PMID: 26709533 DOI: 10.1021/acs.chemrev.5b00037] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sophie Dallongeville
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), USR CNRS 3290, Université de Lille 1 Sciences et Technologies , 59655 Villeneuve d'Ascq Cedex, France
| | - Nicolas Garnier
- SARL Laboratoire Nicolas Garnier , 63270 Vic le Comte, France
| | - Christian Rolando
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), USR CNRS 3290, Université de Lille 1 Sciences et Technologies , 59655 Villeneuve d'Ascq Cedex, France
| | - Caroline Tokarski
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), USR CNRS 3290, Université de Lille 1 Sciences et Technologies , 59655 Villeneuve d'Ascq Cedex, France
| |
Collapse
|
44
|
Yu X, Sargaeva NP, Thompson CJ, Costello CE, Lin C. In-Source Decay Characterization of Isoaspartate and β-Peptides. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2015; 390:101-109. [PMID: 26644780 PMCID: PMC4669973 DOI: 10.1016/j.ijms.2015.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Deamidation and the subsequent formation of isoaspartic acid (isoAsp) are common modifications of asparagine (Asn) residues in proteins. Differentiation of isoAsp and Asp residues is a challenging task owing to their similar chemical properties and identical molecular mass. Recent studies showed that they can be differentiated using electron capture dissociation (ECD) which generates diagnostic fragments c'+57 and z•-57 specific to the isoAsp residue. However, the ECD approach is only applicable towards multiply charged precursor ions and generally does not work for β-amino acids other than isoAsp. In this study, the potential of in-source decay (ISD) in characterization of isoAsp and other β-amino acids was explored. For isoAsp-containing peptides, ISD with a conventional hydrogen-donating matrix produced ECD-like, c'+57 and z•-57 diagnostic ions, even for singly charged precursor ions. For other β-amino acids, a hydrogen-accepting matrix was used to induce formation of site-specific a-14 ions from a synthetic β-analogue of substance P. These results indicated that ISD can be broadly applied for β-peptide characterization.
Collapse
Affiliation(s)
- Xiang Yu
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, 670 Albany Street, Suite 504, Boston, MA 02118
| | - Nadezda P. Sargaeva
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, 670 Albany Street, Suite 504, Boston, MA 02118
| | | | - Catherine E. Costello
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, 670 Albany Street, Suite 504, Boston, MA 02118
| | - Cheng Lin
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, 670 Albany Street, Suite 504, Boston, MA 02118
| |
Collapse
|
45
|
Bodnar E, Ferreira Nascimento T, Girard L, Komatsu E, Lopez P, Gomes de Oliveira AG, Roy R, Smythe T, Zogbi Y, Spearman M, Tayi VS, Butler M, Perreault H. An integrated approach to analyze EG2-hFc monoclonal antibody N-glycosylation by MALDI-MS. CAN J CHEM 2015. [DOI: 10.1139/cjc-2015-0061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The characterization of the N-glycan portion of antibodies has been the subject of several studies involving mass spectrometry. In this article, a workflow is presented that starts with the expression of a monoclonal antibody (EG2-hFc) in Chinese hamster ovary cells and continues with Protein A purification of the antibody. Then the protocol continues with gel electrophoresis. Bands containing the heavy chain are cut and isolated from the gel followed by tryptic digestion to obtain peptides and glycopeptides. The enrichment of glycopeptides by C18 chromatography is described followed by characterization using positive and negative modes MALDI-MS and MS/MS. An exoglycosidase, beta-galactosidase, is used to verify anomericity of linkages in the glycan portion of glycopeptides. In the last step, glycans are detached from glycopeptides using PNGase F labelled with phehylhydrazine and characterized by MALDI-MS/MS. This workflow is reported for the first time for this particular antibody and presents a valuable approach for the analysis of N-glycans on most antibodies and glycoproteins.
Collapse
Affiliation(s)
- Edward Bodnar
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | - Lauren Girard
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Emy Komatsu
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Paul Lopez
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | - Rini Roy
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Tristan Smythe
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Yann Zogbi
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Maureen Spearman
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Venkata S. Tayi
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Michael Butler
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Hélène Perreault
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
46
|
Leurs U, Mistarz UH, Rand KD. Getting to the core of protein pharmaceuticals--Comprehensive structure analysis by mass spectrometry. Eur J Pharm Biopharm 2015; 93:95-109. [PMID: 25791210 DOI: 10.1016/j.ejpb.2015.03.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 01/19/2023]
Abstract
Protein pharmaceuticals are the fastest growing class of novel therapeutic agents, and have been a major research and development focus in the (bio)pharmaceutical industry. Due to their large size and structural diversity, biopharmaceuticals represent a formidable challenge regarding analysis and characterization compared to traditional small molecule drugs. Any changes to the primary, secondary, tertiary or quaternary structure of a protein can potentially impact its function, efficacy and safety. The analysis and characterization of (structural) protein heterogeneity is therefore of utmost importance. Mass spectrometry has evolved as a powerful tool for the characterization of both primary and higher order structures of protein pharmaceuticals. Furthermore, the chemical and physical stability of protein drugs, as well as their pharmacokinetics are nowadays routinely determined by mass spectrometry. Here we review current techniques in primary, secondary and tertiary structure analysis of proteins by mass spectrometry. An overview of established top-down and bottom-up protein analyses will be given, and in particular the use of advanced technologies such as hydrogen/deuterium exchange mass spectrometry (HDX-MS) for higher-order structure analysis will be discussed. Modification and degradation pathways of protein drugs and their detection by mass spectrometry will be described, as well as the growing use of mass spectrometry to assist protein design and biopharmaceutical development.
Collapse
Affiliation(s)
- Ulrike Leurs
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Ulrik H Mistarz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kasper D Rand
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
47
|
Li W, Kerwin JL, Schiel J, Formolo T, Davis D, Mahan A, Benchaar SA. Structural Elucidation of Post-Translational Modifications in Monoclonal Antibodies. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1201.ch003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Wenzhou Li
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - James L. Kerwin
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - John Schiel
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Trina Formolo
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Darryl Davis
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Andrew Mahan
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Sabrina A. Benchaar
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
48
|
Affiliation(s)
- Piliang Hao
- School of Biological Sciences, Nanyang Technological University Singapore
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University Singapore
| |
Collapse
|
49
|
Srzentić K, Fornelli L, Laskay ÜA, Monod M, Beck A, Ayoub D, Tsybin YO. Advantages of Extended Bottom-Up Proteomics Using Sap9 for Analysis of Monoclonal Antibodies. Anal Chem 2014; 86:9945-53. [DOI: 10.1021/ac502766n] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kristina Srzentić
- Biomolecular
Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Luca Fornelli
- Biomolecular
Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ünige A. Laskay
- Biomolecular
Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Michel Monod
- Department
of Dermatology, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | - Alain Beck
- Centre d’Immunologie Pierre Fabre, 74160 St. Julien-en-Genevois, France
| | - Daniel Ayoub
- Biomolecular
Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Yury O. Tsybin
- Biomolecular
Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
50
|
Bhanuramanand K, Ahmad S, Rao NM. Engineering deamidation-susceptible asparagines leads to improved stability to thermal cycling in a lipase. Protein Sci 2014; 23:1479-90. [PMID: 25043738 DOI: 10.1002/pro.2516] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 01/15/2023]
Abstract
At high temperatures, protein stability is influenced by chemical alterations; most important among them is deamidation of asparagines. Deamidation kinetics of asparagines depends on the local sequence, solvent, pH, temperature, and the tertiary structure. Suitable replacement of deamidated asparagines could be a viable strategy to improve deamidation-mediated loss in protein properties, specifically protein thermostability. In this study, we have used nano RP-HPLC coupled ESI MS/MS approach to identify residues susceptible to deamidation in a lipase (6B) on heat treatment. Out of 15 asparagines and six glutamines in 6B, only five asparagines were susceptible to deamidation at temperatures higher than 75°C. These five positions were subjected to site saturation mutagenesis followed by activity screen to identify the most suitable substitutions. Only three of the five asparagines were found to be tolerant to substitutions. Best substitutions at these positions were combined into a mutant. The resultant lipase (mutC) has near identical secondary structure and improved thermal tolerance as compared to its parent. The triple mutant has shown almost two-fold higher residual activity compared to 6B after four cycles at 90°C. MutC has retained more than 50% activity even after incubation at 100°C. Engineering asparagines susceptible to deamidation would be a potential strategy to improve proteins to withstand very high temperatures.
Collapse
Affiliation(s)
- K Bhanuramanand
- Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad, 500007, India
| | | | | |
Collapse
|