1
|
Khalidi SAM, Sabullah MK, Sani SA, Shukor MYA, Basirun AA, Gafar AA, Jaafar ‘INM, Nordin N. Acetylcholine Receptor-based Biosensor Derived from Asian
Swamp Eel, Monopterus Albus for Heavy Metals Biomonitoring. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY 2020; 28. [DOI: 10.47836/pjst.28.s2.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Cholinesterase-based biosensor well known as a sensitive method to detect the existence of harmful dissolved compounds in any type of water source, especially the river. This alternative biosensor can be used to determine the level of pollution of the water in a short period of time as well as to evaluate the low cost and simple service. The aim of this study was to exceed the effectiveness of acetylcholinesterase source extracted from the brain tissue of Asian swamp eel; Monopterus albus as a potential environmental biosensor. Purified acetylcholinesterase exposed to a different type of metal ions and mercury showed the highest percentage of inhibition at 62.9% followed by chromium at 59.22% while silver, arsenic, cadmium, cobalt, copper, nickel, zinc a¬¬nd lead at not more than 50% (approximately 37-50%). Metal ions such as mercury, zinc, chromium and copper showed exponential decay type inhibition curves with calculated half maximal inhibitory concentration; IC50 in the ascending sensitivity order 0.005, 0.595, 0.687 and 1.329 mgL-1, respectively. Field trial works exhibited that the acetylcholinesterase was applicable in sensing heavy metals pollution from the river which closed to the industrial and agricultural sites at near real-time and verified using ICP-OES. This study proves the potential use of acetylcholinesterase sourced from M. albus as a biomonitoring tool to assess the contamination level of the river.
Collapse
|
2
|
Phage display biopanning and isolation of target-unrelated peptides: in search of nonspecific binders hidden in a combinatorial library. Amino Acids 2016; 48:2699-2716. [DOI: 10.1007/s00726-016-2329-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/08/2016] [Indexed: 12/22/2022]
|
3
|
Crasson O, Rhazi N, Jacquin O, Freichels A, Jérôme C, Ruth N, Galleni M, Filée P, Vandevenne M. Enzymatic functionalization of a nanobody using protein insertion technology. Protein Eng Des Sel 2015; 28:451-60. [PMID: 25852149 DOI: 10.1093/protein/gzv020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/05/2015] [Indexed: 11/14/2022] Open
Abstract
Antibody-based products constitute one of the most attractive biological molecules for diagnostic, medical imagery and therapeutic purposes with very few side effects. Their development has become a major priority of biotech and pharmaceutical industries. Recently, a growing number of modified antibody-based products have emerged including fragments, multi-specific and conjugate antibodies. In this study, using protein engineering, we have functionalized the anti-hen egg-white lysozyme (HEWL) camelid VHH antibody fragment (cAb-Lys3), by insertion into a solvent-exposed loop of the Bacillus licheniformis β-lactamase BlaP. We showed that the generated hybrid protein conserved its enzymatic activity while the displayed nanobody retains its ability to inhibit HEWL with a nanomolar affinity range. Then, we successfully implemented the functionalized cAb-Lys3 in enzyme-linked immunosorbent assay, potentiometric biosensor and drug screening assays. The hybrid protein was also expressed on the surface of phage particles and, in this context, was able to interact specifically with HEWL while the β-lactamase activity was used to monitor phage interactions. Finally, using thrombin-cleavage sites surrounding the permissive insertion site in the β-lactamase, we reported an expression system in which the nanobody can be easily separated from its carrier protein. Altogether, our study shows that insertion into the BlaP β-lactamase constitutes a suitable technology to functionalize nanobodies and allows the creation of versatile tools that can be used in innovative biotechnological assays.
Collapse
Affiliation(s)
- O Crasson
- Macromolécules Biologiques, Center D'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium
| | - N Rhazi
- Macromolécules Biologiques, Center D'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium
| | - O Jacquin
- Macromolécules Biologiques, Center D'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium
| | - A Freichels
- Macromolécules Biologiques, Center D'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium
| | - C Jérôme
- Chimie des Macromolécules et des Matériaux Organiques (CERM), Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium
| | - N Ruth
- Macromolécules Biologiques, Center D'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium
| | - M Galleni
- Macromolécules Biologiques, Center D'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium
| | - P Filée
- Macromolécules Biologiques, Center D'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium CER Groupe, Rue de la Science, n°8, Aye B6900, Belgium
| | - M Vandevenne
- Macromolécules Biologiques, Center D'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium
| |
Collapse
|
4
|
Makhlynets OV, Raymond EA, Korendovych IV. Design of allosterically regulated protein catalysts. Biochemistry 2015; 54:1444-56. [PMID: 25642601 DOI: 10.1021/bi5015248] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Activity of allosteric protein catalysts is regulated by an external stimulus, such as protein or small molecule binding, light activation, pH change, etc., at a location away from the active site of the enzyme. Since its original introduction in 1961, the concept of allosteric regulation has undergone substantial expansion, and many, if not most, enzymes have been shown to possess some degree of allosteric regulation. The ability to create new catalysts that can be turned on and off using allosteric interactions would greatly expand the chemical biology toolbox and will allow for detection of environmental pollutants and disease biomarkers and facilitate studies of cellular processes and metal homeostasis. Thus, design of allosterically regulated protein catalysts represents an actively growing area of research. In this paper, we describe various approaches to achieving regulation of catalysis.
Collapse
Affiliation(s)
- Olga V Makhlynets
- Department of Chemistry, Syracuse University , 111 College Place, Syracuse, New York 13244, United States
| | | | | |
Collapse
|
5
|
Lesne A, Bécavin C, Victor JM. The condensed chromatin fiber: an allosteric chemo-mechanical machine for signal transduction and genome processing. Phys Biol 2012; 9:013001. [PMID: 22314931 DOI: 10.1088/1478-3975/9/1/013001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Allostery is a key concept of molecular biology which refers to the control of an enzyme activity by an effector molecule binding the enzyme at another site rather than the active site (allos = other in Greek). We revisit here allostery in the context of chromatin and argue that allosteric principles underlie and explain the functional architecture required for spacetime coordination of gene expression at all scales from DNA to the whole chromosome. We further suggest that this functional architecture is provided by the chromatin fiber itself. The structural, mechanical and topological features of the chromatin fiber endow chromosomes with a tunable signal transduction from specific (or nonspecific) effectors to specific (or nonspecific) active sites. Mechanical constraints can travel along the fiber all the better since the fiber is more compact and regular, which speaks in favor of the actual existence of the (so-called 30 nm) chromatin fiber. Chromatin fiber allostery reconciles both the physical and biochemical approaches of chromatin. We illustrate this view with two supporting specific examples. Moreover, from a methodological point of view, we suggest that the notion of chromatin fiber allostery is particularly relevant for systemic approaches. Finally we discuss the evolutionary power of allostery in the context of chromatin and its relation to modularity.
Collapse
Affiliation(s)
- Annick Lesne
- CNRS UMR 7600, Physique Théorique de la Matière Condensée, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France.
| | | | | |
Collapse
|
6
|
Van de Water K, Soror SH, Wohlkonig A, van Nuland NAJ, Volkov AN. Crystallization and preliminary X-ray diffraction analysis of kanamycin-binding β-lactamase in complex with its ligand. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:703-6. [PMID: 21636917 PMCID: PMC3107148 DOI: 10.1107/s1744309111013832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 04/12/2011] [Indexed: 11/10/2022]
Abstract
TEM-1 β-lactamase is a highly efficient enzyme that is involved in bacterial resistance against β-lactam antibiotics such as penicillin. It is also a robust scaffold protein which can be engineered by molecular-evolution techniques to bind a variety of targets. One such β-lactamase variant (BlaKr) has been constructed to bind kanamycin (kan) and other aminoglycoside antibiotics, which are neither substrates nor ligands of native β-lactamases. In addition to recognizing kan, BlaKr activity is up-regulated by its binding via an activation mechanism which is not yet understood at the molecular level. In order to fill this gap, determination of the structure of the BlaKr-kan complex was embarked upon. A crystallization condition for BlaKr-kan was identified using high-throughput screening, and crystal growth was further optimized using streak-seeding and hanging-drop methods. The crystals belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 47.01, b = 72.33, c = 74.62 Å, and diffracted to 1.67 Å resolution using synchrotron radiation. The X-ray structure of BlaKr with its ligand kanamycin should provide the molecular-level details necessary for understanding the activation mechanism of the engineered enzyme.
Collapse
Affiliation(s)
- Karen Van de Water
- Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Sameh H. Soror
- Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Alexandre Wohlkonig
- Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Nico A. J. van Nuland
- Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Alexander N. Volkov
- Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
7
|
Volkov AN, Barrios H, Mathonet P, Evrard C, Ubbink M, Declercq JP, Soumillion P, Fastrez J. Engineering an allosteric binding site for aminoglycosides into TEM1-β-Lactamase. Chembiochem 2011; 12:904-13. [PMID: 21425229 DOI: 10.1002/cbic.201000568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Indexed: 11/09/2022]
Abstract
Allosteric regulation of enzyme activity is a remarkable property of many biological catalysts. Up till now, engineering an allosteric regulation into native, unregulated enzymes has been achieved by the creation of hybrid proteins in which a natural receptor, whose conformation is controlled by ligand binding, is inserted into an enzyme structure. Here, we describe a monomeric enzyme, TEM1-β-lactamase, that features an allosteric aminoglycoside binding site created de novo by directed-evolution methods. β-Lactamases are highly efficient enzymes involved in the resistance of bacteria against β-lactam antibiotics, such as penicillin. Aminoglycosides constitute another class of antibiotics that prevent bacterial protein synthesis, and are neither substrates nor ligands of the native β-lactamases. Here we show that the engineered enzyme is regulated by the binding of kanamycin and other aminoglycosides. Kinetic and structural analyses indicate that the activation mechanism involves expulsion of an inhibitor that binds to an additional, fortuitous site on the engineered protein. These analyses also led to the defining of conditions that allowed an aminoglycoside to be detected at low concentration.
Collapse
Affiliation(s)
- Alexander N Volkov
- Laboratoire d'Ingénierie des Protéines et des Peptides, Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Golynskiy MV, Koay MS, Vinkenborg JL, Merkx M. Engineering Protein Switches: Sensors, Regulators, and Spare Parts for Biology and Biotechnology. Chembiochem 2011; 12:353-61. [DOI: 10.1002/cbic.201000642] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Indexed: 12/31/2022]
|
9
|
Phage display: selecting straws instead of a needle from a haystack. Molecules 2011; 16:790-817. [PMID: 21248664 PMCID: PMC6259164 DOI: 10.3390/molecules16010790] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 01/12/2011] [Accepted: 01/17/2011] [Indexed: 11/25/2022] Open
Abstract
An increasing number of peptides with specific binding affinity to various protein and even non-protein targets are being discovered from phage display libraries. The power of this method lies in its ability to efficiently and rapidly identify ligands with a desired target property from a large population of phage clones displaying diverse surface peptides. However, the search for the needle in the haystack does not always end successfully. False positive results may appear. Thus instead of specific binders phage with no actual affinity toward the target are recovered due to their propagation advantages or binding to other components of the screening system, such as the solid phase, capturing reagents, contaminants in the target sample or blocking agents, rather than the target. Biopanning experiments on different targets performed in our laboratory revealed some previously identified and many new target-unrelated peptide sequences, which have already been frequently described and published, but not yet recognized as target-unrelated. Distinguishing true binders from false positives is an important step toward phage display selections of greater integrity. This article thoroughly reviews and discusses already identified and new target-unrelated peptides and suggests strategies to avoid their isolation.
Collapse
|
10
|
Peracchi A, Mozzarelli A. Exploring and exploiting allostery: Models, evolution, and drug targeting. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:922-33. [PMID: 21035570 DOI: 10.1016/j.bbapap.2010.10.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 12/11/2022]
Abstract
The concept of allostery was elaborated almost 50years ago by Monod and coworkers to provide a framework for interpreting experimental studies on the regulation of protein function. In essence, binding of a ligand at an allosteric site affects the function at a distant site exploiting protein flexibility and reshaping protein energy landscape. Both monomeric and oligomeric proteins can be allosteric. In the past decades, the behavior of allosteric systems has been analyzed in many investigations while general theoretical models and variations thereof have been steadily proposed to interpret the experimental data. Allostery has been established as a fundamental mechanism of regulation in all organisms, governing a variety of processes that range from metabolic control to receptor function and from ligand transport to cell motility. A number of studies have shed light on how evolutionary pressures have favored and molded the development of allosteric features in specific macromolecular systems. The widespread occurrence of allostery has been recently exploited for the development and design of allosteric drugs that bind to either physiological or non-physiological allosteric sites leading to gain of function or loss of function. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.
Collapse
Affiliation(s)
- Alessio Peracchi
- Department of Biochemistry and Molecular Biology, University of Parma, Parma, Italy.
| | | |
Collapse
|
11
|
Mathieu V, Fastrez J, Soumillion P. Engineering allosteric regulation into the hinge region of a circularly permuted TEM-1 beta-lactamase. Protein Eng Des Sel 2010; 23:699-709. [PMID: 20591901 DOI: 10.1093/protein/gzq041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In nature, the activity of many enzymes involved in important biochemical pathways is controlled by binding a ligand in a site remote from the active site. The allosteric sites are frequently located in hinge regulatory subunits, in which a conformational change can occur and propagate to the active site. The enzymatic activity is then enhanced or decreased depending on the type of effectors. Many artificial binding sites have been created to engineer an allosteric regulation. Generally, these sites were engineered near the active site in loops or at the surface of contiguous helices or strands but rarely in hinge regions. This work aims at exploring the possibility of regulating a monomeric enzyme whose active site is located at the interface between two domains. We anticipated that binding of a ligand in the hinge region linking the domains would modify their positioning and, consequently, modulate the activity. Here, we describe the design of two mutants in a circularly permuted TEM-1 (cpTEM-1) beta-lactamase. The first one, cpTEM-1-His(3) was created by a rational design. It shows little regulation upon metal ion binding except for a weak activation with Zn(2+). The second one, cpTEM-1-3M-His(2), was selected by a directed evolution strategy. It is allosterically down-regulated by Zn(2+), Ni(2+) and Co(2+) with binding affinities around 300 microM.
Collapse
Affiliation(s)
- Valéry Mathieu
- Biochimie et Génétique Moléculaire Bactérienne, Institut des Sciences de la Vie, Université catholique de Louvain, Place Croix du Sud, 4-5 boîte 3, 1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
12
|
|
13
|
Wright CM, Heins RA, Ostermeier M. As easy as flipping a switch? Curr Opin Chem Biol 2007; 11:342-6. [PMID: 17466569 DOI: 10.1016/j.cbpa.2007.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 04/17/2007] [Indexed: 11/15/2022]
Abstract
Proteins that behave as switches help to establish the complex molecular logic that is central to biological systems. Aspiring to be nature's equal, researchers have successfully created protein switches of their own design; in particular, numerous and varied zinc-triggered switches have been made. Recent studies in which such switches have been readily identified from combinatorial protein libraries support the notion that proteins are primed to show allosteric behavior and that newly created ligand-binding sites will often be functionally coupled to the original activity of the protein. If true, this notion suggests that switch engineering might be more tractable than previously thought, boding well for the basic science, sensing and biomedical applications for which protein switches hold much promise.
Collapse
Affiliation(s)
- Chapman M Wright
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218-2681, USA
| | | | | |
Collapse
|
14
|
Liang J, Kim JR, Boock JT, Mansell TJ, Ostermeier M. Ligand binding and allostery can emerge simultaneously. Protein Sci 2007; 16:929-37. [PMID: 17400921 PMCID: PMC2206642 DOI: 10.1110/ps.062706007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A heterotropic allosteric effect involves an effector molecule that is distinct from the substrate or ligand of the protein. How heterotropic allostery originates is an unanswered question. We have previously created several heterotropic allosteric enzymes by recombining the genes for TEM1 beta-lactamase (BLA) and maltose binding protein (MBP) to create BLAs that are positively or negatively regulated by maltose. We show here that one of these engineered enzymes has approximately 10(6) M(-1) affinity for Zn(2+), a property that neither of the parental proteins possesses. Furthermore, Zn(2+) is a negative effector that noncompetitively switches off beta-lactam hydrolysis activity. Mutagenesis experiments indicate that the Zn(2+)-binding site does not involve a histidine or a cysteine, which is atypical of natural Zn(2+)-binding sites. These studies also implicate helices 1 and 12 of the BLA domain in allosteric signal propagation. These results support a model for the evolution of heterotropic allostery in which effector affinity and allosteric signaling emerge simultaneously.
Collapse
Affiliation(s)
- Jing Liang
- Program in Molecular and Computational Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|
15
|
Mathonet P, Deherve J, Soumillion P, Fastrez J. Active TEM-1 beta-lactamase mutants with random peptides inserted in three contiguous surface loops. Protein Sci 2006; 15:2323-34. [PMID: 16963643 PMCID: PMC2242396 DOI: 10.1110/ps.062303606] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Engineering of alternative binding sites on the surface of an enzyme while preserving the enzymatic activity would offer new opportunities for controlling the activity by binding of non-natural ligands. Loops and turns are the natural substructures in which binding sites might be engineered with this purpose. We have genetically inserted random peptide sequences into three relatively rigid and contiguous loops of the TEM-1 beta-lactamase and assessed the tolerance to insertion by the percentage of active mutants. Our results indicate that tolerance to insertion could not be correlated to tolerance to mutagenesis. A turn between two beta-strands bordering the active site was observed to be tolerant to random mutagenesis but not to insertions. Two rigid loops comprising rather well-conserved amino acid residues tolerated insertions, although with some constraints. Insertions between the N-terminal helix and the first beta-strand generated active libraries if cysteine residues were included at both ends of the insert, suggesting the requirement for a stabilizing disulfide bridge. Random sequences were relatively well accommodated within the loop connecting the final beta-strand to the C-terminal helix, particularly if the wild-type residue was retained at one of the loops' end. This suggests two strategies for increasing the percentage of active mutants in insertion libraries. The amino acid distribution in the engineered loops was analyzed and found to be less biased against hydrophobic residues than in natural medium-sized loops. The combination of these activity-selected libraries generated a huge library containing active hybrid enzymes with all three loops modified.
Collapse
Affiliation(s)
- Pascale Mathonet
- Laboratoire de Biochimie Physique et des Biopolymères, Institut des Sciences de la Vie, Université catholique de Louvain, B1348 Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|