1
|
Opdam LV, Polanco EA, de Regt B, Lambertina N, Bakker C, Bonnet S, Pandit A. A screening method for binding synthetic metallo-complexes to haem proteins. Anal Biochem 2022; 653:114788. [PMID: 35732212 DOI: 10.1016/j.ab.2022.114788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022]
Abstract
The introduction of a second coordination sphere, in the form of a protein scaffold, to synthetic catalysts can be beneficial for their reactivity and substrate selectivity. Here we present semi-native polyacrylamide gel electrophoresis (semi-native PAGE) as a rapid screening method for studying metal complex-protein interactions. Such a screening is generally performed using electron spray ionization mass spectrometry (ESI-MS) and/or UV-Vis spectroscopy. Semi-native PAGE analysis has the advantage that it does not rely on spectral changes of the metal complex upon protein interaction and can be applied for high-throughput screening and optimization of complex binding. In semi-native PAGE non-denatured protein samples are loaded on a gel containing sodium dodecyl sulphate (SDS), leading to separation based on differences in structural stability. Semi-native PAGE gel runs of catalyst-protein mixtures were compared to gel runs obtained with native and denaturing PAGE. ESI-MS was additionally realised to confirm protein-complex binding. The general applicability of semi-native PAGE was investigated by screening the binding of various cobalt- and ruthenium-based compounds to three types of haem proteins.
Collapse
Affiliation(s)
- Laura V Opdam
- SSNMR/BPOC, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Ehider A Polanco
- MCBIM Departments, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Boyd de Regt
- SSNMR/BPOC, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | | | - Cas Bakker
- SSNMR/BPOC, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Sylvestre Bonnet
- MCBIM Departments, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Anjali Pandit
- SSNMR/BPOC, Einsteinweg 55, 2333 CC, Leiden, the Netherlands.
| |
Collapse
|
2
|
Müntener T, Joss D, Häussinger D, Hiller S. Pseudocontact Shifts in Biomolecular NMR Spectroscopy. Chem Rev 2022; 122:9422-9467. [PMID: 35005884 DOI: 10.1021/acs.chemrev.1c00796] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Paramagnetic centers in biomolecules, such as specific metal ions that are bound to a protein, affect the nuclei in their surrounding in various ways. One of these effects is the pseudocontact shift (PCS), which leads to strong chemical shift perturbations of nuclear spins, with a remarkably long range of 50 Å and beyond. The PCS in solution NMR is an effect originating from the anisotropic part of the dipole-dipole interaction between the magnetic momentum of unpaired electrons and nuclear spins. The PCS contains spatial information that can be exploited in multiple ways to characterize structure, function, and dynamics of biomacromolecules. It can be used to refine structures, magnify effects of dynamics, help resonance assignments, allows for an intermolecular positioning system, and gives structural information in sensitivity-limited situations where all other methods fail. Here, we review applications of the PCS in biomolecular solution NMR spectroscopy, starting from early works on natural metalloproteins, following the development of non-natural tags to chelate and attach lanthanoid ions to any biomolecular target to advanced applications on large biomolecular complexes and inside living cells. We thus hope to not only highlight past applications but also shed light on the tremendous potential the PCS has in structural biology.
Collapse
Affiliation(s)
- Thomas Müntener
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Daniel Joss
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| |
Collapse
|
3
|
Hirano Y, Kimura S, Tamada T. High-resolution crystal structures of the solubilized domain of porcine cytochrome b5. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1572-81. [PMID: 26143928 PMCID: PMC4498607 DOI: 10.1107/s1399004715009438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/18/2015] [Indexed: 11/11/2022]
Abstract
Mammalian microsomal cytochrome b5 has multiple electron-transfer partners that function in various electron-transfer reactions. Four crystal structures of the solubilized haem-binding domain of cytochrome b5 from porcine liver were determined at sub-angstrom resolution (0.76-0.95 Å) in two crystal forms for both the oxidized and reduced states. The high-resolution structures clearly displayed the electron density of H atoms in some amino-acid residues. Unrestrained refinement of bond lengths revealed that the protonation states of the haem propionate group may be involved in regulation of the haem redox properties. The haem Fe coordination geometry did not show significant differences between the oxidized and reduced structures. However, structural differences between the oxidized and reduced states were observed in the hydrogen-bond network around the axial ligand His68. The hydrogen-bond network could be involved in regulating the redox states of the haem group.
Collapse
Affiliation(s)
- Yu Hirano
- Quantum Beam Science Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan
| | - Shigenobu Kimura
- Department of Biomolecular Functional Engineering, Faculty of Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
| | - Taro Tamada
- Quantum Beam Science Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan
| |
Collapse
|
4
|
Vivekanandan S, Ahuja S, Im SC, Waskell L, Ramamoorthy A. ¹H, ¹³C and ¹⁵N resonance assignments for the full-length mammalian cytochrome b₅ in a membrane environment. BIOMOLECULAR NMR ASSIGNMENTS 2014; 8:409-13. [PMID: 24105099 PMCID: PMC3981966 DOI: 10.1007/s12104-013-9528-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 09/28/2013] [Indexed: 05/12/2023]
Abstract
Microsomal cytochrome b5 plays a key role in the oxidation of a variety of exogenous and endogenous compounds, including drugs, fatty acids, cholesterol and steroid hormones. To better understand its functional properties in a membrane mimic environment, we carried out high-resolution solution NMR studies. Here we report resonance assignments for full-length rabbit cytochrome b5 embedded in dodecylphosphocholine micelles.
Collapse
Affiliation(s)
| | - Shivani Ahuja
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Sang-Choul Im
- Department of Anesthesiology, University of Michigan, and VA Medical Center, Ann Arbor, MI 48105, USA
| | - Lucy Waskell
- Department of Anesthesiology, University of Michigan, and VA Medical Center, Ann Arbor, MI 48105, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI 48109-1055, USA
- To whom the correspondence should be addressed: Ayyalusamy Ramamoorthy, Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, USA, Tel.: (734) 647-6572; Fax: (734) 764-3323;
| |
Collapse
|
5
|
Ahuja S, Jahr N, Im SC, Vivekanandan S, Popovych N, Le Clair SV, Huang R, Soong R, Xu J, Yamamoto K, Nanga RP, Bridges A, Waskell L, Ramamoorthy A. A model of the membrane-bound cytochrome b5-cytochrome P450 complex from NMR and mutagenesis data. J Biol Chem 2013; 288:22080-95. [PMID: 23709268 DOI: 10.1074/jbc.m112.448225] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Microsomal cytochrome b5 (cytb5) is a membrane-bound protein that modulates the catalytic activity of its redox partner, cytochrome P4502B4 (cytP450). Here, we report the first structure of full-length rabbit ferric microsomal cytb5 (16 kDa), incorporated in two different membrane mimetics (detergent micelles and lipid bicelles). Differential line broadening of the cytb5 NMR resonances and site-directed mutagenesis data were used to characterize the cytb5 interaction epitope recognized by ferric microsomal cytP450 (56 kDa). Subsequently, a data-driven docking algorithm, HADDOCK (high ambiguity driven biomolecular docking), was used to generate the structure of the complex between cytP4502B4 and cytb5 using experimentally derived restraints from NMR, mutagenesis, and the double mutant cycle data obtained on the full-length proteins. Our docking and experimental results point to the formation of a dynamic electron transfer complex between the acidic convex surface of cytb5 and the concave basic proximal surface of cytP4502B4. The majority of the binding energy for the complex is provided by interactions between residues on the C-helix and β-bulge of cytP450 and residues at the end of helix α4 of cytb5. The structure of the complex allows us to propose an interprotein electron transfer pathway involving the highly conserved Arg-125 on cytP450 serving as a salt bridge between the heme propionates of cytP450 and cytb5. We have also shown that the addition of a substrate to cytP450 likely strengthens the cytb5-cytP450 interaction. This study paves the way to obtaining valuable structural, functional, and dynamic information on membrane-bound complexes.
Collapse
Affiliation(s)
- Shivani Ahuja
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Parthasarathy S, Altuve A, Terzyan S, Zhang X, Kuczera K, Rivera M, Benson DR. Accommodating a nonconservative internal mutation by water-mediated hydrogen bonding between β-sheet strands: a comparison of human and rat type B (mitochondrial) cytochrome b5. Biochemistry 2011; 50:5544-54. [PMID: 21574570 DOI: 10.1021/bi2004729] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mammalian type B (mitochondrial) b(5) cytochromes exhibit greater amino acid sequence diversity than their type A (microsomal) counterparts, as exemplified by the type B proteins from human (hCYB5B) and rat (rCYB5B). The comparison of X-ray crystal structures of hCYB5B and rCYB5B reported herein reveals a striking difference in packing involving the five-strand β-sheet, which can be attributed to fully buried residue 21 in strand β4. The greater bulk of Leu21 in hCYB5B in comparison to that of Thr21 in rCYB5B results in a substantial displacement of the first two residues in β5, and consequent loss of two of the three hydrogen bonds between β5 and β4. Hydrogen bonding between the residues is instead mediated by two well-ordered, fully buried water molecules. In a 10 ns molecular dynamics simulation, one of the buried water molecules in the hCYB5B structure exchanged readily with solvent via intermediates having three water molecules sandwiched between β4 and β5. When the buried water molecules were removed prior to a second 10 ns simulation, β4 and β5 formed persistent hydrogen bonds identical to those in rCYB5B, but the Leu21 side chain was forced to adopt a rarely observed conformation. Despite the apparently greater ease of access of water to the interior of hCYB5B than of rCYB5B suggested by these observations, the two proteins exhibit virtually identical stability, dynamic, and redox properties. The results provide new insight into the factors stabilizing the cytochrome b(5) fold.
Collapse
|
7
|
Molecular modeling and dynamics simulation of a histidine-tagged cytochrome b 5. J Mol Model 2010; 17:971-8. [DOI: 10.1007/s00894-010-0795-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 06/25/2010] [Indexed: 12/17/2022]
|
8
|
Wang L, Sun N, Terzyan S, Zhang X, Benson DR. A histidine/tryptophan pi-stacking interaction stabilizes the heme-independent folding core of microsomal apocytochrome b5 relative to that of mitochondrial apocytochrome b5. Biochemistry 2007; 45:13750-9. [PMID: 17105194 DOI: 10.1021/bi0615689] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The outer mitochondrial membrane isoform of mammalian cytochrome b5 (OM b5) is considerably more stable than its microsomal counterpart (Mc b5), whereas the corresponding apoproteins (OM and Mc apo-b5) exhibit similar stability. OM and Mc apo-b5 are also similar in that their empty heme-binding pockets (core 1) are highly disordered but that the remainder of each apoprotein (core 2) displays substantial hololike structure. Core 1 residue 71 is leucine in all known mammalian OM b5's and serine in the corresponding Mc proteins. Replacing Leu-71 in rat OM (rOM) b5 with Ser has been shown to (1) decrease apoprotein thermodynamic stability by >2 kcal/mol and (2) extend conformational disorder beyond core 1 and into core 2, as evidenced in part by loss of a near-UV circular dichroism signal associated with the side chain of invariant residue Trp-22. Herein we report identification of a conserved Mc b5 core 2 packing motif that plays a key role in stabilizing apoprotein conformation in the vicinity of Trp-22, thereby compensating for the presence of Ser at position 71: a pi-stacking interaction between the side chains of Trp-22 and His-15 that is extended by hydrogen bonding between the side chains of His-15, Ser-20, and Glu-11. The corresponding conserved packing motif in OM b5's differs in having arginine at position 15 and glutamate at position 20. We also present evidence indicating that the conserved Mc b5 packing motif noted above contributes to the unusually extensive secondary structure exhibited by bovine Mc apo-b5 in the urea-denatured state.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | |
Collapse
|
9
|
Cheng Q, Benson DR, Rivera M, Kuczera K. Influence of point mutations on the flexibility of cytochrome b5: molecular dynamics simulations of holoproteins. Biopolymers 2006; 83:297-312. [PMID: 16807901 DOI: 10.1002/bip.20563] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Two membrane-bound isoforms of cytochrome b5 have been identified in mammals, one associated with the outer mitochondrial membrane (OM b5) and the other with the endoplasmic reticulum (microsomal, or Mc b5). The soluble heme binding domains of OM and Mc b5 have highly similar three-dimensional structures but differ significantly in physical properties, with OM b5 exhibiting higher stability due to stronger heme association. In this study, we present results of 8.5-ns length molecular dynamics simulations for rat Mc b5, bovine Mc b5, and rat OM b5, as well as for two rat OM b5 mutants that were anticipated to exhibit properties intermediate between those of rat OM b5 and the two Mc proteins: the A18S/I32L/L47R triple mutant (OM3M) and the A18S/I25L/I32L/L47R/L71S quintuple mutant (OM5M). Analysis of the structure, fluctuations, and interactions showed that the five b5 variants used in this study differed in organization of their molecular surfaces and heme binding cores in a way that could be used to explain certain experimentally observed physical differences. Overall, our simulations provided qualitative microscopic explanations of many of the differences in physical properties between OM and Mc b5 and two mutants in terms of localized changes in structure and flexibility. They also reveal that opening of a surface cleft between hydrophobic cores 1 and 2 in bovine Mc b5, observed in two previously reported simulations (E. M. Storch and V. Daggett, Biochemistry, 1995, Vol. 34, pp. 9682-9693; A. Altuve, Biochemistry, 2001, Vol. 40, pp. 9469-9483), probably resulted from removal of crystal contacts and likely does not occur on the nanosecond time scale. Finally, the MD simulations of OM5M b5 verify that stability and dynamic properties of cytochrome b5 are remarkably resistant to mutations that dramatically alter the stability and structure of the apoprotein.
Collapse
Affiliation(s)
- Qinyi Cheng
- Department of Molecular Biosciences, University of Kansas, 1251 Wescoe Hall Drive, Room 2010, Malott Hall, Lawrence, KS 66045-7582, USA
| | | | | | | |
Collapse
|
10
|
Renugopalakrishnan V, Ortiz-Lombardía M, Verma C. Electrostatics of Cytochrome-c assemblies. J Mol Model 2005; 11:265-70. [PMID: 15868153 DOI: 10.1007/s00894-005-0244-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2004] [Accepted: 01/04/2005] [Indexed: 10/25/2022]
Abstract
Electrostatic potentials along with computational mutagenesis are used to obtain atomic level insights into Cytochrome-c in order to design efficient bionanosensors. The electrostatic properties of wild type and mutant Cytochrome-c are examined in the context of their assembly, i.e. are examined in the absence and presence of neighboring molecules from the assembly. An intense increase in the positive potential ensues when the neighboring molecules are taken into account. This suggests that in the extrapolation of electric field effects upon the design of assemblies, considering the properties of only the central molecule may not be sufficient. Additionally, the influence of the uncharged residues becomes quite diminished when the molecule is considered in an assembly. This could pave the way for making mutants that might be more soluble in different media used in the construction of devices. [Figure: see text]. The electrostatic potential, calculated using the program DELPHI mapped on to the surface of Cytochrome-c when it is considered by itself (in the left column) and in the presence of the electrostatic field generated by the presence of the surrounding 4 molecules on the right. The potentials range from -10kT in red to +10kT in blue. The central figure shows the regions that have been mutated to positively charged residues by placing a unit positive charge at the terminal atom of the respective side chain. The figures range from the wild type in the first row, followed by the Gln12, Asn70, Asp50, Glu90 and Ala83 mutants.
Collapse
Affiliation(s)
- V Renugopalakrishnan
- Bionanotechnology Group, Department of Biomedical Engineering, College of Engineering, Florida International University, Miami, FL 33174, USA
| | | | | |
Collapse
|