1
|
Vo AT, Fleischman NM, Marquez MD, Camire EJ, Esonwune SU, Grossman JD, Gay KA, Cosman JA, Perlstein DL. Defining the domains of Cia2 required for its essential function in vivo and in vitro. Metallomics 2018; 9:1645-1654. [PMID: 29057997 DOI: 10.1039/c7mt00181a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The cytosolic iron-sulfur cluster assembly (CIA) system biosynthesizes iron-sulfur (FeS) cluster cofactors for cytosolic and nuclear proteins. The yeast Cia2 protein is the central component of the targeting complex which identifies apo-protein targets in the final step of the pathway. Herein, we determine that Cia2 contains five conserved motifs distributed between an intrinsically disordered N-terminal domain and a C-terminal domain of unknown function 59 (DUF59). The disordered domain is dispensible for binding the other subunits of the targeting complex, Met18 and Cia1, and the apo-target Rad3 in vitro. While in vivo assays reveal that the C-terminal domain is sufficient to support viability, several phenotypic assays indicate that deletion of the N-terminal domain negatively impacts CIA function. We additionally establish that Glu208, located within a conserved motif found only in eukaryotic DUF59 proteins, is important for the Cia1-Cia2 interaction in vitro. In vivo, E208A-Cia2 results in a diminished activity of the cytosolic iron sulfur cluster protein, Leu1 but only modest effects on hydroxyurea or methylmethane sulfonate sensitivity. Finally, we demonstrate that neither of the two highly conserved motifs of the DUF59 domain are vital for any of Cia2's interactions in vitro yet mutation of the DPE motif in the DUF59 domain results in a nonfunctional allele in vivo. Our observation that four of the five highly conserved motifs of Cia2 are dispensable for targeting complex formation and apo-target binding suggests that Cia2 is not simply a protein-protein interaction mediator but it likely possesses an additional, currently cryptic, function during the final cluster insertion step of CIA.
Collapse
Affiliation(s)
- Amanda T Vo
- Department of Chemistry, Boston University, Boston, MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Mashruwala AA, Boyd JM. Investigating the role(s) of SufT and the domain of unknown function 59 (DUF59) in the maturation of iron-sulfur proteins. Curr Genet 2017; 64:9-16. [PMID: 28589301 DOI: 10.1007/s00294-017-0716-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 01/07/2023]
Abstract
Comprehending biology at the molecular and systems levels is predicated upon understanding the functions of proteins. Proteins are typically composed of one or more functional moieties termed domains. Members of Bacteria, Eukarya, and Archaea utilize proteins containing a domain of unknown function (DUF) 59. Proteins requiring iron-sulfur (FeS) clusters containing cofactors are necessary for nearly all organisms making the assembly of functional FeS proteins essential. Recently, studies in eukaryotic and bacterial organisms have shown that proteins containing a DUF59, or those composed solely of DUF59, function in FeS protein maturation and/or intracellular Fe homeostasis. Herein, we review the current literature, discuss potential roles for DUF59, and address future studies that will help advance the field.
Collapse
Affiliation(s)
- Ameya A Mashruwala
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 76 Lipman Dr., New Brunswick, NJ, 08901, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 76 Lipman Dr., New Brunswick, NJ, 08901, USA.
| |
Collapse
|
3
|
A Sinorhizobium meliloti RpoH-Regulated Gene Is Involved in Iron-Sulfur Protein Metabolism and Effective Plant Symbiosis under Intrinsic Iron Limitation. J Bacteriol 2016; 198:2297-306. [PMID: 27297881 DOI: 10.1128/jb.00287-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/09/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In Sinorhizobium meliloti, RpoH-type sigma factors have a global impact on gene expression during heat shock and play an essential role in symbiosis with leguminous plants. Using mutational analysis of a set of genes showing highly RpoH-dependent expression during heat shock, we identified a gene indispensable for effective symbiosis. This gene, designated sufT, was located downstream of the sufBCDS homologs that specify the iron-sulfur (Fe/S) cluster assembly pathway. The identified transcription start site was preceded by an RpoH-dependent promoter consensus sequence. SufT was related to a conserved protein family of unknown molecular function, of which some members are involved in Fe/S cluster metabolism in diverse organisms. A sufT mutation decreased bacterial growth in both rich and minimal media, tolerance to stresses such as iron starvation, and activities of some Fe/S cluster-dependent enzymes. These results support the involvement of SufT in SUF (sulfur mobilization) system-mediated Fe/S protein metabolism. Furthermore, we isolated spontaneous pseudorevertants of the sufT mutant with partially recovered growth; each of them had a mutation in rirA This gene encodes a global iron regulator whose loss increases the intracellular iron content. Deletion of rirA in the original sufT mutant improved growth and restored Fe/S enzyme activities and effective symbiosis. These results suggest that enhanced iron availability compensates for the lack of SufT in the maintenance of Fe/S proteins. IMPORTANCE Although RpoH-type sigma factors of the RNA polymerase are present in diverse proteobacteria, their role as global regulators of protein homeostasis has been studied mainly in the enteric gammaproteobacterium Escherichia coli In the soil alphaproteobacterium Sinorhizobium meliloti, the rpoH mutations have a strong impact on symbiosis with leguminous plants. We found that sufT is a unique member of the S. meliloti RpoH regulon; sufT contributes to Fe/S protein metabolism and effective symbiosis under intrinsic iron limitation exerted by RirA, a global iron regulator. Our study provides insights into the RpoH regulon function in diverse proteobacteria adapted to particular ecological niches and into the mechanism of conserved Fe/S protein biogenesis.
Collapse
|
4
|
McKenzie RME, Henry LG, Boutrin MC, Ximinies A, Fletcher HM. Role of the Porphyromonas gingivalis iron-binding protein PG1777 in oxidative stress resistance. MICROBIOLOGY-SGM 2015; 162:256-267. [PMID: 26581883 DOI: 10.1099/mic.0.000213] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Whole genome sequencing of the response of Porphyromonas gingivalis W83 to hydrogen peroxide revealed an upregulation of several uncharacterized, novel genes. Under conditions of prolonged oxidative stress in P. gingivalis, increased expression of a unique transcriptional unit carrying the grpE, dnaJ and three other hypothetical genes (PG1777, PG1778 and PG1779) was observed. The transcriptional start site of this operon appears to be located 91 bp upstream of the translational start, with a potential -10 region at -3 nt and a -35 region at -39 nt. Isogenic P. gingivalis mutants FLL273 (PG1777 : : ermF-ermAM) and FLL293 (PG1779 : : ermF-ermAM) showed increased sensitivity to and decreased survival after treatment with hydrogen peroxide. P. gingivalis FLL273 showed a fivefold increase in the formation of spontaneous mutants when compared with the parent strain after exposure to hydrogen peroxide. The recombinant PG1777 protein displayed iron-binding properties when incubated with FeSO4 and Fe(NH4)2(SO4).6H2O. The rPG1777 protein protected DNA from degradation when exposed to hydrogen peroxide in the presence of iron. Taken together, the data suggest that the grpE-dnaJ-PG1777-PG1778-PG1779 transcriptional unit may play an important role in oxidative stress resistance in P. gingivalis via its ability to protect against DNA damage.
Collapse
Affiliation(s)
- Rachelle M E McKenzie
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Leroy G Henry
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Marie-Claire Boutrin
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Alexia Ximinies
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Hansel M Fletcher
- Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea.,Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
5
|
Fuss JO, Tsai CL, Ishida JP, Tainer JA. Emerging critical roles of Fe-S clusters in DNA replication and repair. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1853:1253-71. [PMID: 25655665 PMCID: PMC4576882 DOI: 10.1016/j.bbamcr.2015.01.018] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/13/2015] [Accepted: 01/26/2015] [Indexed: 10/24/2022]
Abstract
Fe-S clusters are partners in the origin of life that predate cells, acetyl-CoA metabolism, DNA, and the RNA world. The double helix solved the mystery of DNA replication by base pairing for accurate copying. Yet, for genome stability necessary to life, the double helix has equally important implications for damage repair. Here we examine striking advances that uncover Fe-S cluster roles both in copying the genetic sequence by DNA polymerases and in crucial repair processes for genome maintenance, as mutational defects cause cancer and degenerative disease. Moreover, we examine an exciting, controversial role for Fe-S clusters in a third element required for life - the long-range coordination and regulation of replication and repair events. By their ability to delocalize electrons over both Fe and S centers, Fe-S clusters have unbeatable features for protein conformational control and charge transfer via double-stranded DNA that may fundamentally transform our understanding of life, replication, and repair. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- Jill O Fuss
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| | - Chi-Lin Tsai
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Justin P Ishida
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - John A Tainer
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.
| |
Collapse
|
6
|
Schwamb B, Pick R, Fernández SBM, Völp K, Heering J, Dötsch V, Bösser S, Jung J, Beinoraviciute-Kellner R, Wesely J, Zörnig I, Hammerschmidt M, Nowak M, Penzel R, Zatloukal K, Joos S, Rieker RJ, Agaimy A, Söder S, Reid-Lombardo KM, Kendrick ML, Bardsley MR, Hayashi Y, Asuzu DT, Syed SA, Ordog T, Zörnig M. FAM96A is a novel pro-apoptotic tumor suppressor in gastrointestinal stromal tumors. Int J Cancer 2015; 137:1318-29. [PMID: 25716227 DOI: 10.1002/ijc.29498] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 02/13/2015] [Indexed: 01/31/2023]
Abstract
The ability to escape apoptosis is a hallmark of cancer-initiating cells and a key factor of resistance to oncolytic therapy. Here, we identify FAM96A as a ubiquitous, evolutionarily conserved apoptosome-activating protein and investigate its potential pro-apoptotic tumor suppressor function in gastrointestinal stromal tumors (GISTs). Interaction between FAM96A and apoptotic peptidase activating factor 1 (APAF1) was identified in yeast two-hybrid screen and further studied by deletion mutants, glutathione-S-transferase pull-down, co-immunoprecipitation and immunofluorescence. Effects of FAM96A overexpression and knock-down on apoptosis sensitivity were examined in cancer cells and zebrafish embryos. Expression of FAM96A in GISTs and histogenetically related cells including interstitial cells of Cajal (ICCs), "fibroblast-like cells" (FLCs) and ICC stem cells (ICC-SCs) was investigated by Northern blotting, reverse transcription-polymerase chain reaction, immunohistochemistry and Western immunoblotting. Tumorigenicity of GIST cells and transformed murine ICC-SCs stably transduced to re-express FAM96A was studied by xeno- and allografting into immunocompromised mice. FAM96A was found to bind APAF1 and to enhance the induction of mitochondrial apoptosis. FAM96A protein or mRNA was dramatically reduced or lost in 106 of 108 GIST samples representing three independent patient cohorts. Whereas ICCs, ICC-SCs and FLCs, the presumed normal counterparts of GIST, were found to robustly express FAM96A protein and mRNA, FAM96A expression was much reduced in tumorigenic ICC-SCs. Re-expression of FAM96A in GIST cells and transformed ICC-SCs increased apoptosis sensitivity and diminished tumorigenicity. Our data suggest FAM96A is a novel pro-apoptotic tumor suppressor that is lost during GIST tumorigenesis.
Collapse
Affiliation(s)
- Bettina Schwamb
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, Frankfurt, Germany
| | - Robert Pick
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, Frankfurt, Germany
| | - Sara Beatriz Mateus Fernández
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, Frankfurt, Germany
| | - Kirsten Völp
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, Frankfurt, Germany
| | - Jan Heering
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes (CEF), Goethe University, Frankfurt, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes (CEF), Goethe University, Frankfurt, Germany
| | - Susanne Bösser
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, Frankfurt, Germany
| | - Jennifer Jung
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, Frankfurt, Germany
| | - Rasa Beinoraviciute-Kellner
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, Frankfurt, Germany
| | - Josephine Wesely
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, Frankfurt, Germany
| | - Inka Zörnig
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Im Neuenheimer Feld 305, Heidelberg, Germany
| | | | - Matthias Nowak
- Max-Planck Institute of Immunobiology, Stuebeweg 51, Freiburg, Germany
| | - Roland Penzel
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, Heidelberg, Germany
| | - Kurt Zatloukal
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, Graz, a-8036, Austria
| | - Stefan Joos
- Deutsches Krebsforschungszentrum DKFZ (B060), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Ralf Joachim Rieker
- Institute for Pathology, University Hospital Erlangen, Krankenhausstrasse 8-10, Erlangen, Germany
| | - Abbas Agaimy
- Institute for Pathology, University Hospital Erlangen, Krankenhausstrasse 8-10, Erlangen, Germany
| | - Stephan Söder
- Institute for Pathology, University Hospital Erlangen, Krankenhausstrasse 8-10, Erlangen, Germany
| | | | | | - Michael R Bardsley
- Center for Individualized Medicine and Gastroenterology Research Unit, Mayo Clinic College of Medicine, Rochester, MN
| | - Yujiro Hayashi
- Center for Individualized Medicine and Gastroenterology Research Unit, Mayo Clinic College of Medicine, Rochester, MN
| | - David T Asuzu
- Center for Individualized Medicine and Gastroenterology Research Unit, Mayo Clinic College of Medicine, Rochester, MN
| | - Sabriya A Syed
- Center for Individualized Medicine and Gastroenterology Research Unit, Mayo Clinic College of Medicine, Rochester, MN
| | - Tamas Ordog
- Center for Individualized Medicine and Gastroenterology Research Unit, Mayo Clinic College of Medicine, Rochester, MN
| | - Martin Zörnig
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, Frankfurt, Germany
| |
Collapse
|
7
|
Netz DJA, Mascarenhas J, Stehling O, Pierik AJ, Lill R. Maturation of cytosolic and nuclear iron-sulfur proteins. Trends Cell Biol 2013; 24:303-12. [PMID: 24314740 DOI: 10.1016/j.tcb.2013.11.005] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/04/2013] [Accepted: 11/06/2013] [Indexed: 11/25/2022]
Abstract
Eukaryotic cells contain numerous cytosolic and nuclear iron-sulfur (Fe/S) proteins that perform key functions in metabolic catalysis, iron regulation, protein translation, DNA synthesis, and DNA repair. Synthesis of Fe/S clusters and their insertion into apoproteins are essential for viability and are conserved in eukaryotes. The process is catalyzed in two major steps by the CIA (cytosolic iron-sulfur protein assembly) machinery encompassing nine known proteins. First, a [4Fe-4S] cluster is assembled on a scaffold complex. This step requires a sulfur-containing compound from mitochondria and reducing equivalents from an electron transfer chain. Second, the Fe/S cluster is transferred from the scaffold to specific apoproteins by the CIA targeting complex. This review summarizes our molecular knowledge on CIA protein function during the assembly process.
Collapse
Affiliation(s)
- Daili J A Netz
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany
| | - Judita Mascarenhas
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany
| | - Oliver Stehling
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany
| | - Antonio J Pierik
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany; Max-Planck-Institut für Terrestrische Mikrobiologie, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany; LOEWE (Landes-Offensive zur Entwicklung Wissenschaftlich-Ökonomischer Exzellenz) Zentrum für Synthetische Mikrobiologie (SynMikro), Hans-Meerwein-Strasse, 35043 Marburg, Germany.
| |
Collapse
|
8
|
Mas C, Chen KE, Brereton IM, Martin JL, Hill JM. Backbone resonance assignments of the monomeric DUF59 domain of human Fam96a. BIOMOLECULAR NMR ASSIGNMENTS 2013; 7:117-120. [PMID: 22618863 DOI: 10.1007/s12104-012-9390-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 05/03/2012] [Indexed: 06/01/2023]
Abstract
Proteins containing a domain of unknown function 59 (DUF59) appear to have a variety of physiological functions, ranging from iron-sulfur cluster assembly to DNA repair. DUF59 proteins have been found in bacteria, archaea and eukaryotes, however Fam96a and Fam96b are the only mammalian proteins predicted to contain a DUF59 domain. Fam96a is an 18 kDa protein comprised primarily of a DUF59 domain (residues 31-157) and an N-terminal signal peptide (residues 1-27). Interestingly, the DUF59 domain of Fam96a exists as monomeric and dimeric forms in solution, and X-ray crystallography studies of both forms unexpectedly revealed two different domain-swapped dimer structures. Here we report the backbone resonance assignments and secondary structure of the monomeric form of the 127 residue DUF59 domain of human Fam96a. This study provides the basis for further understanding the structural variability exhibited by Fam96a and the mechanism for domain swapping.
Collapse
Affiliation(s)
- Caroline Mas
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | |
Collapse
|
9
|
Ouyang B, Wang L, Wan S, Luo Y, Wang L, Lin J, Xia B. Solution structure of monomeric human FAM96A. JOURNAL OF BIOMOLECULAR NMR 2013; 56:387-392. [PMID: 23793605 DOI: 10.1007/s10858-013-9746-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/14/2013] [Indexed: 06/02/2023]
Affiliation(s)
- Bingjie Ouyang
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Chen KE, Richards AA, Ariffin JK, Ross IL, Sweet MJ, Kellie S, Kobe B, Martin JL. The mammalian DUF59 protein Fam96a forms two distinct types of domain-swapped dimer. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:637-48. [DOI: 10.1107/s0907444912006592] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 02/14/2012] [Indexed: 11/10/2022]
|
11
|
Agari Y, Kashihara A, Yokoyama S, Kuramitsu S, Shinkai A. Global gene expression mediated by Thermus thermophilus SdrP, a CRP/FNR family transcriptional regulator. Mol Microbiol 2008; 70:60-75. [PMID: 18699868 DOI: 10.1111/j.1365-2958.2008.06388.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thermus thermophilus SdrP is one of four cyclic AMP receptor protein (CRP)/fumarate and nitrate reduction regulator (FNR) family proteins from the extremely thermophilic bacterium T. thermophilus HB8. Expression of sdrP mRNA increased in the stationary phase during cultivation at 70 degrees C. Although the sdrP gene was non-essential, an sdrP-deficient strain showed growth defects, particularly when grown in a synthetic medium, and increased sensitivity to disulphide stress. The expression of several genes was altered in the sdrP disruptant. Among them, we found eight SdrP-dependent promoters using in vitro transcription assays. A predicted SdrP binding site similar to that recognized by Escherichia coli CRP was found upstream of each SdrP-dependent promoter. In the wild-type strain, expression of these eight genes tended to increase upon entry into the stationary phase. Transcriptional activation in vitro was independent of any added effector molecule. The hypothesis that apo-SdrP is the active form of the protein was supported by the observation that the three-dimensional structure of apo-SdrP is similar to that of the DNA-binding form of E. coli CRP. Based on the properties of the SdrP-regulated genes found in this study, it is speculated that SdrP is involved in nutrient and energy supply, redox control, and polyadenylation of mRNA.
Collapse
Affiliation(s)
- Yoshihiro Agari
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | | | | | | | | |
Collapse
|
12
|
Sutcliffe IC, Black GW, Harrington DJ. Bioinformatic insights into the biosynthesis of the Group B carbohydrate in Streptococcus agalactiae. MICROBIOLOGY-SGM 2008; 154:1354-1363. [PMID: 18451044 DOI: 10.1099/mic.0.2007/014522-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus agalactiae is a major human and animal pathogen, most notable as a cause of life-threatening disease in neonates. S. agalactiae is also called the Group B Streptococcus in reference to the diagnostically significant Lancefield Group B typing antigen. Although the structure of this complex carbohydrate antigen has been solved, little is known of its biosynthesis beyond the identification of a relevant locus in sequenced S. agalactiae genomes. Analysis of the sugar linkages present in the Group B carbohydrate (GBC) structure has allowed us to deduce the minimum enzymology required to complete its biosynthesis. Most of the enzymes required to complete this biosynthesis can be identified within the putative biosynthetic locus. Surprisingly, however, three crucial N-acetylglucosamine transferases and enzymes required for activated precursor synthesis are not apparently located in this locus. A model for GBC biosynthesis wherein the complete polymer is assembled at the cytoplasmic face of the plasma membrane before translocation to the cell surface is proposed. These analyses also suggest that GBC is the major teichoic acid-like polymer in the cell wall of S. agalactiae, whereas lipoteichoic acid is the dominant poly(glycerophosphate) antigen. Genomic analysis has allowed us to predict the pathway leading to the biosynthesis of GBC of S. agalactiae.
Collapse
Affiliation(s)
| | - Gary W Black
- Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | | |
Collapse
|
13
|
Jenney FE, Adams MWW. The impact of extremophiles on structural genomics (and vice versa). Extremophiles 2007; 12:39-50. [PMID: 17563834 DOI: 10.1007/s00792-007-0087-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 04/19/2007] [Indexed: 11/24/2022]
Abstract
The advent of the complete genome sequences of various organisms in the mid-1990s raised the issue of how one could determine the function of hypothetical proteins. While insight might be obtained from a 3D structure, the chances of being able to predict such a structure is limited for the deduced amino acid sequence of any uncharacterized gene. A template for modeling is required, but there was only a low probability of finding a protein closely-related in sequence with an available structure. Thus, in the late 1990s, an international effort known as structural genomics (SG) was initiated, its primary goal to "fill sequence-structure space" by determining the 3D structures of representatives of all known protein families. This was to be achieved mainly by X-ray crystallography and it was estimated that at least 5,000 new structures would be required. While the proteins (genes) for SG have subsequently been derived from hundreds of different organisms, extremophiles and particularly thermophiles have been specifically targeted due to the increased stability and ease of handling of their proteins, relative to those from mesophiles. This review summarizes the significant impact that extremophiles and proteins derived from them have had on SG projects worldwide. To what extent SG has influenced the field of extremophile research is also discussed.
Collapse
Affiliation(s)
- Francis E Jenney
- Department of Biochemistry and Molecular Biology, University of Georgia, Davison Life Sciences Complex, Green Street, Athens, GA 30602-7229, USA
| | | |
Collapse
|