1
|
Jarocki VM, Tacchi JL, Djordjevic SP. Non-proteolytic functions of microbial proteases increase pathological complexity. Proteomics 2015; 15:1075-88. [PMID: 25492846 PMCID: PMC7167786 DOI: 10.1002/pmic.201400386] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/26/2014] [Accepted: 12/05/2014] [Indexed: 12/26/2022]
Abstract
Proteases are enzymes that catalyse hydrolysis of peptide bonds thereby controlling the shape, size, function, composition, turnover and degradation of other proteins. In microbes, proteases are often identified as important virulence factors and as such have been targets for novel drug design. It is emerging that some proteases possess additional non‐proteolytic functions that play important roles in host epithelia adhesion, tissue invasion and in modulating immune responses. These additional “moonlighting” functions have the potential to obfuscate data interpretation and have implications for therapeutic design. Moonlighting enzymes comprise a subcategory of multifunctional proteins that possess at least two distinct biological functions on a single polypeptide chain. Presently, identifying moonlighting proteins relies heavily on serendipitous empirical data with clues arising from proteins lacking signal peptides that are localised to the cell surface. Here, we describe examples of microbial proteases with additional non‐proteolytic functions, including streptococcal pyrogenic exotoxin B, PepO and C5a peptidases, mycoplasmal aminopeptidases, mycobacterial chaperones and viral papain‐like proteases. We explore how these non‐proteolytic functions contribute to host cell adhesion, modulate the coagulation pathway, assist in non‐covalent folding of proteins, participate in cell signalling, and increase substrate repertoire. We conclude by describing how proteomics has aided in moonlighting protein discovery, focusing attention on potential moonlighters in microbial exoproteomes.
Collapse
Affiliation(s)
- Veronica M. Jarocki
- The ithree instituteProteomics Core Facility, University of TechnologySydneyNSWAustralia
| | - Jessica L. Tacchi
- The ithree instituteProteomics Core Facility, University of TechnologySydneyNSWAustralia
| | - Steven P. Djordjevic
- The ithree instituteProteomics Core Facility, University of TechnologySydneyNSWAustralia
- Proteomics Core FacilityUniversity of TechnologySydneyNSWAustralia
| |
Collapse
|
2
|
de Tullio MB, Castelletto V, Hamley IW, Martino Adami PV, Morelli L, Castaño EM. Proteolytically inactive insulin-degrading enzyme inhibits amyloid formation yielding non-neurotoxic aβ peptide aggregates. PLoS One 2013; 8:e59113. [PMID: 23593132 PMCID: PMC3623905 DOI: 10.1371/journal.pone.0059113] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/11/2013] [Indexed: 01/18/2023] Open
Abstract
Insulin-degrading enzyme (IDE) is a neutral Zn2+ peptidase that degrades short peptides based on substrate conformation, size and charge. Some of these substrates, including amyloid β (Aβ) are capable of self-assembling into cytotoxic oligomers. Based on IDE recognition mechanism and our previous report of the formation of a stable complex between IDE and intact Aβ in vitro and in vivo, we analyzed the possibility of a chaperone-like function of IDE. A proteolytically inactive recombinant IDE with Glu111 replaced by Gln (IDEQ) was used. IDEQ blocked the amyloidogenic pathway of Aβ yielding non-fibrillar structures as assessed by electron microscopy. Measurements of the kinetics of Aβ aggregation by light scattering showed that 1) IDEQ effect was promoted by ATP independent of its hydrolysis, 2) end products of Aβ-IDEQ co-incubation were incapable of “seeding” the assembly of monomeric Aβ and 3) IDEQ was ineffective in reversing Aβ aggregation. Moreover, Aβ aggregates formed in the presence of IDEQ were non-neurotoxic. IDEQ had no conformational effects upon insulin (a non-amyloidogenic protein under physiological conditions) and did not disturb insulin receptor activation in cultured cells. Our results suggest that IDE has a chaperone-like activity upon amyloid-forming peptides. It remains to be explored whether other highly conserved metallopeptidases have a dual protease-chaperone function to prevent the formation of toxic peptide oligomers from bacteria to mammals.
Collapse
Affiliation(s)
- Matias B. de Tullio
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Valeria Castelletto
- Department of Chemistry, University of Reading, Whiteknights, Reading, United Kingdom
| | - Ian W. Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading, United Kingdom
| | - Pamela V. Martino Adami
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Laura Morelli
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eduardo M. Castaño
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
3
|
Svedružić ZM, Popović K, Smoljan I, Sendula-Jengić V. Modulation of γ-secretase activity by multiple enzyme-substrate interactions: implications in pathogenesis of Alzheimer's disease. PLoS One 2012; 7:e32293. [PMID: 22479317 PMCID: PMC3316526 DOI: 10.1371/journal.pone.0032293] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 01/24/2012] [Indexed: 11/19/2022] Open
Abstract
Background We describe molecular processes that can facilitate pathogenesis of Alzheimer's disease (AD) by analyzing the catalytic cycle of a membrane-imbedded protease γ-secretase, from the initial interaction with its C99 substrate to the final release of toxic Aβ peptides. Results The C-terminal AICD fragment is cleaved first in a pre-steady-state burst. The lowest Aβ42/Aβ40 ratio is observed in pre-steady-state when Aβ40 is the dominant product. Aβ42 is produced after Aβ40, and therefore Aβ42 is not a precursor for Aβ40. The longer more hydrophobic Aβ products gradually accumulate with multiple catalytic turnovers as a result of interrupted catalytic cycles. Saturation of γ-secretase with its C99 substrate leads to 30% decrease in Aβ40 with concomitant increase in the longer Aβ products and Aβ42/Aβ40 ratio. To different degree the same changes in Aβ products can be observed with two mutations that lead to an early onset of AD, ΔE9 and G384A. Four different lines of evidence show that γ-secretase can bind and cleave multiple substrate molecules in one catalytic turnover. Consequently depending on its concentration, NotchΔE substrate can activate or inhibit γ-secretase activity on C99 substrate. Multiple C99 molecules bound to γ-secretase can affect processive cleavages of the nascent Aβ catalytic intermediates and facilitate their premature release as the toxic membrane-imbedded Aβ-bundles. Conclusions Gradual saturation of γ-secretase with its substrate can be the pathogenic process in different alleged causes of AD. Thus, competitive inhibitors of γ-secretase offer the best chance for a successful therapy, while the noncompetitive inhibitors could even facilitate development of the disease by inducing enzyme saturation at otherwise sub-saturating substrate. Membrane-imbedded Aβ-bundles generated by γ-secretase could be neurotoxic and thus crucial for our understanding of the amyloid hypothesis and AD pathogenesis.
Collapse
Affiliation(s)
- Zeljko M Svedružić
- Medical Biochemistry, Faculty of Medicine, University of Rijeka, Rab, Croatia.
| | | | | | | |
Collapse
|
4
|
Iyer LM, Aravind L. Insights from the architecture of the bacterial transcription apparatus. J Struct Biol 2011; 179:299-319. [PMID: 22210308 DOI: 10.1016/j.jsb.2011.12.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/14/2011] [Accepted: 12/18/2011] [Indexed: 10/14/2022]
Abstract
We provide a portrait of the bacterial transcription apparatus in light of the data emerging from structural studies, sequence analysis and comparative genomics to bring out important but underappreciated features. We first describe the key structural highlights and evolutionary implications emerging from comparison of the cellular RNA polymerase subunits with the RNA-dependent RNA polymerase involved in RNAi in eukaryotes and their homologs from newly identified bacterial selfish elements. We describe some previously unnoticed domains and the possible evolutionary stages leading to the RNA polymerases of extant life forms. We then present the case for the ancient orthology of the basal transcription factors, the sigma factor and TFIIB, in the bacterial and the archaeo-eukaryotic lineages. We also present a synopsis of the structural and architectural taxonomy of specific transcription factors and their genome-scale demography. In this context, we present certain notable deviations from the otherwise invariant proteome-wide trends in transcription factor distribution and use it to predict the presence of an unusual lineage-specifically expanded signaling system in certain firmicutes like Paenibacillus. We then discuss the intersection between functional properties of transcription factors and the organization of transcriptional networks. Finally, we present some of the interesting evolutionary conundrums posed by our newly gained understanding of the bacterial transcription apparatus and potential areas for future explorations.
Collapse
Affiliation(s)
- Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, Room 5N50, Bethesda, MD 20894, USA
| | | |
Collapse
|
5
|
Peptide Bond cis/trans Isomerases: A Biocatalysis Perspective of Conformational Dynamics in Proteins. Top Curr Chem (Cham) 2011; 328:35-67. [DOI: 10.1007/128_2011_151] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
HIV-1 protease has a genetic T-cell adjuvant effect which is negatively regulated by proteolytic activity. J Virol 2010; 84:7743-9. [PMID: 20484507 DOI: 10.1128/jvi.00747-10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV protease (PR) mediates the processing of human immunodeficiency virus (HIV) polyproteins and is necessary for the viral production. Recently, HIV PR was shown to possess both cytotoxic and chaperone like activity. We demonstrate here that HIV PR can serve as a genetic adjuvant that enhances the HIV Env and human papillomavirus (HPV) DNA vaccine-induced T-cell response in a dose-dependent manner, only when codelivered with DNA vaccine. Interestingly, the T-cell adjuvant effects of HIV PR were increased by introducing several mutations that inhibited its proteolytic activity, indicating that the adjuvant properties were inversely correlated with its proteolytic activity. Conversely, the introduction of a mutation in the flap region of HIV PR limiting the access to the core domain of HIV PR inhibited the T-cell adjuvant effect, suggesting that the HIV PR chaperone like activity may play a role in mediating T-cell adjuvant properties. A similar adjuvant effect was also observed in adenovirus vaccine, indicating vaccine type independency. These findings suggest that HIV PR can modulate T-cell responses elicited by a gene-based vaccine positively by inherent chaperone like activity and negatively by its proteolytic activity.
Collapse
|
7
|
The role of SurA factor in outer membrane protein transport and virulence. Int J Med Microbiol 2010; 300:421-8. [PMID: 20447864 DOI: 10.1016/j.ijmm.2010.04.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/16/2010] [Accepted: 04/05/2010] [Indexed: 11/22/2022] Open
Abstract
The Escherichia coli periplasmic chaperone and peptidyl-prolyl isomerase (PPIase) SurA is a major factor in the biogenesis of β-barrel outer membrane proteins (OMPs) and as such plays an integral role in cell envelope homeostasis and cell envelope functions. Recently, the biological importance of SurA was further substantiated by the finding that SurA also affects pathogenicity, being required for full virulence of uropathogenic Escherichia coli, Salmonella, and Shigella spp. Moreover, given the conservation of the protein, SurA likely plays similar roles in other Gram-negative bacteria and may hence prove a valuable drug target against Gram-negative pathogens. While our understanding on how SurA promotes transport and folding of β-barrel OMPs, how it provides support to virulence, and how it functions at a molecular level is still limited, major contributions have recently been made on our way to find answers to these questions. This review is a compilation of our current state of knowledge on E. coli SurA function and a discussion of recent findings with a particular emphasis on the pleiotropic contributions of SurA to pathogenicity.
Collapse
|
8
|
Wijesinha-Bettoni R, Alexeev Y, Johnson P, Marsh J, Sancho AI, Abdullah SU, Mackie AR, Shewry PR, Smith LJ, Mills ENC. The structural characteristics of nonspecific lipid transfer proteins explain their resistance to gastroduodenal proteolysis. Biochemistry 2010; 49:2130-9. [PMID: 20121231 DOI: 10.1021/bi901939z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure and stability of the allergenic nonspecific lipid transfer protein (LTP) of peach were compared with the homologous LTP1 of barley and its liganded form LTP1b. All three proteins were resistant to gastric pepsinolysis and were only slowly digested at 1 to 2 out of 14 potential tryptic and chymotryptic cleavage sites under duodenal conditions. Peach LTP was initially cleaved at Tyr79-Lys80 and then at Arg39-Thr40 (a site lost in barley LTP1). Molecular dynamics simulations of the proteins under folded conditions showed that the backbone flexibility is limited, explaining the resistance to duodenal proteolysis. Arg39 and Lys80 side chains were more flexible in simulations of peach compared with barley LTP1. This may explain differences in the rates of cleavage observed experimentally for the two proteins and suggests that the flexibility of individual amino acid side chains could be important in determining preferred proteolytic cleavage sites. In order to understand resistance to pepsinolysis, proteins were characterized by NMR spectroscopy at pH 1.8. This showed that the helical regions of both proteins remain folded at this pH. NMR hydrogen exchange studies confirmed the rigidity of the structures at acidic pH, with barley LTP1 showing some regions with greater protection. Collectively, these data suggest that the rigidity of the LTP scaffold is responsible for their resistance to proteolysis. Gastroduodenal digestion conditions do not disrupt the 3D structure of peach LTP, explaining why LTPs retain their ability to bind IgE after digestion and hence their allergenic potential.
Collapse
Affiliation(s)
- Ramani Wijesinha-Bettoni
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Dries DR, Shah S, Han YH, Yu C, Yu S, Shearman MS, Yu G. Glu-333 of nicastrin directly participates in gamma-secretase activity. J Biol Chem 2009; 284:29714-24. [PMID: 19729449 DOI: 10.1074/jbc.m109.038737] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
gamma-Secretase is a proteolytic membrane complex that processes a variety of substrates including the amyloid precursor protein and the Notch receptor. Earlier we showed that one of the components of this complex, nicastrin (NCT), functions as a receptor for gamma-secretase substrates. A recent report challenged this, arguing instead that the Glu-333 residue of NCT predicted to participate in substrate recognition only participates in gamma-secretase complex maturation and not in activity per se. Here, we present evidence that Glu-333 directly participates in gamma-secretase activity. By normalizing to the active pool of gamma-secretase with two separate methods, we establish that gamma-secretase complexes containing NCT-E333A are indeed deficient in intrinsic activity. We also demonstrate that the NCT-E333A mutant is deficient in its binding to substrates. Moreover, we find that the cleavage of substrates by gamma-secretase activity requires a free N-terminal amine but no minimal length of the extracellular N-terminal stub. Taken together, these studies provide further evidence supporting the role of NCT in substrate recognition. Finally, because gamma-secretase cleaves itself during its maturation and because NCT-E333A also shows defects in gamma-secretase complex maturation, we present a model whereby Glu-333 can serve a dual role via similar mechanisms in the recruitment of both Type 1 membrane proteins for activity and the presenilin intracellular loop during complex maturation.
Collapse
Affiliation(s)
- Daniel R Dries
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Erez E, Fass D, Bibi E. How intramembrane proteases bury hydrolytic reactions in the membrane. Nature 2009; 459:371-8. [PMID: 19458713 DOI: 10.1038/nature08146] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Intramembrane proteolysis is increasingly seen as a regulatory step in a range of diverse processes, including development, organelle shaping, metabolism, pathogenicity and degenerative disease. Initial scepticism over the existence of intramembrane proteases was soon replaced by intense exploration of their catalytic mechanisms, substrate specificities, regulation and structures. Crystal structures of metal-dependent and serine intramembrane proteases have revealed active sites embedded in the plane of the membrane but accessible by water, a requirement for hydrolytic reactions. Efforts to understand how these membrane-bound proteases carry out their reactions have started to yield results.
Collapse
Affiliation(s)
- Elinor Erez
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
11
|
Cradle-loop barrels and the concept of metafolds in protein classification by natural descent. Curr Opin Struct Biol 2008; 18:358-65. [DOI: 10.1016/j.sbi.2008.02.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2007] [Accepted: 02/14/2008] [Indexed: 11/19/2022]
|