1
|
Prathiviraj R, Chellapandi P, Begum A, Kiran GS, Selvin J. Identification of genotypic variants and its proteomic mutations of Brazilian SARS-CoV-2 isolates. Virus Res 2022; 307:198618. [PMID: 34740719 PMCID: PMC8563081 DOI: 10.1016/j.virusres.2021.198618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/01/2023]
Abstract
The second wave of COVID-19 caused by severe acute respiratory syndrome virus (SARS-CoV-2) is rapidly spreading over the world. Mechanisms behind the flee from current antivirals are still unclear due to the continuous occurrence of SARS-CoV-2 genetic variants. Brazil is the world's second-most COVID-19 affected country. In the present study, we identified the genomic and proteomic variants of Brazilian SARS-CoV-2 isolates. We identified 16 different genotypic variants were found among the 27 isolates. The genotypes of three isolates such as Bra/1236/2021 (G15), Bra/MASP2C844R2/2020 (G11), and Bra/RJ-DCVN5/2020 (G9) have a unique mutant in NSP4 (S184N), 2'O-Mutase (R216N), membrane protein (A2V) and Envelope protein (V5A). A mutation in RdRp of SARS-CoV-2, particularly the change of Pro-to Leu-at 323 resulted in the stabilization of the structure in BRA/CD1739-P4/2020. NSP4, NSP5 protein mutants are more virulent in genotype 15 and 16. A fast protein folding rate changes the structural stability and leads to escape for current antivirals. Thus, our findings help researchers to develop the best potent antivirals based on the new mutant of Brazilian isolates.
Collapse
Affiliation(s)
| | - Paulchamy Chellapandi
- Department of Bioinformatics, Bharathidasan University, Tiruchirappalli 620024, India
| | - Ajima Begum
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
2
|
Bergasa-Caceres F, Rabitz HA. Interdiction of Protein Folding for Therapeutic Drug Development in SARS CoV-2. J Phys Chem B 2020; 124:8201-8208. [PMID: 32790379 PMCID: PMC7466092 DOI: 10.1021/acs.jpcb.0c03716] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/07/2020] [Indexed: 12/12/2022]
Abstract
In this article, we predict the folding initiation events of the ribose phosphatase domain of protein Nsp3 and the receptor binding domain of the spike protein from the severe acute respiratory syndrome (SARS) coronavirus-2. The calculations employ the sequential collapse model and the crystal structures to identify the segments involved in the initial contact formation events of both viral proteins. The initial contact locations may provide good targets for therapeutic drug development. The proposed strategy is based on a drug binding to the contact location, thereby aiming to prevent protein folding. Peptides are suggested as a natural choice for such protein folding interdiction drugs.
Collapse
Affiliation(s)
| | - Herschel A. Rabitz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United
States
| |
Collapse
|
3
|
Wapling J, Srivastava S, Shehu-Xhilaga M, Tachedjian G. Targeting Human Immunodeficiency Virus Type 1 Assembly, Maturation and Budding. Drug Target Insights 2017. [DOI: 10.1177/117739280700200020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Johanna Wapling
- Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia
- Department of Microbiology, Monash University, Clayton, Victoria 3168, Australia
| | - Seema Srivastava
- Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia
| | - Miranda Shehu-Xhilaga
- Department of Medicine, Monash University, Prahran, Victoria 3181, Australia
- Infectious Diseases Unit, Alfred Hospital, Prahran, Victoria 3181, Australia
| | - Gilda Tachedjian
- Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia
- Department of Microbiology, Monash University, Clayton, Victoria 3168, Australia
- Department of Medicine, Monash University, Prahran, Victoria 3181, Australia
| |
Collapse
|
4
|
Caldarini M, Sonar P, Valpapuram I, Tavella D, Volonté C, Pandini V, Vanoni M, Aliverti A, Broglia R, Tiana G, Cecconi C. The complex folding behavior of HIV-1-protease monomer revealed by optical-tweezer single-molecule experiments and molecular dynamics simulations. Biophys Chem 2014; 195:32-42. [DOI: 10.1016/j.bpc.2014.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/04/2014] [Accepted: 08/04/2014] [Indexed: 12/11/2022]
|
5
|
Sen S, Voorheis HP. Protein folding: understanding the role of water and the low Reynolds number environment as the peptide chain emerges from the ribosome and folds. J Theor Biol 2014; 363:169-87. [PMID: 25152217 DOI: 10.1016/j.jtbi.2014.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/20/2014] [Accepted: 07/25/2014] [Indexed: 11/19/2022]
Abstract
The mechanism of protein folding during early stages of the process has three determinants. First, moving water molecules obey the rules of low Reynolds number physics without an inertial component. Molecular movement is instantaneous and size insensitive. Proteins emerging from the ribosome move and rotate without an external force if they change shape, forming and propagating helical structures that increases translocational efficiency. Forward motion ceases when the shape change or propelling force ceases. Second, application of quantum field theory to water structure predicts the spontaneous formation of low density coherent units of fixed size that expel dissolved atmospheric gases. Structured water layers with both coherent and non-coherent domains, form a sheath around the new protein. The surface of exposed hydrophobic amino acids is protected from water contact by small nanobubbles of dissolved atmospheric gases, 5 or 6 molecules on average, that vibrate, attracting even widely separated resonating nanobubbles. This force results from quantum effects, appearing only when the system is within and interacts with an oscillating electromagnetic field. The newly recognized quantum force sharply bends the peptide and is part of a dynamic field determining the pathway of protein folding. Third, the force initiating the tertiary folding of proteins arises from twists at the position of each hydrophobic amino acid, that minimizes surface exposure of the hydrophobic amino acids and propagates along the protein. When the total bend reaches 360°, the leading segment of water sheath intersects the trailing segment. This steric self-intersection expels water from overlapping segments of the sheath and by Newton׳s second law moves the polypeptide chain in an opposite direction. Consequently, with very few exceptions that we enumerate and discuss, tertiary structures are absent from proteins without hydrophobic amino acids, which control the early stages of protein folding and the overall shape of protein. Consequently, proteins only adopt a limited number of forms. The formation of quaternary structures is not necessarily prevented by the absence of hydrophobic amino acids.
Collapse
Affiliation(s)
| | - H Paul Voorheis
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
6
|
Mata-Munguía C, Escoto-Delgadillo M, Torres-Mendoza B, Flores-Soto M, Vázquez-Torres M, Gálvez-Gastelum F, Viniegra-Osorio A, Castillero-Manzano M, Vázquez-Valls E. Natural polymorphisms and unusual mutations in HIV-1 protease with potential antiretroviral resistance: a bioinformatic analysis. BMC Bioinformatics 2014; 15:72. [PMID: 24629078 PMCID: PMC4003850 DOI: 10.1186/1471-2105-15-72] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 03/05/2014] [Indexed: 11/22/2022] Open
Abstract
Background The correlations of genotypic and phenotypic tests with treatment, clinical history and the significance of mutations in viruses of HIV-infected patients are used to establish resistance mutations to protease inhibitors (PIs). Emerging mutations in human immunodeficiency virus type 1 (HIV-1) protease confer resistance to PIs by inducing structural changes at the ligand interaction site. The aim of this study was to establish an in silico structural relationship between natural HIV-1 polymorphisms and unusual HIV-1 mutations that confer resistance to PIs. Results Protease sequences isolated from 151 Mexican HIV-1 patients that were naïve to, or subjected to antiretroviral therapy, were examined. We identified 41 unrelated resistance mutations with a prevalence greater than 1%. Among these mutations, nine exhibited positive selection, three were natural polymorphisms (L63S/V/H) in a codon associated with drug resistance, and six were unusual mutations (L5F, D29V, L63R/G, P79L and T91V). The D29V mutation, with a prevalence of 1.32% in the studied population, was only found in patients treated with antiretroviral drugs. Using in silico modelling, we observed that D29V formed unstable protease complexes when were docked with lopinavir, saquinavir, darunavir, tipranavir, indinavir and atazanavir. Conclusions The structural correlation of natural polymorphisms and unusual mutations with drug resistance is useful for the identification of HIV-1 variants with potential resistance to PIs. The D29V mutation likely confers a selection advantage in viruses; however, in silico, presence of this mutation results in unstable enzyme/PI complexes, that possibly induce resistance to PIs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Eduardo Vázquez-Valls
- Laboratorio de Inmunodeficiencias y Retrovirus Humanos, Centro de Investigación Biomédica de Occidente, CMNO, IMSS, Guadalajara 44340, México.
| |
Collapse
|
7
|
Kimura S, Broglia RA, Tiana G. Thermodynamics of strongly allosteric inhibition: a model study of HIV-1 protease. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2012; 41:991-1001. [PMID: 23052976 DOI: 10.1007/s00249-012-0862-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/04/2012] [Accepted: 09/07/2012] [Indexed: 06/01/2023]
Abstract
Protein inhibitors that shift the thermodynamic equilibrium towards a denatured state escape, in general, the straightforward framework of competitive or allosteric inhibitors. The equilibrium properties of peptides which compete with the folding, or more precisely destabilize the native state, of the human immunodeficiency virus (HIV)-1 protease monomer are studied within a structure-based model. The effect of peptides that disrupt the hydrophobic core of the protein can still be summarized in terms of an inhibition constant, which depends on the thermal stability of the protein. The state of the protein denatured by such a peptide is more structured than its intrinsic denatured state, but displays the same degree of compactness. Peptides that target less buried regions of the protein are less efficient and display a more complex thermodynamics that cannot be captured in a simple way.
Collapse
Affiliation(s)
- S Kimura
- Department of Physics, University of Milano, via Celoria 16, 20133 Milan, Italy
| | | | | |
Collapse
|
8
|
Borkar A, Rout MK, Hosur RV. Denaturation of HIV-1 Protease (PR) Monomer by Acetic Acid: Mechanistic and Trajectory Insights from Molecular Dynamics Simulations and NMR. J Biomol Struct Dyn 2012; 29:893-903. [DOI: 10.1080/073911012010525025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Borkar AN, Rout MK, Hosur RV. Visualization of early events in acetic acid denaturation of HIV-1 protease: a molecular dynamics study. PLoS One 2011; 6:e19830. [PMID: 21738569 PMCID: PMC3126794 DOI: 10.1371/journal.pone.0019830] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 04/18/2011] [Indexed: 11/22/2022] Open
Abstract
Protein denaturation plays a crucial role in cellular processes. In this study, denaturation of HIV-1 Protease (PR) was investigated by all-atom MD simulations in explicit solvent. The PR dimer and monomer were simulated separately in 9 M acetic acid (9 M AcOH) solution and water to study the denaturation process of PR in acetic acid environment. Direct visualization of the denaturation dynamics that is readily available from such simulations has been presented. Our simulations in 9 M AcOH reveal that the PR denaturation begins by separation of dimer into intact monomers and it is only after this separation that the monomer units start denaturing. The denaturation of the monomers is flagged off by the loss of crucial interactions between the α-helix at C-terminal and surrounding β-strands. This causes the structure to transit from the equilibrium dynamics to random non-equilibrating dynamics. Residence time calculations indicate that denaturation occurs via direct interaction of the acetic acid molecules with certain regions of the protein in 9 M AcOH. All these observations have helped to decipher a picture of the early events in acetic acid denaturation of PR and have illustrated that the α-helix and the β-sheet at the C-terminus of a native and functional PR dimer should maintain both the stability and the function of the enzyme and thus present newer targets for blocking PR function.
Collapse
Affiliation(s)
- Aditi Narendra Borkar
- Institute of Bioinformatics and Biotechnology, University of Pune, Ganeshkhind, Pune, India
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, India
| | - Manoj Kumar Rout
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, India
| | - Ramakrishna V. Hosur
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, India
- UM-DAE Centre for Excellence in Basic Sciences, Mumbai University Campus, Kalina, Santa Cruz Mumbai, India
- * E-mail:
| |
Collapse
|
10
|
Bonomi M, Barducci A, Gervasio FL, Parrinello M. Multiple routes and milestones in the folding of HIV-1 protease monomer. PLoS One 2010; 5:e13208. [PMID: 20967249 PMCID: PMC2954147 DOI: 10.1371/journal.pone.0013208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 09/11/2010] [Indexed: 11/25/2022] Open
Abstract
Proteins fold on a time scale incompatible with a mechanism of random search in conformational space thus indicating that somehow they are guided to the native state through a funneled energetic landscape. At the same time the heterogeneous kinetics suggests the existence of several different folding routes. Here we propose a scenario for the folding mechanism of the monomer of HIV–1 protease in which multiple pathways and milestone events coexist. A variety of computational approaches supports this picture. These include very long all-atom molecular dynamics simulations in explicit solvent, an analysis of the network of clusters found in multiple high-temperature unfolding simulations and a complete characterization of free-energy surfaces carried out using a structure-based potential at atomistic resolution and a combination of metadynamics and parallel tempering. Our results confirm that the monomer in solution is stable toward unfolding and show that at least two unfolding pathways exist. In our scenario, the formation of a hydrophobic core is a milestone in the folding process which must occur along all the routes that lead this protein towards its native state. Furthermore, the ensemble of folding pathways proposed here substantiates a rational drug design strategy based on inhibiting the folding of HIV–1 protease.
Collapse
Affiliation(s)
- Massimiliano Bonomi
- Computational Science, Department of Chemistry and Applied Biosciences, ETH Zurich, Lugano, Switzerland.
| | | | | | | |
Collapse
|
11
|
Brouillet S, Valere T, Ollivier E, Marsan L, Vanet A. Co-lethality studied as an asset against viral drug escape: the HIV protease case. Biol Direct 2010; 5:40. [PMID: 20565756 PMCID: PMC2898770 DOI: 10.1186/1745-6150-5-40] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 06/17/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Co-lethality, or synthetic lethality is the documented genetic situation where two, separately non-lethal mutations, become lethal when combined in one genome. Each mutation is called a "synthetic lethal" (SL) or a co-lethal. Like invariant positions, SL sets (SL linked couples) are choice targets for drug design against fast-escaping RNA viruses: mutational viral escape by loss of affinity to the drug may induce (synthetic) lethality. RESULTS From an amino acid sequence alignment of the HIV protease, we detected the potential SL couples, potential SL sets, and invariant positions. From the 3D structure of the same protein we focused on the ones that were close to each other and accessible on the protein surface, to possibly bind putative drugs. We aligned 24,155 HIV protease amino acid sequences and identified 290 potential SL couples and 25 invariant positions. After applying the distance and accessibility filter, three candidate drug design targets of respectively 7 (under the flap), 4 (in the cantilever) and 5 (in the fulcrum) amino acid positions were found. CONCLUSIONS These three replication-critical targets, located outside of the active site, are key to our anti-escape strategy. Indeed, biological evidence shows that 2/3 of those target positions perform essential biological functions. Their mutational variations to escape antiviral medication could be lethal, thus limiting the apparition of drug-resistant strains. REVIEWERS This article was reviewed by Arcady Mushegian, Shamil Sunyaev and Claus Wilke.
Collapse
|
12
|
Abstract
Progress in understanding protein folding allows to simulate, with atomic detail, the evolution of amino-acid sequences folding to a given native conformation. A particularly attractive example is the HIV-1 protease, main target of therapies to fight AIDS, which under drug pressure is able to develop resistance within few months from the starting of therapy. By comparing the results of simulations of the evolution of the protease with the corresponding proteomic data, one can approximately determine the value of the associated evolution pressure under which the enzyme has become and, as a consequence, map out the energy landscape in sequence space of the HIV-1 protease. It is found that there are several families of sequences folding to the native conformations of the enzyme. Each of these families are characterized by different sets of highly conserved ("hot") amino acids which play a critical role in the folding and stability of the protease. There are two main possibilities for the virus to move from one family to a different one: (a) in a single generation, through the concerted mutations of the hot amino acids, a highly unlikely event, (b) through a folding path (if it exists), again a very improbable event. In fact, the number of generations needed by the virus to change stepwise its sequence from one family to another is astronomically large. These results point to the "hot" segments of the protease as promising targets for a nonconventional inhibition strategy, likely not to create resistance.
Collapse
Affiliation(s)
- G Tiana
- Department of Physics, University of Milano and INFN, via Celoria 16, 20133 Milano, Italy.
| | | |
Collapse
|
13
|
Identification of the folding inhibitors of hen-egg lysozyme: gathering the right tools. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:911-9. [PMID: 19326112 DOI: 10.1007/s00249-009-0441-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/03/2009] [Accepted: 03/09/2009] [Indexed: 10/21/2022]
Abstract
The unfolded state of proteins displays a surprisingly rich amount of local native structure, which appears to be critical for driving the protein to its native state. Peptides with the same sequence of the corresponding structured segments can be used to interfere with the correct folding of the protein. Using model simulations, we investigate the folding of hen-egg lysozyme, identifying its key segments. Activity assays, NMR and circular dichroism experiments are used to screen the peptides which are able to inhibit the folding of lysozyme. Few peptides, corresponding to the segments of the protein which are structured in the unfolded state, are identified to have significant inhibitory effects.
Collapse
|
14
|
Caldarini M, Vasile F, Provasi D, Longhi R, Tiana G, Broglia RA. Identification and characterization of folding inhibitors of hen egg lysozyme: an example of a new paradigm of drug design. Proteins 2009; 74:390-9. [PMID: 18623063 DOI: 10.1002/prot.22161] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Studies of protein folding indicate the presence of native contacts in the denatured state, giving rise to folding elements which contribute to the accomplishment of the native state. The possibility of finding molecules which can interact with specific folding elements of a target protein preventing it from reaching its native state, and hence from becoming biologically active, is particularly attractive. The notion that folding elements not only provide molecular recognition directing the folding process, but also have conserved sequence, implies that targeting such elements will make protein folding inhibitors less susceptible to mutations which, in many cases, abrogate drug effects. The folding-inhibition strategy can lead to a truly novel and rational approach to drug design, aside from providing new insight into folding. This is illustrated in the case of hen egg lysozyme.
Collapse
Affiliation(s)
- M Caldarini
- Department of Physics, University of Milano and INFN, via Celoria 16, 20133 Milano, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Verkhivker G. Computational proteomics analysis of binding mechanisms and molecular signatures of the HIV-1 protease drugs. Artif Intell Med 2009; 45:197-206. [DOI: 10.1016/j.artmed.2008.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 08/12/2008] [Accepted: 08/19/2008] [Indexed: 11/25/2022]
|
16
|
Kaushik-Basu N, Basu A, Harris D. Peptide inhibition of HIV-1: current status and future potential. BioDrugs 2008; 22:161-75. [PMID: 18481899 DOI: 10.2165/00063030-200822030-00003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
More than 2 decades of intensive research has focused on defining replication mechanisms of HIV type 1 (HIV-1), the etiologic agent of AIDS. The delineation of strategies for combating this viral infection has yielded many innovative approaches toward this end. HIV-1 is a lentivirus in the family retroviridae that is relatively small with regard to both structure and genome size, having a diploid RNA genome of approximately 9 kb, with only three major genes and several gene products resulting from alternate splicing and translational frameshifting. Most marketed drugs for treating AIDS are inhibitors of HIV-1 reverse transcriptase or protease enzymes, but new targets include the integrase enzyme, cell surface interactions that facilitate viral entry, and also virus particle maturation and assembly. The emergence of drug-resistant variants of HIV-1 has been the main impediment to successful treatment of AIDS. Thus, there is a pressing need to develop novel treatment strategies targeting multiple stages of the virus life-cycle. Research efforts aimed at developing successful means for combating HIV-1 infection have included development of peptide inhibitors of HIV-1. This article summarizes past and current endeavors in the development of peptides that inhibit replication of HIV-1 and the role of peptide inhibitors in the search for new anti-HIV drugs.
Collapse
Affiliation(s)
- Neerja Kaushik-Basu
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA.
| | | | | |
Collapse
|
17
|
Abstract
Biochemical experiments have recently revealed that the p-S8 peptide, with an amino-acid sequence identical to the conserved fragment 83-93 (S8) of the HIV-1 protease, can inhibit catalytic activity of the enzyme by interfering with protease folding and dimerization. In this study, we introduce a hierarchical modeling approach for understanding the molecular basis of the HIV-1 protease folding inhibition. Coarse-grained molecular docking simulations of the flexible p-S8 peptide with the ensembles of HIV-1 protease monomers have revealed structurally different complexes of the p-S8 peptide, which can be formed by targeting the conserved segment 24-34 (S2) of the folding nucleus (folding inhibition) and by interacting with the antiparallel termini beta-sheet region (dimerization inhibition). All-atom molecular dynamics simulations of the inhibitor complexes with the HIV-1 PR monomer have been independently carried out for the predicted folding and dimerization binding modes of the p-S8 peptide, confirming the thermodynamic stability of these complexes. Binding free-energy calculations of the p-S8 peptide and its active analogs are then performed using molecular dynamics trajectories of the peptide complexes with the HIV-1 PR monomers. The results of this study have provided a plausible molecular model for the inhibitor intervention with the HIV-1 PR folding and dimerization and have accurately reproduced the experimental inhibition profiles of the active folding inhibitors.
Collapse
|
18
|
Broglia RA, Levy Y, Tiana G. HIV-1 protease folding and the design of drugs which do not create resistance. Curr Opin Struct Biol 2008; 18:60-6. [DOI: 10.1016/j.sbi.2007.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 10/29/2007] [Indexed: 10/22/2022]
|
19
|
Yan MC, Sha Y, Wang J, Xiong XQ, Ren JH, Cheng MS. Molecular dynamics simulations of HIV‐1 protease monomer: Assembly of N‐terminus and C‐terminus into β‐sheet in water solution. Proteins 2008; 70:731-8. [PMID: 17729281 DOI: 10.1002/prot.21539] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
HIV-1 protease (HIV-PR) consists of two identical subunits that are united together through a four-stranded antiparallel beta-sheet formed of the peptide termini of each monomer. Since the active site exists only in the dimer, a strategy that is attracting more and more attention in inhibitor design and which may overcome the serious drug resistance caused by competitive inhibitors is to block the peptide termini of the monomer, thereby interfering with formation of the active dimer. In the present work, we performed several extensive molecular dynamics (MD) simulations of the HIV-PR monomer in water to illustrate its solvated conformation and dynamics behavior. We found that the peptide termini usually assembled into beta-sheet after several nanoseconds' simulation, and became much less flexible. This beta-sheet is stabilized by intramolecular interactions and is not easily disaggregated under the present MD simulation conditions. This transformation may be an important transition during the relaxing and equilibrating of the HIV-PR monomer in aqueous solution, and the terminal beta-sheet may be one of the major conformations of the solvated HIV-PR monomer termini in water. This work may provide new insights into the dynamics behavior and dimerization mechanism of HIV-PR, and more significantly, offer a more rational receptor model for the design and discovery of novel dimerization inhibitors than crystalline structures.
Collapse
Affiliation(s)
- Mao-Cai Yan
- Key Laboratory of New Drugs Design and Discovery of Liaoning Province, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | | | | | | | | | | |
Collapse
|
20
|
Wapling J, Srivastava S, Shehu-Xhilaga M, Tachedjian G. Targeting human immunodeficiency virus type 1 assembly, maturation and budding. Drug Target Insights 2007; 2:159-82. [PMID: 21901072 PMCID: PMC3155237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The targets for licensed drugs used for the treatment of human immunodeficiency virus type 1 (HIV-1) are confined to the viral reverse transcriptase (RT), protease (PR), and the gp41 transmembrane protein (TM). While currently approved drugs are effective in controlling HIV-1 infections, new drug targets and agents are needed due to the eventual emergence of drug resistant strains and drug toxicity. Our increased understanding of the virus life-cycle and how the virus interacts with the host cell has unveiled novel mechanisms for blocking HIV-1 replication. This review focuses on inhibitors that target the late stages of virus replication including the synthesis and trafficking of the viral polyproteins, viral assembly, maturation and budding. Novel approaches to blocking the oligomerization of viral enzymes and the interactions between viral proteins and host cell factors, including their feasibility as drug targets, are discussed.
Collapse
Affiliation(s)
- Johanna Wapling
- Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia,Department of Microbiology, Monash University, Clayton, Victoria 3168, Australia
| | - Seema Srivastava
- Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia
| | - Miranda Shehu-Xhilaga
- Department of Medicine, Monash University, Prahran, Victoria 3181, Australia,Infectious Diseases Unit, Alfred Hospital, Prahran, Victoria 3181, Australia
| | - Gilda Tachedjian
- Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia,Department of Microbiology, Monash University, Clayton, Victoria 3168, Australia,Department of Medicine, Monash University, Prahran, Victoria 3181, Australia,Correspondence: Gilda Tachedjian, Ph.D., Molecular Interactions Group, The Macfarlane Burnet Institute for Medical Research and Public Health, GPO Box 2284, Melbourne, Victoria, 3001, Australia. Tel: 61 3 9282 2256; Fax: 61 3 9282 2100;
| |
Collapse
|
21
|
Bonomi M, Gervasio FL, Tiana G, Provasi D, Broglia RA, Parrinello M. Insight into the folding inhibition of the HIV-1 protease by a small peptide. Biophys J 2007; 93:2813-21. [PMID: 17573430 PMCID: PMC1989711 DOI: 10.1529/biophysj.107.106369] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has recently been shown that the highly protected segments 24-34 (S2) and 83-93 (S8) of each of the two 99-mers of human immunodeficiency virus type 1 protease play an essential role in the folding of the monomers, giving rise to the so-called (postcritical) folding nucleus ((FN) minimum condensation unit ensuring folding) when they dock. This scenario received further support from model calculations that demonstrated that the peptide p-S8, displaying an amino acid sequence identical to the corresponding (83-93) segment of the monomer, can be used to interfere with the formation of the FN and eventually to inhibit folding by docking the fragment 24-34. Experiments in vitro and in cells infected with ex vivo wild-type and multiresistant HIV isolates confirm that the inhibition power of p-S8 is robust. On the other hand, there is no direct evidence demonstrating the validity of the proposed mechanism of inhibition associated with p-S8. To shed light on this question and to provide the basis for the design of a molecule mimetic to p-S8, to be used as lead of an eventual drug against AIDS, we study, in this paper, with the help of all-atom simulations in explicit solvent and the novel method of metadynamics combined with parallel tempering: a), the free energy and the equilibrium structure of each of the peptides p-S2 and p-S8; b), the details of the docking mechanism of the two peptides and the free energy associated with this process. Whereas p-S8 is found to be well structured, p-S2 is rather flexible, wrapping itself around p-S8 to give rise to the FN, which is stabilized by three particular hydrogen bonds.
Collapse
Affiliation(s)
- Massimiliano Bonomi
- Computational Science, Department of Chemistry and Applied Biosciences, ETH Zürich, Lugano, Switzerland.
| | | | | | | | | | | |
Collapse
|
22
|
Broglia RA, Tiana G, Sutto L, Provasi D, Perelli V. Low-throughput model design of protein folding inhibitors. Proteins 2007; 67:469-78. [PMID: 17295323 DOI: 10.1002/prot.21275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The stabilization energy of proteins in their native conformation is not distributed uniformly among all the amino acids, but is concentrated in few (short) fragments, fragments which play a key role in the folding process and in the stability of the protein. Peptides displaying the same sequence as these key fragments can compete with the formation of the most important native contacts, destabilizing the protein and thus inhibiting its biological activity. We present an essentially automatic method to individuate such peptidic inhibitors based on a low-throughput screening of the fragments which build the target protein. The efficiency and generality of the method is tested on proteins Src-SH3, G, CI2, and HIV-1-PR with the help of a simplified computational model. In each of the cases studied, we find few peptides displaying strong inhibitory properties, properties which are quite robust with respect to point mutations. The possibility of implementing the method through low-throughput experimental screening of the target protein is discussed.
Collapse
Affiliation(s)
- R A Broglia
- Department of Physics, University of Milano and INFN, sez. di Milano, Milano 20133, Italy
| | | | | | | | | |
Collapse
|
23
|
Abstract
Simplified Gō models, where only native contacts interact favorably, have proven useful to characterize some aspects of the folding of small proteins. The success of these models is limited by the fact that all residues interact in the same way so that the folding features of a protein are determined only by the geometry of its native conformation. We present an extended version of a Calpha-based Gō model where different residues interact with different energies. The model is used to calculate the thermodynamics of three small proteins (Protein G, Src-SH3, and CI2) and the effect of mutations (DeltaDeltaGU-N, DeltaDeltaGdouble dagger-N, DeltaDeltaGdouble dagger-U, and phi-values) on the wild-type sequence. The model allows us to investigate some of the most controversial areas in protein folding, such as its earliest stages and the nature of the unfolded state, subjects that have lately received particular attention.
Collapse
Affiliation(s)
- Ludovico Sutto
- Deparmtne of Physics, University of Milano and INFN, Italy
| | | | | |
Collapse
|
24
|
Broglia RA, Provasi D, Vasile F, Ottolina G, Longhi R, Tiana G. A folding inhibitor of the HIV-1 protease. Proteins 2005; 62:928-33. [PMID: 16385559 DOI: 10.1002/prot.20849] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Because the human immunodeficiency virus type 1 protease (HIV-1-PR) is an essential enzyme in the viral life cycle, its inhibition can control AIDS. The folding of single-domain proteins, like each of the monomers forming the HIV-1-PR homodimer, is controlled by local elementary structures (LES, folding units stabilized by strongly interacting, highly conserved, as a rule hydrophobic, amino acids). These LES have evolved over myriad generations to recognize and strongly attract each other, so as to make the protein fold fast and be stable in its native conformation. Consequently, peptides displaying a sequence identical to those segments of the monomers associated with LES are expected to act as competitive inhibitors and thus destabilize the native structure of the enzyme. These inhibitors are unlikely to lead to escape mutants as they bind to the protease monomers through highly conserved amino acids, which play an essential role in the folding process. The properties of one of the most promising inhibitors of the folding of the HIV-1-PR monomers found among these peptides are demonstrated with the help of spectrophotometric assays and circular dichroism spectroscopy.
Collapse
Affiliation(s)
- R A Broglia
- Dipartimento di Fisica, Università di Milano, Milan, Italy
| | | | | | | | | | | |
Collapse
|