1
|
Angajala G, Aruna V, Pavan P, Guruprasad Reddy P. Biocatalytic one pot three component approach: Facile synthesis, characterization, molecular modelling and hypoglycemic studies of new thiazolidinedione festooned quinoline analogues catalyzed by alkaline protease from Aspergillus niger. Bioorg Chem 2021; 119:105533. [PMID: 34902647 DOI: 10.1016/j.bioorg.2021.105533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/01/2022]
Abstract
A novel ANAP (Aspergillus niger from alkaline protease) catalyzed one pot three component approach in the synthesis of new thiazolidinedione festooned quinoline analogues via Knoevenagel condensation and N-alkylation have been reported. The catalytic effect of enzyme was monitored and optimized by adjusting various parameters including catalyst concentration, choice of solvent and temperature. The isolated alkaline protease exhibits favorable features for the reaction response such as the shorter reaction time, simple work-up procedure, clean reaction profiles and excellent product yields through reusability of the catalyst upto five cycles. In silico molecular docking simulations were carried out to find out the effective binding affinity of the synthesized quinoline analogues 4(a-i) towards PPARγ protein (Id-2XKW). In vitro α-amylase and α-glucosidase assays were performed for hypoglycemic activity evaluation. In vivo hypoglycemic studies carried out on streptozotocin (SZT) induced diabetic male albino rats have shown that compounds 4e and 4f significantly reduced blood glucose levels with percentage reduction of 43.7 ± 0.91 and 45.6 ± 0.28 at a concentration of 50 mg/kg body wt. The results obtained from molecular docking simulations and in vitro enzyme assays are in consistent with in-vivo studies which clearly demonstrated that out of the synthesized quinoline analogues, compounds 4e and 4f possess promising hypoglycemic activity which was on par to that of standards pioglitazone and rosiglitazone respectively.
Collapse
Affiliation(s)
- Gangadhara Angajala
- Department of Chemistry, Kalasalingam Academy of Research and Education, Anand nagar, Krishnankoil 626126, Tamilnadu, India.
| | - Valmiki Aruna
- Department of Chemistry, Kalasalingam Academy of Research and Education, Anand nagar, Krishnankoil 626126, Tamilnadu, India
| | - Pasupala Pavan
- Department of Humanities and Basic Sciences, G. Pulla Reddy Engineering College, Kurnool 518007, Andhra Pradesh, India
| | - Pulikanti Guruprasad Reddy
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand 175005, Himachal Pradesh, India; Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
2
|
Abstract
Integrons are versatile gene acquisition systems commonly found in bacterial genomes. They are ancient elements that are a hot spot for genomic complexity, generating phenotypic diversity and shaping adaptive responses. In recent times, they have had a major role in the acquisition, expression, and dissemination of antibiotic resistance genes. Assessing the ongoing threats posed by integrons requires an understanding of their origins and evolutionary history. This review examines the functions and activities of integrons before the antibiotic era. It shows how antibiotic use selected particular integrons from among the environmental pool of these elements, such that integrons carrying resistance genes are now present in the majority of Gram-negative pathogens. Finally, it examines the potential consequences of widespread pollution with the novel integrons that have been assembled via the agency of human antibiotic use and speculates on the potential uses of integrons as platforms for biotechnology.
Collapse
|
3
|
Rapa RA, Labbate M. The function of integron-associated gene cassettes in Vibrio species: the tip of the iceberg. Front Microbiol 2013; 4:385. [PMID: 24367362 PMCID: PMC3856429 DOI: 10.3389/fmicb.2013.00385] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/25/2013] [Indexed: 12/17/2022] Open
Abstract
The integron is a genetic element that incorporates mobile genes termed gene cassettes into a reserved genetic site via site-specific recombination. It is best known for its role in antibiotic resistance with one type of integron, the class 1 integron, a major player in the dissemination of antibiotic resistance genes across Gram negative pathogens and commensals. However, integrons are ancient structures with over 100 classes (including class 1) present in bacteria from the broader environment. While, the class 1 integron is only one example of an integron being mobilized into the clinical environment, it is by far the most successful. Unlike clinical class 1 integrons which are largely found on plasmids, other integron classes are found on the chromosomes of bacteria and carry diverse gene cassettes indicating a non-antibiotic resistance role(s). However, there is very limited knowledge on what these alternative roles are. This is particularly relevant to Vibrio species where gene cassettes make up approximately 1-3% of their entire genome. In this review, we discuss how emphasis on class 1 integron research has resulted in a limited understanding by the wider research community on the role of integrons in the broader environment. This has the capacity to be counterproductive in solving or improving the antibiotic resistance problem into the future. Furthermore, there is still a significant lack of knowledge on how gene cassettes in Vibrio species drive adaptation and evolution. From research in Vibrio rotiferianus DAT722, new insight into how gene cassettes affect cellular physiology offers new alternative roles for the gene cassette resource. At least a subset of gene cassettes are involved in host surface polysaccharide modification suggesting that gene cassettes may be important in processes such as bacteriophage resistance, adhesion/biofilm formation, protection from grazers and bacterial aggregation.
Collapse
Affiliation(s)
- Rita A Rapa
- ithree Institute, University of Technology Sydney, NSW, Australia ; Department of Medical and Molecular Biosciences, University of Technology Sydney, NSW, Australia
| | - Maurizio Labbate
- ithree Institute, University of Technology Sydney, NSW, Australia ; Department of Medical and Molecular Biosciences, University of Technology Sydney, NSW, Australia
| |
Collapse
|
4
|
Rapa RA, Shimmon R, Djordjevic SP, Stokes HW, Labbate M. Deletion of integron-associated gene cassettes impact on the surface properties of Vibrio rotiferianus DAT722. PLoS One 2013; 8:e58430. [PMID: 23484028 PMCID: PMC3590141 DOI: 10.1371/journal.pone.0058430] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 02/06/2013] [Indexed: 01/21/2023] Open
Abstract
Background The integron is a genetic recombination system that catalyses the acquisition of genes on mobilisable elements called gene cassettes. In Vibrio species, multiple acquired gene cassettes form a cassette array that can comprise 1–3% of the bacterial genome. Since 75% of these gene cassettes contain genes encoding proteins of uncharacterised function, how the integron has driven adaptation and evolution in Vibrio species remains largely unknown. A feature of cassette arrays is the presence of large indels. Using Vibrio rotiferianus DAT722 as a model organism, the aim of this study was to determine how large cassette deletions affect vibrio physiology with a view to improving understanding into how cassette arrays influence bacterial host adaptation and evolution. Methodology/Principal Findings Biological assays and proteomic techniques were utilised to determine how artificially engineered deletions in the cassette array of V. rotiferianus DAT722 affected cell physiology. Multiple phenotypes were identified including changes to growth and expression of outer membrane porins/proteins and metabolic proteins. Furthermore, the deletions altered cell surface polysaccharide with Proton Nuclear Magnetic Resonance on whole cell polysaccharide identifying changes in the carbohydrate ring proton region indicating that gene cassette products may decorate host cell polysaccharide via the addition or removal of functional groups. Conclusions/Significance From this study, it was concluded that deletion of gene cassettes had a subtle effect on bacterial metabolism but altered host surface polysaccharide. Deletion (and most likely rearrangement and acquisition) of gene cassettes may provide the bacterium with a mechanism to alter its surface properties, thus impacting on phenotypes such as biofilm formation. Biofilm formation was shown to be altered in one of the deletion mutants used in this study. Reworking surface properties may provide an advantage to the bacterium’s interactions with organisms such as bacteriophage, protozoan grazers or crustaceans.
Collapse
Affiliation(s)
- Rita A. Rapa
- The ithree Institute, University of Technology, Sydney, Australia
| | - Ronald Shimmon
- Chemical Technology and Forensic Science, University of Technology, Sydney, Australia
| | | | - H. W. Stokes
- The ithree Institute, University of Technology, Sydney, Australia
| | - Maurizio Labbate
- The ithree Institute, University of Technology, Sydney, Australia
- * E-mail:
| |
Collapse
|
5
|
REN CHUNFENG, ZHAO YONGJING, SHEN YAN. Analysis of the effect of integrons on drug-resistant Staphylococcus aureus by multiplex PCR detection. Mol Med Rep 2013; 7:719-24. [PMID: 23337960 PMCID: PMC3597458 DOI: 10.3892/mmr.2013.1284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 09/05/2012] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to detect class Ⅰ, II and III integrons using multiplex PCR, and to analyze the role that these integrons play in mediating multidrug-resistant Staphylococcus aureus (SA). The sensitivity of SA to 20 types of antibiotics was examined using the K-B method. A genomic DNA extraction kit was used for extracting genomic DNA and a high-purity 96 plasmid extraction kit was used for extracting plasmid DNA. Class Ⅰ, II and III integrons were amplified using multiplex PCR. Agarose gel electrophoresis was used for analysing amplification products. The positive rate of class Ⅰ and II integrons in the plasmid DNA from SA was higher compared to that of the genomic DNA. The positive rate of class Ⅰ integrons was highest in the group with multidrug resistance to amoxicillin/clavulanic acid, piperacillin/tazobactam, ciprofloxacin, tetracycline, rifampin, imipenem, cefazolin, cefuroxime, levofloxacin and gentamicin. As regards integron detection in the plasmids from drug-resistant SA strians obtained from sputum, blood, cerebrospinal fluid, drainage fluid, excretion and urine specimens, the difference in the detection rate of class Ⅰ integrons among the six types of specimens was significant. Multiplex PCR is an effective method to detect class Ⅰ, II and III integrons. The SA plasmid is the main carrier transferring integrons. Integrons mediate the formation of SA multidrug resistance.
Collapse
Affiliation(s)
- CHUNFENG REN
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - YONGJING ZHAO
- Zhengzhou Children’s Hospital, Zhengzhou, Henan 450053, P.R. China
| | - YAN SHEN
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
6
|
|
7
|
Stokes HW, Gillings MR. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol Rev 2011; 35:790-819. [PMID: 21517914 DOI: 10.1111/j.1574-6976.2011.00273.x] [Citation(s) in RCA: 376] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Antibiotics were one of the great discoveries of the 20th century. However, resistance appeared even in the earliest years of the antibiotic era. Antibiotic resistance continues to become worse, despite the ever-increasing resources devoted to combat the problem. One of the most important factors in the development of resistance to antibiotics is the remarkable ability of bacteria to share genetic resources via Lateral Gene Transfer (LGT). LGT occurs on a global scale, such that in theory, any gene in any organism anywhere in the microbial biosphere might be mobilized and spread. With sufficiently strong selection, any gene may spread to a point where it establishes a global presence. From an antibiotic resistance perspective, this means that a resistance phenotype can appear in a diverse range of infections around the globe nearly simultaneously. We discuss the forces and agents that make this LGT possible and argue that the problem of resistance can ultimately only be managed by understanding the problem from a broad ecological and evolutionary perspective. We also argue that human activities are exacerbating the problem by increasing the tempo of LGT and bacterial evolution for many traits that are important to humans.
Collapse
Affiliation(s)
- Hatch W Stokes
- The i3 Institute, University of Technology, Broadway 2007, Sydney, NSW, Australia.
| | | |
Collapse
|
8
|
Affiliation(s)
- Guillaume Cambray,
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, F-75015 Paris, France;
- CNRS, URA2171, F-75015 Paris, France
| | - Anne-Marie Guerout,
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, F-75015 Paris, France;
- CNRS, URA2171, F-75015 Paris, France
| | - Didier Mazel
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, F-75015 Paris, France;
- CNRS, URA2171, F-75015 Paris, France
| |
Collapse
|
9
|
Michael CA, Labbate M. Gene cassette transcription in a large integron-associated array. BMC Genet 2010; 11:82. [PMID: 20843359 PMCID: PMC2945992 DOI: 10.1186/1471-2156-11-82] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Accepted: 09/15/2010] [Indexed: 11/16/2022] Open
Abstract
Background The integron/gene cassette system is a diverse and effective adaptive resource for prokaryotes. Short cassette arrays, with less than 10 cassettes adjacent to an integron, provide this resource through the expression of cassette-associated genes by an integron-borne promoter. However, the advantage provided by large arrays containing hundreds of cassettes is less obvious. In this work, using the 116-cassette array of Vibrio sp. DAT722 as a model, we investigated the theory that the majority of genes contained within large cassette arrays are widely expressed by intra-array promoters in addition to the integron-borne promoter. Results We demonstrated that the majority of the cassette-associated genes in the subject array were expressed. We further showed that cassette expression was conditional and that the conditionality varied across the array. We finally showed that this expression was mediated by a diversity of cassette-borne promoters within the array capable of responding to environmental stressors. Conclusions Widespread expression within large gene cassette arrays could provide an adaptive advantage to the host in proportion to the size of the array. Our findings explained the existence and maintenance of large cassette arrays within many prokaryotes. Further, we suggested that repeated rearrangement of cassettes containing genes and/or promoters within large arrays could result in the assembly of operon-like groups of co-expressed cassettes within an array. These findings add to our understanding of the adaptive repertoire of the integron/gene cassette system in prokaryotes and consequently, the evolutionary impact of this system.
Collapse
Affiliation(s)
- Carolyn A Michael
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.
| | | |
Collapse
|
10
|
Michael CA, Andrew NR. Co-assortment in integron-associated gene cassette assemblages in environmental DNA samples. BMC Genet 2010; 11:75. [PMID: 20698953 PMCID: PMC2927473 DOI: 10.1186/1471-2156-11-75] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 08/10/2010] [Indexed: 12/02/2022] Open
Abstract
Background It has been shown that integron-associated gene cassettes exist largely in tandem arrays of variable size, ranging from antibiotic resistance arrays of three to five cassettes up to arrays of more than 100 cassettes associated with the vibrios. Further, the ecology of the integron/gene cassette system has been investigated by showing that very many different cassettes are present in even small environmental samples. In this study, we seek to extend the ecological perspective on the integron/gene cassette system by investigating the way in which this diverse cassette metagenome is apportioned amongst prokaryote lineages in a natural environment. Results We used a combination of PCR-based techniques applied to environmental DNA samples and ecological analytical techniques to establish co-assortment within cassette populations, then establishing the relationship between this co-assortment and genomic structures. We then assessed the distribution of gene cassettes within the environment and found that the majority of gene cassettes existed in large co-assorting groups. Conclusions Our results suggested that the gene cassette diversity of a relatively pristine sampling environment was structured into co-assorting groups, predominantly containing large numbers of cassettes per group. These co-assorting groups consisted of different gene cassettes in stoichiometric relationship. Conservatively, we then attributed co-assorting cassettes to the gene cassette complements of single prokaryote lineages and by implication, to large integron-associated arrays. The prevalence of large arrays in the environment raises new questions about the assembly, maintenance and utility of large cassette arrays in prokaryote populations.
Collapse
Affiliation(s)
- Carolyn A Michael
- Department of Biology, Macquarie University, Sydney, NSW, Australia.
| | | |
Collapse
|
11
|
Abstract
Large population sizes, rapid growth and 3.8 billion years of evolution firmly establish microorganisms as a major source of the planet's biological and genetic diversity. However, up to 99% of the microorganisms in a given environment cannot be cultured. Culture-independent methods that directly access the genetic potential of an environmental sample can unveil new proteins with diverse functions, but the sequencing of random DNA can generate enormous amounts of extraneous data. Integrons are recombination systems that accumulate open reading frames (gene cassettes), many of which code for functional proteins with enormous adaptive potential. Some integrons harbor hundreds of gene cassettes and evidence suggests that the gene cassette pool may be limitless in size. Accessing this genetic pool has been hampered since sequence-based techniques, such as hybridization or PCR, often recover only partial genes or a small subset of those present in the sample. Here, a three-plasmid genetic strategy for the sequence-independent recovery of gene cassettes from genomic libraries is described and its use by retrieving functional gene cassettes from the chromosomal integron of Vibrio vulnificus ATCC 27562 is demonstrated. By manipulating the natural activity of integrons, we can gain access to the caches of functional genes amassed by these structures.
Collapse
Affiliation(s)
- Dean A Rowe-Magnus
- Division of Clinical Integrative Biology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, S1-26A, Toronto, Ontario M4N 3N5, Canada.
| |
Collapse
|
12
|
Labbate M, Case RJ, Stokes HW. The integron/gene cassette system: an active player in bacterial adaptation. Methods Mol Biol 2009; 532:103-25. [PMID: 19271181 DOI: 10.1007/978-1-60327-853-9_6] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The integron includes a site-specific recombination system capable of integrating and expressing genes contained in structures called mobile gene cassettes. Integrons were originally identified on mobile elements from pathogenic bacteria and were found to be a major reservoir of antibiotic-resistance genes. Integrons are now known to be ancient structures that are phylogenetically diverse and, to date, have been found in approximately 9% of sequenced bacterial genomes. Overall, gene diversity in cassettes is extraordinarily high, suggesting that the integron/gene cassette system has a broad role in adaptation rather than being confined to simply conferring resistance to antibiotics. In this chapter, we provide a review of the integron/gene cassette system highlighting characteristics associated with this system, diversity of elements contained within it, and their importance in driving bacterial evolution and consequently adaptation. Ideas on the evolution of gene cassettes and gene cassette arrays are discussed.
Collapse
Affiliation(s)
- Maurizio Labbate
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | | | | |
Collapse
|
13
|
Robinson A, Guilfoyle AP, Sureshan V, Howell M, Harrop SJ, Boucher Y, Stokes HW, Curmi PMG, Mabbutt BC. Structural genomics of the bacterial mobile metagenome: an overview. Methods Mol Biol 2008; 426:589-95. [PMID: 18542892 DOI: 10.1007/978-1-60327-058-8_39] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mobile gene cassettes collectively carry a highly diverse pool of novel genes, ostensibly for purposes of microbial adaptation. At the sequence level, putative functions can only be assigned to a minority of carried ORFs due to their inherent novelty. Having established these mobilized genes code for folded and functional proteins, the authors have recently adopted the procedures of structural genomics to efficiently sample their structures, thereby scoping their functional range. This chapter outlines protocols used to produce cassette-associated genes as recombinant proteins in Escherichia coli and crystallization procedures based on the dual screen/pH optimization approach of the SECSG (SouthEast Collaboratory for Structural Genomics). Crystal structures solved to date have defined unique members of enzyme fold classes associated with transport and nucleotide metabolism.
Collapse
Affiliation(s)
- Andrew Robinson
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kowalchuk GA, Speksnijder AGCL, Zhang K, Goodman RM, van Veen JA. Finding the needles in the metagenome haystack. MICROBIAL ECOLOGY 2007; 53:475-85. [PMID: 17345132 PMCID: PMC1915608 DOI: 10.1007/s00248-006-9201-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 12/11/2006] [Accepted: 12/16/2006] [Indexed: 05/14/2023]
Abstract
In the collective genomes (the metagenome) of the microorganisms inhabiting the Earth's diverse environments is written the history of life on this planet. New molecular tools developed and used for the past 15 years by microbial ecologists are facilitating the extraction, cloning, screening, and sequencing of these genomes. This approach allows microbial ecologists to access and study the full range of microbial diversity, regardless of our ability to culture organisms, and provides an unprecedented access to the breadth of natural products that these genomes encode. However, there is no way that the mere collection of sequences, no matter how expansive, can provide full coverage of the complex world of microbial metagenomes within the foreseeable future. Furthermore, although it is possible to fish out highly informative and useful genes from the sea of gene diversity in the environment, this can be a highly tedious and inefficient procedure. Microbial ecologists must be clever in their pursuit of ecologically relevant, valuable, and niche-defining genomic information within the vast haystack of microbial diversity. In this report, we seek to describe advances and prospects that will help microbial ecologists glean more knowledge from investigations into metagenomes. These include technological advances in sequencing and cloning methodologies, as well as improvements in annotation and comparative sequence analysis. More significant, however, will be ways to focus in on various subsets of the metagenome that may be of particular relevance, either by limiting the target community under study or improving the focus or speed of screening procedures. Lastly, given the cost and infrastructure necessary for large metagenome projects, and the almost inexhaustible amount of data they can produce, trends toward broader use of metagenome data across the research community coupled with the needed investment in bioinformatics infrastructure devoted to metagenomics will no doubt further increase the value of metagenomic studies in various environments.
Collapse
Affiliation(s)
- George A Kowalchuk
- Centre for Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 40, 6666 ZG, Heteren, The Netherlands.
| | | | | | | | | |
Collapse
|
15
|
Heinemann JA, Rosén H, Savill M, Burgos-Caraballo S, Toranzos GA. Environment arrays: a possible approach for predicting changes in waterborne bacterial disease potential. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2006; 40:7150-6. [PMID: 17180961 DOI: 10.1021/es060331x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Current molecular techniques for identifying bacteria in water have proven useful, but they are not reliably predictive of impending disease outbreaks. Genomics-based approaches will help to detect the presence of pathogens quickly and well before they grow into a population that poses a risk to public health. We suggest that genomics is only one component of the toolbox that will be needed to identify emerging waterborne threats. We propose a methodology beyond genomics, based on activity in the mobile genome. This approach makes use of a new device called an environment array. The array will depend upon the same research necessary for genomics-based detection, but will not require an a priori knowledge of virulence genes. Environment arrays are assembled from molecular profiles of the infectious elements that transfer between bacteria. The advantage of the array is that it monitors the activity of the mobile genome, rather than the presence of particular DNA sequences. Environmental arrays should thus be many times more sensitive than traditional hybridization or PCR-based techniques that target already-known DNA sequences. Mobile elements are known to respond to new environmental conditions that may correlate with a chemical contamination or the bloom of bacterial pathogens, potentially allowing for a much broader application in detecting unknown or unanticipated biological and chemical contaminants.
Collapse
Affiliation(s)
- Jack A Heinemann
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
16
|
Abstract
Integrons are assembly platforms - DNA elements that acquire open reading frames embedded in exogenous gene cassettes and convert them to functional genes by ensuring their correct expression. They were first identified by virtue of their important role in the spread of antibiotic-resistance genes. More recently, our understanding of their importance in bacterial genome evolution has broadened with the discovery of larger integron structures, termed superintegrons. These DNA elements contain hundreds of accessory genes and constitute a significant fraction of the genomes of many bacterial species. Here, the basic biology of integrons and superintegrons, their evolutionary history and the evidence for the existence of a novel recombination pathway is reviewed.
Collapse
Affiliation(s)
- Didier Mazel
- Unité Plasticité du Génome Bactérien- CNRS URA 2171, Department Génomes et Génétique, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris, France.
| |
Collapse
|
17
|
Alonso H, Gready JE. Integron-sequestered dihydrofolate reductase: a recently redeployed enzyme. Trends Microbiol 2006; 14:236-42. [PMID: 16584884 DOI: 10.1016/j.tim.2006.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 03/01/2006] [Accepted: 03/21/2006] [Indexed: 11/21/2022]
Abstract
The introduction and wide use of antibacterial drugs has resulted in the emergence of resistant organisms. DfrB dihydrofolate reductase (DHFR) is a bacterial enzyme that is uniquely associated with mobile gene cassettes within integrons, and confers resistance to the drug trimethoprim. This enzyme has intrigued microbiologists since it was discovered more than thirty years ago because of its simple structure, enzymatic inefficiency and its virtual insensitivity to trimethoprim. Here, for the first time, a comprehensive discussion of genetic, evolutionary, structural and functional studies of this enzyme is presented together. This information supports the ideas that DfrB DHFR is a poorly adapted catalyst and has recently been recruited to perform a novel enzymatic activity in response to selective pressure.
Collapse
Affiliation(s)
- Hernán Alonso
- Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia
| | | |
Collapse
|
18
|
Liu JW, Boucher Y, Stokes HW, Ollis DL. Improving protein solubility: the use of the Escherichia coli dihydrofolate reductase gene as a fusion reporter. Protein Expr Purif 2005; 47:258-63. [PMID: 16403649 DOI: 10.1016/j.pep.2005.11.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 11/04/2005] [Accepted: 11/18/2005] [Indexed: 11/15/2022]
Abstract
We have devised a strategy for screening mutant libraries for enzyme variants with enhanced solubility. The method is based on the observation that Escherichia coli can become insensitive to the antibiotic trimethoprim (TMP) if dihydrofolate reductase (DHFR) is expressed at an appropriate level. DHFR is a very soluble protein and can be expressed at levels that exceed normally lethal concentrations of TMP. In our approach, the gene encoding an insoluble target protein is placed in a vector so that the translated protein will be fused to DHFR. The resulting fusion protein will form inclusion bodies and inactivate DHFR-the cells will be susceptible to TMP. Mutations to the target protein that make it more soluble will also make the fusion protein more soluble so that DHFR will be at least partially active-the cells will be resistant to TMP. As the solubility of the target protein increases, the cells will become more resistant to TMP. The system was tested with a putative acetyltransferase (ACE) from a strain of the marine bacterium Vibrio fischerii. The gene encoding this protein was of interest since it is part of a mobile gene cassette within an integron array of the strain in question. After multiple rounds of shuffling and selection, ACE mutants were produced that had significantly improved solubility.
Collapse
Affiliation(s)
- Jian-Wei Liu
- Research School of Chemistry, Building 35 Science Road, Australian National University, Canberra ACT 0200, Australia
| | | | | | | |
Collapse
|
19
|
Robinson A, Wu PSC, Harrop SJ, Schaeffer PM, Dosztányi Z, Gillings MR, Holmes AJ, Nevalainen KMH, Stokes HW, Otting G, Dixon NE, Curmi PMG, Mabbutt BC. Integron-associated Mobile Gene Cassettes Code for Folded Proteins: The Structure of Bal32a, a New Member of the Adaptable α+β Barrel Family. J Mol Biol 2005; 346:1229-41. [PMID: 15713477 DOI: 10.1016/j.jmb.2004.12.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 12/12/2004] [Accepted: 12/15/2004] [Indexed: 11/22/2022]
Abstract
The wide-ranging physiology and large genetic variability observed for prokaryotes is largely attributed, not to the prokaryotic genome itself, but rather to mechanisms of lateral gene transfer. Cassette PCR has been used to sample the integron/gene cassette metagenome from different natural environments without laboratory cultivation of the host organism, and without prior knowledge of any target protein sequence. Since over 90% of cassette genes are unrelated to any sequence in the current databases, it is not clear whether these genes code for folded functional proteins. We have selected a sample of eight cassette-encoded genes with no known homologs; five have been isolated as soluble protein products and shown by biophysical techniques to be folded. In solution, at least three of these proteins organise as stable oligomeric assemblies. The tertiary structure of one of these, Bal32a derived from a contaminated soil site, has been solved by X-ray crystallography to 1.8 A resolution. From the three-dimensional structure, Bal32a is found to be a member of the highly adaptable alpha+beta barrel family of transport proteins and enzymes. In Bal32a, the barrel cavity is unusually deep and inaccessible to solvent. Polar side-chains in its interior are reminiscent of catalytic sites of limonene-1,2-epoxide hydrolase and nogalonic acid methyl ester cyclase. These studies demonstrate the viability of direct sampling of mobile DNA as a route for the discovery of novel proteins.
Collapse
Affiliation(s)
- Andrew Robinson
- Department of Chemistry, Macquarie University, NSW 2109, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|