1
|
Cabrera Y, Bernardo-Seisdedos G, Dublang L, Albesa-Jové D, Orozco N, Rosa Viguera A, Millet O, Muga A, Moro F. Fine-tuning of the Hsc70-based human protein disaggregase machinery by the distinctive C-terminal extension of Apg2. J Mol Biol 2022; 434:167841. [PMID: 36167183 DOI: 10.1016/j.jmb.2022.167841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 10/31/2022]
Abstract
Apg2, one of the three cytosolic Hsp110 chaperones in humans, supports reactivation of unordered and ordered protein aggregates by Hsc70 (HspA8). Together with DnaJB1, Apg2 serves to nucleate Hsc70 molecules into sites where productive entropic pulling forces can be developed. During aggregate reactivation, Apg2 performs as a specialized nucleotide exchange factor, but the origin of its specialization is poorly defined. Here we report on the role of the distinctive C-terminal extension present in Apg2 and other metazoan homologs. We found that the first part of this Apg2 subdomain with propensity to adopt α-helical structure interacts with the nucleotide binding domain of Hsc70 in a nucleotide-dependent manner, contributing significantly to the stability of the Hsc70:Apg2 complex. Moreover, the second intrinsically disordered segment of Apg2 C-terminal extension plays an important role as a downregulator of nucleotide exchange. An NMR analysis showed that the interaction with Hsc70 nucleotide binding domain modifies the chemical environment of residues located in important functional sites such as the interface between lobe I and II and the nucleotide binding site. Our data indicate that Apg2 C-terminal extension is a fine-tuner of human Hsc70 activity that optimizes the substrate remodeling ability of the chaperone system.
Collapse
Affiliation(s)
- Yovana Cabrera
- Instituto Biofisika (UPV/EHU, CSIC) y Dpto. de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Barrio Sarriena S/N, 48490 Leioa, Spain; Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 41390 Gothenburg, Sweden
| | | | - Leire Dublang
- Instituto Biofisika (UPV/EHU, CSIC) y Dpto. de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Barrio Sarriena S/N, 48490 Leioa, Spain
| | - David Albesa-Jové
- Instituto Biofisika (UPV/EHU, CSIC) y Dpto. de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Barrio Sarriena S/N, 48490 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Natalia Orozco
- Fundación Biofísica Bizkaia, Barrio Sarriena S/N, 48940 Leioa, Spain
| | - Ana Rosa Viguera
- Instituto Biofisika (UPV/EHU, CSIC) y Dpto. de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Barrio Sarriena S/N, 48490 Leioa, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism Lab, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Arturo Muga
- Instituto Biofisika (UPV/EHU, CSIC) y Dpto. de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Barrio Sarriena S/N, 48490 Leioa, Spain
| | - Fernando Moro
- Instituto Biofisika (UPV/EHU, CSIC) y Dpto. de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Barrio Sarriena S/N, 48490 Leioa, Spain.
| |
Collapse
|
2
|
Stetz G, Verkhivker GM. Computational Analysis of Residue Interaction Networks and Coevolutionary Relationships in the Hsp70 Chaperones: A Community-Hopping Model of Allosteric Regulation and Communication. PLoS Comput Biol 2017; 13:e1005299. [PMID: 28095400 PMCID: PMC5240922 DOI: 10.1371/journal.pcbi.1005299] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/06/2016] [Indexed: 12/28/2022] Open
Abstract
Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of allostery, we introduced a community-hopping model of allosteric communication. Atomistic reconstruction of signaling pathways in the DnaK structures captured a direction-specific mechanism and molecular details of signal transmission that are fully consistent with the mutagenesis experiments. The results of our study reconciled structural and functional experiments from a network-centric perspective by showing that global properties of the residue interaction networks and coevolutionary signatures may be linked with specificity and diversity of allosteric regulation mechanisms. The diversity of allosteric mechanisms in the Hsp70 proteins could range from modulation of the inter-domain interactions and conformational dynamics to fine-tuning of the Hsp70 interactions with co-chaperones. The goal of this study is to present a systematic computational analysis of the dynamic and evolutionary factors underlying allosteric structural transformations of the Hsp70 proteins. We investigated the relationship between functional dynamics, residue coevolution, and network organization of residue interactions in the Hsp70 proteins. The results of this study revealed that conformational dynamics of the Hsp70 proteins may be linked with coevolutionary propensities and mutual information dependencies of the protein residues. Modularity and connectivity of allosteric interactions in the Hsp70 chaperones are coordinated by stable functional sites that feature unique coevolutionary signatures and high network centrality. The emergence of the inter-domain communities that are coordinated by functional centers and include highly coevolving residues could facilitate structural transitions through cooperative reorganization of the local interacting modules. We determined that the differences in the modularity of the residue interactions and organization of coevolutionary networks in DnaK may be associated with variations in their allosteric mechanisms. The network signatures of the DnaK structures are characteristic of a population-shift allostery that allows for coordinated structural rearrangements of local communities. A dislocation of mediating centers and insufficient coevolutionary coupling between functional regions may render a reduced cooperativity and promote a limited entropy-driven allostery in the Sse1 chaperone that occurs without structural changes. The results of this study showed that a network-centric framework and a community-hopping model of allosteric communication pathways may provide novel insights into molecular and evolutionary principles of allosteric regulation in the Hsp70 proteins.
Collapse
Affiliation(s)
- Gabrielle Stetz
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
- Chapman University School of Pharmacy, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
3
|
Stetz G, Verkhivker GM. Probing Allosteric Inhibition Mechanisms of the Hsp70 Chaperone Proteins Using Molecular Dynamics Simulations and Analysis of the Residue Interaction Networks. J Chem Inf Model 2016; 56:1490-517. [DOI: 10.1021/acs.jcim.5b00755] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Gabrielle Stetz
- Graduate
Program in Computational and Data Sciences, Department of Computational
Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Gennady M. Verkhivker
- Graduate
Program in Computational and Data Sciences, Department of Computational
Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
- Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
4
|
Alderson TR, Kim JH, Markley JL. Dynamical Structures of Hsp70 and Hsp70-Hsp40 Complexes. Structure 2016; 24:1014-30. [PMID: 27345933 DOI: 10.1016/j.str.2016.05.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/05/2016] [Accepted: 05/10/2016] [Indexed: 12/25/2022]
Abstract
Protein misfolding and aggregation are pathological events that place a significant amount of stress on the maintenance of protein homeostasis (proteostasis). For prevention and repair of protein misfolding and aggregation, cells are equipped with robust mechanisms that mainly rely on molecular chaperones. Two classes of molecular chaperones, heat shock protein 70 kDa (Hsp70) and Hsp40, recognize and bind to misfolded proteins, preventing their toxic biomolecular aggregation and enabling refolding or targeted degradation. Here, we review the current state of structural biology of Hsp70 and Hsp40-Hsp70 complexes and examine the link between their structures, dynamics, and functions. We highlight the power of nuclear magnetic resonance spectroscopy to untangle complex relationships behind molecular chaperones and their mechanism(s) of action.
Collapse
Affiliation(s)
- Thomas Reid Alderson
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3TA, UK; Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jin Hae Kim
- National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John Lute Markley
- National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
5
|
Dancing through Life: Molecular Dynamics Simulations and Network-Centric Modeling of Allosteric Mechanisms in Hsp70 and Hsp110 Chaperone Proteins. PLoS One 2015; 10:e0143752. [PMID: 26619280 PMCID: PMC4664246 DOI: 10.1371/journal.pone.0143752] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/09/2015] [Indexed: 01/04/2023] Open
Abstract
Hsp70 and Hsp110 chaperones play an important role in regulating cellular processes that involve protein folding and stabilization, which are essential for the integrity of signaling networks. Although many aspects of allosteric regulatory mechanisms in Hsp70 and Hsp110 chaperones have been extensively studied and significantly advanced in recent experimental studies, the atomistic picture of signal propagation and energetics of dynamics-based communication still remain unresolved. In this work, we have combined molecular dynamics simulations and protein stability analysis of the chaperone structures with the network modeling of residue interaction networks to characterize molecular determinants of allosteric mechanisms. We have shown that allosteric mechanisms of Hsp70 and Hsp110 chaperones may be primarily determined by nucleotide-induced redistribution of local conformational ensembles in the inter-domain regions and the substrate binding domain. Conformational dynamics and energetics of the peptide substrate binding with the Hsp70 structures has been analyzed using free energy calculations, revealing allosteric hotspots that control negative cooperativity between regulatory sites. The results have indicated that cooperative interactions may promote a population-shift mechanism in Hsp70, in which functional residues are organized in a broad and robust allosteric network that can link the nucleotide-binding site and the substrate-binding regions. A smaller allosteric network in Hsp110 structures may elicit an entropy-driven allostery that occurs in the absence of global structural changes. We have found that global mediating residues with high network centrality may be organized in stable local communities that are indispensable for structural stability and efficient allosteric communications. The network-centric analysis of allosteric interactions has also established that centrality of functional residues could correlate with their sensitivity to mutations across diverse chaperone functions. This study reconciles a wide spectrum of structural and functional experiments by demonstrating how integration of molecular simulations and network-centric modeling may explain thermodynamic and mechanistic aspects of allosteric regulation in chaperones.
Collapse
|
6
|
Spectroscopic and thermodynamic properties of recombinant heat shock protein A6 from Camelus dromedarius. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 44:17-26. [DOI: 10.1007/s00249-014-0997-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 12/30/2022]
|
7
|
Decipher the mechanisms of protein conformational changes induced by nucleotide binding through free-energy landscape analysis: ATP binding to Hsp70. PLoS Comput Biol 2013; 9:e1003379. [PMID: 24348227 PMCID: PMC3861046 DOI: 10.1371/journal.pcbi.1003379] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 10/15/2013] [Indexed: 11/30/2022] Open
Abstract
ATP regulates the function of many proteins in the cell by transducing its binding and hydrolysis energies into protein conformational changes by mechanisms which are challenging to identify at the atomic scale. Based on molecular dynamics (MD) simulations, a method is proposed to analyze the structural changes induced by ATP binding to a protein by computing the effective free-energy landscape (FEL) of a subset of its coordinates along its amino-acid sequence. The method is applied to characterize the mechanism by which the binding of ATP to the nucleotide-binding domain (NBD) of Hsp70 propagates a signal to its substrate-binding domain (SBD). Unbiased MD simulations were performed for Hsp70-DnaK chaperone in nucleotide-free, ADP-bound and ATP-bound states. The simulations revealed that the SBD does not interact with the NBD for DnaK in its nucleotide-free and ADP-bound states whereas the docking of the SBD was found in the ATP-bound state. The docked state induced by ATP binding found in MD is an intermediate state between the initial nucleotide-free and final ATP-bound states of Hsp70. The analysis of the FEL projected along the amino-acid sequence permitted to identify a subset of 27 protein internal coordinates corresponding to a network of 91 key residues involved in the conformational change induced by ATP binding. Among the 91 residues, 26 are identified for the first time, whereas the others were shown relevant for the allosteric communication of Hsp70 s in several experiments and bioinformatics analysis. The FEL analysis revealed also the origin of the ATP-induced structural modifications of the SBD recently measured by Electron Paramagnetic Resonance. The pathway between the nucleotide-free and the intermediate state of DnaK was extracted by applying principal component analysis to the subset of internal coordinates describing the transition. The methodology proposed is general and could be applied to analyze allosteric communication in other proteins. The precise biophysical characterization of the mechanisms of the protein conformational changes controlled by a nucleotide remains a challenge in biology. Molecular dynamics simulations of proteins in different nucleotide-binding states contain information on the nucleotide-dependent conformational dynamics. However, it is difficult to extract relevant information about the conformation-induced mechanism from the raw molecular dynamics data. Herein, we addressed this issue for the major ATP-dependent molecular chaperones Hsp70 s, which contribute to crucial cellular processes and are involved in several neurodegenerative diseases and in cancer. To function, Hsp70 undergoes several conformational changes controlled by the state of its nucleotide-binding domain. We demonstrated that the analysis of the effective free-energy landscape of the protein projected along the amino-acid sequence and computed from the molecular dynamics simulations of Hsp70 in different nucleotide-binding states, holds the key to identify the key residues of the conformational induced pathway. Identification of the key residues involved in the propagation of the structural changes induced by ATP binding offer alternative druggable specific sites other than the ligand binding clefts. The methodology developed for Hsp70 is general and can be adapted to any ligand induced conformational change in proteins.
Collapse
|
8
|
Nicolaï A, Delarue P, Senet P. Conformational dynamics of full-length inducible human Hsp70 derived from microsecond molecular dynamics simulations in explicit solvent. J Biomol Struct Dyn 2013; 31:1111-26. [DOI: 10.1080/07391102.2012.726190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Srinivasan SR, Gillies A, Chang L, Thompson AD, Gestwicki JE. Molecular chaperones DnaK and DnaJ share predicted binding sites on most proteins in the E. coli proteome. MOLECULAR BIOSYSTEMS 2012; 8:2323-33. [PMID: 22732719 PMCID: PMC3462289 DOI: 10.1039/c2mb25145k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In Escherichia coli, the molecular chaperones DnaK and DnaJ cooperate to assist the folding of newly synthesized or unfolded polypeptides. DnaK and DnaJ bind to hydrophobic motifs in these proteins and they also bind to each other. Together, this system is thought to be sufficiently versatile to act on the entire proteome, which creates interesting challenges in understanding the interactions between DnaK, DnaJ and their thousands of potential substrates. To address this question, we computationally predicted the number and frequency of DnaK- and DnaJ-binding motifs in the E. coli proteome, guided by free energy-based binding consensus motifs. This analysis revealed that nearly every protein is predicted to contain multiple DnaK- and DnaJ-binding sites, with the DnaJ sites occurring approximately twice as often. Further, we found that an overwhelming majority of the DnaK sites partially or completely overlapped with the DnaJ-binding motifs. It is well known that high concentrations of DnaJ inhibit DnaK-DnaJ-mediated refolding. The observed overlapping binding sites suggest that this phenomenon may be explained by an important balance in the relative stoichiometry of DnaK and DnaJ. To test this idea, we measured the chaperone-assisted folding of two denatured substrates and found that the distribution of predicted DnaK- and DnaJ-binding sites was indeed a good predictor of the optimal stoichiometry required for folding. These studies provide insight into how DnaK and DnaJ might cooperate to maintain global protein homeostasis.
Collapse
Affiliation(s)
| | - Anne Gillies
- Chemical Biology Graduate Program, University of Michigan Ann Arbor, MI 48109
| | - Lyra Chang
- Chemical Biology Graduate Program, University of Michigan Ann Arbor, MI 48109
| | - Andrea D. Thompson
- Chemical Biology Graduate Program, University of Michigan Ann Arbor, MI 48109
| | - Jason E. Gestwicki
- Chemical Biology Graduate Program, University of Michigan Ann Arbor, MI 48109
- Department of Pathology and Biological Chemistry and the Life Sciences Institute, University of Michigan Ann Arbor, MI 48109
| |
Collapse
|
10
|
Tutar Y, Arslan D, Tutar L. Heat, pH induced aggregation and surface hydrophobicity of S. cerevesiae Ssa1 protein. Protein J 2011; 29:501-8. [PMID: 20835845 DOI: 10.1007/s10930-010-9280-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Heat shock protein 70 is a conserved protein among organisms. Hsp70 helps substrate proteins to fold correctly. Unfolded substrate proteins increase the probability of the aggregate formation. High level recombinant protein expression in biotechnology often leads insoluble inclusion bodies. To prevent aggregation and to obtain high levels of soluble proteins, Hsp co-expression with desired recombinant protein in yeast becomes a popular method. For this purpose, S. cerevesiae cytosolic Hsp70 (Ssa1) biochemical properties were characterized. Alteration of Ssa1 structure between ATP- and ADP-bound states regulates its function. Therefore, conformation-dependent Ssa1 hydrophobicity and as a result aggregation may also play a key role in Ssa1 function. Therefore, a combination of FTIR, acrylamide quenching, and ANS was used to investigate the effect of nucleotide binding on the structure of Ssa1. Ssa1 secondary structure alterations and hydrophobic properties in aqueous solutions with differing ionic strengths and temperature were also studied.
Collapse
Affiliation(s)
- Yusuf Tutar
- Department of Biochemistry, Faculty of Medicine, Cumhuriyet University, 58140, Sivas, Turkey.
| | | | | |
Collapse
|
11
|
Abstract
Molecular chaperones of the Hsp70 family have diverse functions in cells. They assist the folding of newly synthesized and stress-denatured proteins, as well as the import of proteins into organelles, and the dissociation of aggregated proteins. The well-conserved Hsp70 chaperones are ATP dependent: binding and hydrolysis of ATP regulates their interactions with unfolded polypeptide substrates, and ATPase cycling is necessary for their function. All cellular functions of Hsp70 chaperones use the same mechanism of ATP-driven polypeptide binding and release. The Hsp40 co-chaperones stimulate ATP hydrolysis by Hsp70 and the type 1 Hsp40 proteins are conserved from Escherichia coli to humans. Various nucleotide exchange factors also promote the Hsp70 ATPase cycle. Recent advances have added to our understanding of the Hsp70 mechanism at a molecular level.
Collapse
Affiliation(s)
- Jason C Young
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
12
|
Álamo MMD, Sánchez-Gorostiaga A, Serrano AM, Prieto A, Cuéllar J, Martín-Benito J, Valpuesta JM, Giraldo R. Structural analysis of the interactions between hsp70 chaperones and the yeast DNA replication protein Orc4p. J Mol Biol 2010; 403:24-39. [PMID: 20732327 DOI: 10.1016/j.jmb.2010.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/29/2010] [Accepted: 08/11/2010] [Indexed: 12/11/2022]
Abstract
Hsp70 chaperones, besides their role in assisting protein folding, are key modulators of protein disaggregation, being consistently found as components of most macromolecular assemblies isolated in proteome-wide affinity purifications. A wealth of structural information has been recently acquired on Hsp70s complexed with Hsp40 and NEF co-factors and with small hydrophobic target peptides. However, knowledge of how Hsp70s recognize large protein substrates is still limited. Earlier, we reported that homologue Hsp70 chaperones (DnaK in Escherichia coli and Ssa1-4p/Ssb1-2p in Saccharomyces cerevisiae) bind strongly, both in vitro and in vivo, to the AAA+ domain in the Orc4p subunit of yeast origin recognition complex (ORC). ScORC is the paradigm for eukaryotic DNA replication initiators and consists of six distinct protein subunits (ScOrc1p-ScOrc 6p). Here, we report that a hydrophobic sequence (IL(4)) in the initiator specific motif (ISM) in Orc4p is the main target for DnaK/Hsp70. The three-dimensional electron microscopy reconstruction of a stable Orc4p(2)-DnaK complex suggests that the C-terminal substrate-binding domain in the chaperone clamps the AAA+ IL(4) motif in one Orc4p molecule, with the substrate-binding domain lid subdomain wedging apart the other Orc4p subunit. Pairwise co-expression in E. coli shows that Orc4p interacts with Orc1/2/5p. Mutation of IL(4) selectively disrupts Orc4p interaction with Orc2p. Allelic substitution of ORC4 by mutants in each residue of IL(4) results in lethal (I184A) or thermosensitive (L185A and L186A) initiation-defective phenotypes in vivo. The interplay between Hsp70 chaperones and the Orc4p-IL(4) motif might have an adaptor role in the sequential, stoichiometric assembly of ScORC subunits.
Collapse
Affiliation(s)
- María Moreno-Del Álamo
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas - CSIC, C/ Ramiro de Maeztu, 9, E-28040 Madrid, Spain
| | - Alicia Sánchez-Gorostiaga
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas - CSIC, C/ Ramiro de Maeztu, 9, E-28040 Madrid, Spain
| | - Ana M Serrano
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas - CSIC, C/ Ramiro de Maeztu, 9, E-28040 Madrid, Spain
| | - Alicia Prieto
- Department of Environmental Biology, Centro de Investigaciones Biológicas - CSIC, C/ Ramiro de Maeztu, 9, E-28040 Madrid, Spain
| | - Jorge Cuéllar
- Department of Macromolecular Structures, Centro Nacional de Biotecnología - CSIC, C/ Darwin, 3, E-28049 Madrid, Spain
| | - Jaime Martín-Benito
- Department of Macromolecular Structures, Centro Nacional de Biotecnología - CSIC, C/ Darwin, 3, E-28049 Madrid, Spain
| | - José M Valpuesta
- Department of Macromolecular Structures, Centro Nacional de Biotecnología - CSIC, C/ Darwin, 3, E-28049 Madrid, Spain
| | - Rafael Giraldo
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas - CSIC, C/ Ramiro de Maeztu, 9, E-28040 Madrid, Spain.
| |
Collapse
|
13
|
Taneva SG, Moro F, Velázquez-Campoy A, Muga A. Energetics of nucleotide-induced DnaK conformational states. Biochemistry 2010; 49:1338-45. [PMID: 20078127 DOI: 10.1021/bi901847q] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hsp70 chaperones are molecular switches that use the free energy of ATP binding and hydrolysis to modulate their affinity for protein substrates and, most likely, to remodel non-native interactions allowing proper substrate folding. By means of isothermal titration calorimetry, we have measured the thermodynamics of ATP and ADP binding to (i) wild-type DnaK, the main bacterial Hsp70; (ii) two single-point mutants, DnaK(T199A), which lacks ATPase activity but maintains conformational changes similar to those observed in the wild-type protein, and DnaK(R151A), defective in interdomain communication; and iii) two deletion mutants, the isolated nucleotide binding domain (K-NBD) and a DeltaLid construct [DnaK(1-507)]. At 25 degrees C, ATP binding to DnaK results in a fast endothermic and a slow exothermic process due to ATP hydrolysis. We demonstrate that the endothermic event is due to the allosteric coupling between ATP binding to the nucleotide binding domain and the conformational rearrangement of the substrate binding domain. The interpretation of our data is compatible with domain docking upon ATP binding and shows that this conformational change carries an energy penalty of ca. 1 kcal/mol. The conformational energy stored in the ATP-bound DnaK state, together with the free energy of ATP hydrolysis, can be used in remodeling bound substrates.
Collapse
Affiliation(s)
- Stefka G Taneva
- Unidad de Biofsica (CSIC/UPV-EHU) y Departamento de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain
| | | | | | | |
Collapse
|
14
|
Allosteric coupling between the lid and interdomain linker in DnaK revealed by inhibitor binding studies. J Bacteriol 2008; 191:1456-62. [PMID: 19103929 DOI: 10.1128/jb.01131-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The molecular chaperone DnaK assists protein folding and refolding, translocation across membranes, and regulation of the heat shock response. In Escherichia coli, the protein is a target for insect-derived antimicrobial peptides, pyrrhocoricins. We present here the X-ray crystallographic analysis of the E. coli DnaK substrate-binding domain in complex with pyrrhocoricin-derived peptide inhibitors. The structures show that pyrrhocoricins act as site-specific, dual-mode (competitive and allosteric) inhibitors, occupying the substrate-binding tunnel and disrupting the latch between the lid and the beta-sandwich. Our structural analysis revealed an allosteric coupling between the movements of the lid and the interdomain linker, identifying a previously unknown mechanism of the lid-mediated regulation of the chaperone cycle.
Collapse
|
15
|
Cherepanov AV, Doroshenko EV, Matysik J, de Vries S, De Groot HJM. A view on phosphate ester photochemistry by time-resolved solid state NMR. Intramolecular redox reaction of caged ATP. Phys Chem Chem Phys 2008; 10:6820-8. [PMID: 19015786 DOI: 10.1039/b806677a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The light-driven intramolecular redox reaction of adenosine-5'-triphosphate-[P3-(1-(2-nitrophenyl)-ethyl)]ester (caged ATP) has been studied in frozen aqueous solution using time-resolved solid state NMR spectroscopy under continuous illumination conditions. Cleavage of the phosphate ester bond leads to 0.3, 1.36, and 6.06 ppm downfield shifts of the alpha-, beta-, and gamma-phosphorus resonances of caged ATP, respectively. The observed rate of ATP formation is 2.4 +/- 0.2 h(-1) at 245 K. The proton released in the reaction binds to the triphosphate moiety of the nascent ATP, causing the upfield shifts of the 31P resonances. Analyses of the reaction kinetics indicate that bond cleavage and proton release are two sequential processes in the solid state, suggesting that the 1-hydroxy,1-(2-nitrosophenyl)-ethyl carbocation intermediate is involved in the reaction. The beta-phosphate oxygen atom of ATP is protonated first, indicating its proximity to the reaction center, possibly within hydrogen bonding distance. The residual linewidth kinetics are interpreted in terms of chemical exchange processes, hydrogen bonding of the beta-phosphate oxygen atom and evolution of the hydrolytic equilibrium at the triphosphate moiety of the nascent ATP. Photoreaction of caged ATP in situ gives an opportunity to study structural kinetics and catalysis of ATP-dependent enzymes by NMR spectroscopy in rotating solids.
Collapse
Affiliation(s)
- Alexey V Cherepanov
- Biophysical Organic Chemistry/Solid State NMR group, Leiden Institute of Chemistry, Faculty of Mathematics and Natural Sciences, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Chang YW, Sun YJ, Wang C, Hsiao CD. Crystal structures of the 70-kDa heat shock proteins in domain disjoining conformation. J Biol Chem 2008; 283:15502-11. [PMID: 18400763 PMCID: PMC3258884 DOI: 10.1074/jbc.m708992200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 03/31/2008] [Indexed: 12/28/2022] Open
Abstract
The 70-kDa heat shock proteins (Hsp70s) are highly conserved ATP-dependent molecular chaperones composed of an N-terminal nucleotide binding domain (NBD) and a C-terminal protein substrate binding domain (SBD) in a bilobate structure. Interdomain communication and nucleotide-dependent structural motions are critical for Hsp70 chaperone functions. Our understanding of these functions remains elusive due to insufficient structural information on intact Hsp70s that represent the different states of the chaperone cycle. We report here the crystal structures of DnaK from Geobacillus kaustophilus HTA426 bound with ADP-Mg(2+)-P(i) at 2.37A and the 70-kDa heat shock cognate protein from Rattus norvegicus bound with ADP-P(i) at 3.5A(.) The NBD and SBD in these structures are significantly separated from each other, and they might depict the ADP-bound conformation. Moreover, a Trp reporter was introduced at the potential interface region between NBD and the interdomain linker of GkDnaK to probe environmental changes. Results from fluorescence measurements support the notion that substrate binding enhances the domain-disjoining behavior of Hsp70 chaperones.
Collapse
Affiliation(s)
- Yi-Wei Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Yuh-Ju Sun
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Chung Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Chwan-Deng Hsiao
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 300, Taiwan
| |
Collapse
|
17
|
Liu Q, Hendrickson WA. Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Cell 2008; 131:106-20. [PMID: 17923091 DOI: 10.1016/j.cell.2007.08.039] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 06/26/2007] [Accepted: 08/10/2007] [Indexed: 11/18/2022]
Abstract
Classic Hsp70 chaperones assist in diverse processes of protein folding and translocation, and Hsp110s had seemed by sequence to be distant relatives within an Hsp70 superfamily. The 2.4 A resolution structure of Sse1 with ATP shows that Hsp110s are indeed Hsp70 relatives, and it provides insight into allosteric coupling between sites for ATP and polypeptide-substrate binding in Hsp70s. Subdomain structures are similar in intact Sse1(ATP) and in the separate Hsp70 domains, but conformational dispositions are radically different. Interfaces between Sse1 domains are extensive, intimate, and conservative in sequence with Hsp70s. We propose that Sse1(ATP) may be an evolutionary vestige of the Hsp70(ATP) state, and an analysis of 64 mutant variants in Sse1 and three Hsp70 homologs supports this hypothesis. An atomic-level understanding of Hsp70 communication between ATP and substrate-binding domains follows. Requirements on Sse1 for yeast viability are in keeping with the distinct function of Hsp110s as nucleotide exchange factors.
Collapse
Affiliation(s)
- Qinglian Liu
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
18
|
Acebrón SP, Fernández-Sáiz V, Taneva SG, Moro F, Muga A. DnaJ recruits DnaK to protein aggregates. J Biol Chem 2007; 283:1381-1390. [PMID: 17984091 DOI: 10.1074/jbc.m706189200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thermal stress might lead to protein aggregation in the cell. Reactivation of protein aggregates depends on Hsp100 and Hsp70 chaperones. We focus in this study on the ability of DnaK, the bacterial representative of the Hsp70 family, to interact with different aggregated model substrates. Our data indicate that DnaK binding to large protein aggregates is mediated by DnaJ, and therefore it depends on its affinity for the cochaperone. Mutations in the structural region of DnaK known as the "latch" decrease the affinity of the chaperone for DnaJ, resulting in a defective activity as protein aggregate-removing agent. As expected, the chaperone activity is recovered when DnaJ concentration is raised to overcome the lower affinity of the mutant for the cochaperone, suggesting that a minimum number of aggregate-bound DnaK molecules is necessary for its efficient reactivation. Our results provide the first experimental evidence of DnaJ-mediated recruiting of ATP-DnaK molecules to the aggregate surface.
Collapse
Affiliation(s)
- Sergio P Acebrón
- Unidad de Biofísica (Consejo Superior de Investigaciones Científicas/Universidad del País Vasco-Euskal Henriko Unibertsitatea) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, P.O. Box 644, Bilbao 48080, Spain
| | - Vanesa Fernández-Sáiz
- Unidad de Biofísica (Consejo Superior de Investigaciones Científicas/Universidad del País Vasco-Euskal Henriko Unibertsitatea) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, P.O. Box 644, Bilbao 48080, Spain
| | - Stefka G Taneva
- Unidad de Biofísica (Consejo Superior de Investigaciones Científicas/Universidad del País Vasco-Euskal Henriko Unibertsitatea) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, P.O. Box 644, Bilbao 48080, Spain
| | - Fernando Moro
- Unidad de Biofísica (Consejo Superior de Investigaciones Científicas/Universidad del País Vasco-Euskal Henriko Unibertsitatea) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, P.O. Box 644, Bilbao 48080, Spain
| | - Arturo Muga
- Unidad de Biofísica (Consejo Superior de Investigaciones Científicas/Universidad del País Vasco-Euskal Henriko Unibertsitatea) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, P.O. Box 644, Bilbao 48080, Spain.
| |
Collapse
|
19
|
Swain JF, Dinler G, Sivendran R, Montgomery DL, Stotz M, Gierasch LM. Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker. Mol Cell 2007; 26:27-39. [PMID: 17434124 PMCID: PMC1894942 DOI: 10.1016/j.molcel.2007.02.020] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 01/24/2007] [Accepted: 02/20/2007] [Indexed: 11/16/2022]
Abstract
Hsp70 chaperones assist in protein folding, disaggregation, and membrane translocation by binding to substrate proteins with an ATP-regulated affinity that relies on allosteric coupling between ATP-binding and substrate-binding domains. We have studied single- and two-domain versions of the E. coli Hsp70, DnaK, to explore the mechanism of interdomain communication. We show that the interdomain linker controls ATPase activity by binding to a hydrophobic cleft between subdomains IA and IIA. Furthermore, the domains of DnaK dock only when ATP binds and behave independently when ADP is bound. Major conformational changes in both domains accompany ATP-induced docking: of particular importance, some regions of the substrate-binding domain are stabilized, while those near the substrate-binding site become destabilized. Thus, the energy of ATP binding is used to form a stable interface between the nucleotide- and substrate-binding domains, which results in destabilization of regions of the latter domain and consequent weaker substrate binding.
Collapse
Affiliation(s)
- Joanna F. Swain
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, Amherst, Massachusetts 01003 USA
| | - Gizem Dinler
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003 USA
| | - Renuka Sivendran
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, Amherst, Massachusetts 01003 USA
| | - Diana L. Montgomery
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003 USA
| | - Mathias Stotz
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, Amherst, Massachusetts 01003 USA
| | - Lila M. Gierasch
- Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst, Amherst, Massachusetts 01003 USA
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003 USA
- *To whom correspondence should be addressed at: , phone: 413-545-6094, fax: 413-545-1289
| |
Collapse
|
20
|
Borges JC, Ramos CHI. Spectroscopic and thermodynamic measurements of nucleotide-induced changes in the human 70-kDa heat shock cognate protein. Arch Biochem Biophys 2006; 452:46-54. [PMID: 16806043 DOI: 10.1016/j.abb.2006.05.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 05/16/2006] [Accepted: 05/16/2006] [Indexed: 11/23/2022]
Abstract
Hsp70 alternates between an ATP-bound state in which the affinity for substrate is low and an ADP-bound state in which the affinity for substrate is high, as a result Hsp70 assists the protein folding process through nucleotide-controlled cycles of substrate binding and release. In this work, we describe the cloning and purification of the human 70-kDa heat shock cognate protein, Hsc70, and the use of circular dichroism, intrinsic emission fluorescence, and isothermal titration calorimetry to characterize conformational changes induced by ADP and ATP binding. Binding of either ADP or ATP were not accompanied by a net change in secondary structure suggesting that the conformational rearrangement caused by nucleotide binding is localized. MgADP or MgATP had a greater effect in the stability at stress temperatures than ADP or ATP did. Isothermal titration calorimetry data pointed out that Hsc70 had a lower affinity for ATP (KD=710 nM) than for ADP (KD=260 nM).
Collapse
Affiliation(s)
- Júlio C Borges
- Laboratório Nacional de Luz Síncrotron, P.O. Box 6192, Zip code 13084-971, Campinas SP, Brazil
| | | |
Collapse
|