1
|
Wan Q, Bennett BC, Wymore T, Li Z, Wilson MA, Brooks CL, Langan P, Kovalevsky A, Dealwis CG. Capturing the Catalytic Proton of Dihydrofolate Reductase: Implications for General Acid-Base Catalysis. ACS Catal 2021; 11:5873-5884. [PMID: 34055457 PMCID: PMC8154319 DOI: 10.1021/acscatal.1c00417] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/19/2021] [Indexed: 02/04/2023]
Abstract
![]()
Acid–base
catalysis, which involves one or more proton transfer
reactions, is a chemical mechanism commonly employed by many enzymes.
The molecular basis for catalysis is often derived from structures
determined at the optimal pH for enzyme activity. However, direct
observation of protons from experimental structures is quite difficult;
thus, a complete mechanistic description for most enzymes remains
lacking. Dihydrofolate reductase (DHFR) exemplifies general acid–base
catalysis, requiring hydride transfer and protonation of its substrate,
DHF, to form the product, tetrahydrofolate (THF). Previous X-ray and
neutron crystal structures coupled with theoretical calculations have
proposed that solvent mediates the protonation step. However, visualization
of a proton transfer has been elusive. Based on a 2.1 Å resolution
neutron structure of a pseudo-Michaelis complex of E. coli DHFR determined at acidic pH, we report the
direct observation of the catalytic proton and its parent solvent
molecule. Comparison of X-ray and neutron structures elucidated at
acidic and neutral pH reveals dampened dynamics at acidic pH, even
for the regulatory Met20 loop. Guided by the structures and calculations,
we propose a mechanism where dynamics are crucial for solvent entry
and protonation of substrate. This mechanism invokes the release of
a sole proton from a hydronium (H3O+) ion, its
pathway through a narrow channel that sterically hinders the passage
of water, and the ultimate protonation of DHF at the N5 atom.
Collapse
Affiliation(s)
| | - Brad C. Bennett
- Biological and Environmental Science Department, Samford University, Birmingham, Alabama 35229, United States
| | - Troy Wymore
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Mark A. Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Charles L. Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul Langan
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | | |
Collapse
|
2
|
Mhashal AR, Major DT. Temperature-Dependent Kinetic Isotope Effects in R67 Dihydrofolate Reductase from Path-Integral Simulations. J Phys Chem B 2021; 125:1369-1377. [PMID: 33522797 PMCID: PMC7883348 DOI: 10.1021/acs.jpcb.0c10318] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/05/2021] [Indexed: 11/28/2022]
Abstract
Calculation of temperature-dependent kinetic isotope effects (KIE) in enzymes presents a significant theoretical challenge. Additionally, it is not trivial to identify enzymes with available experimental accurate intrinsic KIEs in a range of temperatures. In the current work, we present a theoretical study of KIEs in the primitive R67 dihydrofolate reductase (DHFR) enzyme and compare with experimental work. The advantage of R67 DHFR is its significantly lower kinetic complexity compared to more evolved DHFR isoforms. We employ mass-perturbation-based path-integral simulations in conjunction with umbrella sampling and a hybrid quantum mechanics-molecular mechanics Hamiltonian. We obtain temperature-dependent KIEs in good agreement with experiments and ascribe the temperature-dependent KIEs primarily to zero-point energy effects. The active site in the primitive enzyme is found to be poorly preorganized, which allows excessive water access to the active site and results in loosely bound reacting ligands.
Collapse
Affiliation(s)
- Anil R. Mhashal
- Department of Chemistry and Institute
for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry and Institute
for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
3
|
Adesina AS, Świderek K, Luk LYP, Moliner V, Allemann RK. Electric Field Measurements Reveal the Pivotal Role of Cofactor-Substrate Interaction in Dihydrofolate Reductase Catalysis. ACS Catal 2020; 10:7907-7914. [PMID: 32905264 PMCID: PMC7467645 DOI: 10.1021/acscatal.0c01856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/18/2020] [Indexed: 12/31/2022]
Abstract
![]()
The
contribution of ligand–ligand electrostatic interaction
to transition state formation during enzyme catalysis has remained
unexplored, even though electrostatic forces are known to play a major
role in protein functions and have been investigated by the vibrational
Stark effect (VSE). To monitor electrostatic changes along important
steps during catalysis, we used a nitrile probe (T46C-CN) inserted
proximal to the reaction center of three dihydrofolate reductases
(DHFRs) with different biophysical properties, Escherichia
coli DHFR (EcDHFR), its conformationally impaired variant
(EcDHFR-S148P), and Geobacillus stearothermophilus DHFR (BsDHFR). Our combined experimental and computational approach
revealed that the electric field projected by the substrate toward
the probe negates those exerted by the cofactor when both are bound
within the enzymes. This indicates that compared to previous models
that focus exclusively on subdomain reorganization and protein–ligand
contacts, ligand–ligand interactions are the key driving force
to generate electrostatic environments conducive for catalysis.
Collapse
Affiliation(s)
- Aduragbemi S. Adesina
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Katarzyna Świderek
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | - Louis Y. P. Luk
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | - Rudolf K. Allemann
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
4
|
DHFR Inhibitors: Reading the Past for Discovering Novel Anticancer Agents. Molecules 2019; 24:molecules24061140. [PMID: 30909399 PMCID: PMC6471984 DOI: 10.3390/molecules24061140] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 11/17/2022] Open
Abstract
Dihydrofolate reductase inhibitors are an important class of drugs, as evidenced by their use as antibacterial, antimalarial, antifungal, and anticancer agents. Progress in understanding the biochemical basis of mechanisms responsible for enzyme selectivity and antiproliferative effects has renewed the interest in antifolates for cancer chemotherapy and prompted the medicinal chemistry community to develop novel and selective human DHFR inhibitors, thus leading to a new generation of DHFR inhibitors. This work summarizes the mechanism of action, chemical, and anticancer profile of the DHFR inhibitors discovered in the last six years. New strategies in DHFR drug discovery are also provided, in order to thoroughly delineate the current landscape for medicinal chemists interested in furthering this study in the anticancer field.
Collapse
|
5
|
Abbat S, Jaladanki CK, Bharatam PV. Exploring PfDHFR reaction surface: A combined molecular dynamics and QM/MM analysis. J Mol Graph Model 2018; 87:76-88. [PMID: 30508692 DOI: 10.1016/j.jmgm.2018.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 11/18/2022]
Abstract
The substrate to the enzyme PfDHFR (Plasmodium falciparum Dihydrofolate Reductase) is a small molecule dihydrofolate (DHF), it gets converted to tetrahydrofolate (THF) in the active site of the enzyme. The PfDHFR reaction surface involves the protonation of DHF to DHFP as an initial step before the catalytic conversion. The binding affinities of all these species (DHF, DHFP and THF) contribute to the mechanism of DHFR catalytic action. Molecular dynamics (MD) simulations and Quantum Mechanics/Molecular Mechanics (QM/MM) analysis were performed to evaluate the binding affinity and molecular recognition interactions of the substrate DHF/DHFP and the product THF, in the active site of wild-type PfDHFR (wtPfDHFR). The binding affinities of the cofactor NADPH/NADP+ were also estimated in all the three complexes. The molecular dynamics (MD) simulations of the substrate, product and cofactor in the cavities of wtPfDHFR revealed the variation of the atomic level interactions during the course of the catalytic conversion. It was found that the DHFP binds very strongly to the PfDHFR active site and pulls the cofactor NADPH closer to itself. The QM/MM analysis revealed that the binding energy of DHFP (-59.82 kcal/mol) and NADPH (-100.24 kcal/mol) in DHFP-wtPfDHFR complex, is higher in comparison to the binding energy of DHF (-38.67 kcal/mol) and NADPH (-77.53 kcal/mol) in DHF-wtPfDHFR complex and the binding energy of THF (-30.72 kcal/mol) and NADP+ (-73.72 kcal/mol) in THF-wtPfDHFR complex. The hydride ion donor-acceptor distance (DAD) analysis was also carried out. This combined MD and QM/MM analysis revealed that the protonation of DHF increases the proximity between the substrate and the cofactor, thus facilitates the reaction profile of PfDHFR.
Collapse
Affiliation(s)
- Sheenu Abbat
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Chaitanya K Jaladanki
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Prasad V Bharatam
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab, 160 062, India; Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab, 160 062, India.
| |
Collapse
|
6
|
Mhashal AR, Pshetitsky Y, Cheatum CM, Kohen A, Major DT. Evolutionary Effects on Bound Substrate pKa in Dihydrofolate Reductase. J Am Chem Soc 2018; 140:16650-16660. [DOI: 10.1021/jacs.8b09089] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anil R. Mhashal
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Yaron Pshetitsky
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | | | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Dan Thomas Major
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
7
|
Mhashal AR, Pshetitsky Y, Eitan R, Cheatum CM, Kohen A, Major DT. Effect of Asp122 Mutation on the Hydride Transfer in E. coli DHFR Demonstrates the Goldilocks of Enzyme Flexibility. J Phys Chem B 2018; 122:8006-8017. [PMID: 30040418 DOI: 10.1021/acs.jpcb.8b05556] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dihydrofolate reductase (DHFR) catalyzes the reduction of dihydrofolate (DHF) to tetrahydrofolate (THF) in the presence of NADPH. The key hydride transfer step in the reaction is facilitated by a combination of enzyme active site preorganization and correlated protein motions in the Michaelis-Menten (E:NADPH:DHF) complex. The present theoretical study employs mutagenesis to examine the relation between structural and functional properties of the enzyme. We mutate Asp122 in Escherichia coli DHFR, which is a conserved amino acid in the DHFR family. The consequent effect of the mutation on enzyme catalysis is examined from an energetic, structural and short-time dynamic perspective. Our investigations suggest that the structural and short-time dynamic perturbations caused by Asp122X mutations (X = Asn, Ser, Ala) are along the reaction coordinate and lower the rate of hydride transfer. Importantly, analysis of the correlated and principle component motions in the enzyme suggest that the mutation alters the coupled motions that are present in the wild-type enzyme. In the case of D122N and D122S, the mutations inhibit coupled motion, whereas in the case of D122A, the mutation enhances coupled motion, although all mutations result in similar rate reduction. These results emphasize a Goldilocks principle of enzyme flexibility, that is, enzymes should neither be too rigid nor too flexible.
Collapse
Affiliation(s)
- Anil R Mhashal
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry , Bar-Ilan University , Ramat-Gan 52900 , Israel
| | - Yaron Pshetitsky
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry , Bar-Ilan University , Ramat-Gan 52900 , Israel
| | - Reuven Eitan
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry , Bar-Ilan University , Ramat-Gan 52900 , Israel
| | - Christopher M Cheatum
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Amnon Kohen
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Dan Thomas Major
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry , Bar-Ilan University , Ramat-Gan 52900 , Israel
| |
Collapse
|
8
|
Duff MR, Borreguero JM, Cuneo MJ, Ramanathan A, He J, Kamath G, Chennubhotla SC, Meilleur F, Howell EE, Herwig KW, Myles DAA, Agarwal PK. Modulating Enzyme Activity by Altering Protein Dynamics with Solvent. Biochemistry 2018; 57:4263-4275. [PMID: 29901984 DOI: 10.1021/acs.biochem.8b00424] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Optimal enzyme activity depends on a number of factors, including structure and dynamics. The role of enzyme structure is well recognized; however, the linkage between protein dynamics and enzyme activity has given rise to a contentious debate. We have developed an approach that uses an aqueous mixture of organic solvent to control the functionally relevant enzyme dynamics (without changing the structure), which in turn modulates the enzyme activity. Using this approach, we predicted that the hydride transfer reaction catalyzed by the enzyme dihydrofolate reductase (DHFR) from Escherichia coli in aqueous mixtures of isopropanol (IPA) with water will decrease by ∼3 fold at 20% (v/v) IPA concentration. Stopped-flow kinetic measurements find that the pH-independent khydride rate decreases by 2.2 fold. X-ray crystallographic enzyme structures show no noticeable differences, while computational studies indicate that the transition state and electrostatic effects were identical for water and mixed solvent conditions; quasi-elastic neutron scattering studies show that the dynamical enzyme motions are suppressed. Our approach provides a unique avenue to modulating enzyme activity through changes in enzyme dynamics. Further it provides vital insights that show the altered motions of DHFR cause significant changes in the enzyme's ability to access its functionally relevant conformational substates, explaining the decreased khydride rate. This approach has important implications for obtaining fundamental insights into the role of rate-limiting dynamics in catalysis and as well as for enzyme engineering.
Collapse
Affiliation(s)
- Michael R Duff
- Biochemistry & Cellular and Molecular Biology Department , University of Tennessee , Knoxville , Tennessee , United States
| | - Jose M Borreguero
- Neutron Data Analysis and Visualization Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - Matthew J Cuneo
- Biology and Soft Matter Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - Arvind Ramanathan
- Computer Science and Engineering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - Junhong He
- Neutron Technologies Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - Ganesh Kamath
- Computer Science and Engineering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - S Chakra Chennubhotla
- Department of Computational and Systems Biology , University of Pittsburgh , Pittsburgh , Pennsylvania , United States
| | - Flora Meilleur
- Biology and Soft Matter Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States.,Molecular and Structural Biochemistry Department , North Carolina State University , Raleigh , North Carolina , United States
| | - Elizabeth E Howell
- Biochemistry & Cellular and Molecular Biology Department , University of Tennessee , Knoxville , Tennessee , United States
| | - Kenneth W Herwig
- Neutron Technologies Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - Dean A A Myles
- Biology and Soft Matter Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - Pratul K Agarwal
- Biochemistry & Cellular and Molecular Biology Department , University of Tennessee , Knoxville , Tennessee , United States.,Computer Science and Engineering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| |
Collapse
|
9
|
Paukovich N, Xue M, Elder JR, Redzic JS, Blue A, Pike H, Miller BG, Pitts TM, Pollock DD, Hansen K, D'Alessandro A, Eisenmesser EZ. Biliverdin Reductase B Dynamics Are Coupled to Coenzyme Binding. J Mol Biol 2018; 430:3234-3250. [PMID: 29932944 DOI: 10.1016/j.jmb.2018.06.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/28/2022]
Abstract
Biliverdin reductase B (BLVRB) is a newly identified cellular redox regulator that catalyzes the NADPH-dependent reduction of multiple substrates. Through mass spectrometry analysis, we identified high levels of BLVRB in mature red blood cells, highlighting the importance of BLVRB in redox regulation. The BLVRB conformational changes that occur during conezyme/substrate binding and the role of dynamics in BLVRB function, however, remain unknown. Through a combination of NMR, kinetics, and isothermal titration calorimetry studies, we determined that BLVRB binds its coenzyme 500-fold more tightly than its substrate. While the active site of apo BLVRB is highly dynamic on multiple timescales, active site dynamics are largely quenched within holo BLVRB, in which dynamics are redistributed to other regions of the enzyme. We show that a single point mutation of Arg78➔Ala leads to both an increase in active site micro-millisecond motions and an increase in the microscopic rate constants of coenzyme binding. This demonstrates that altering BLVRB active site dynamics can directly cause a change in functional characteristics. Our studies thus address the solution behavior of apo and holo BLVRB and identify a role of enzyme dynamics in coenzyme binding.
Collapse
Affiliation(s)
- Natasia Paukovich
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Mengjun Xue
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - James R Elder
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Jasmina S Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Ashley Blue
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - Hamish Pike
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Brian G Miller
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32310, USA
| | - Todd M Pitts
- Division of Medical Oncology, School of Medicine, Aurora, CO 80045, USA
| | - David D Pollock
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Kirk Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Elan Zohar Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
10
|
Mhashal AR, Vardi-Kilshtain A, Kohen A, Major DT. The role of the Met 20 loop in the hydride transfer in Escherichia coli dihydrofolate reductase. J Biol Chem 2017; 292:14229-14239. [PMID: 28620051 DOI: 10.1074/jbc.m117.777136] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/24/2017] [Indexed: 11/06/2022] Open
Abstract
A key question concerning the catalytic cycle of Escherichia coli dihydrofolate reductase (ecDHFR) is whether the Met20 loop is dynamically coupled to the chemical step during catalysis. A more basic, yet unanswered question is whether the Met20 loop adopts a closed conformation during the chemical hydride transfer step. To examine the most likely conformation of the Met20 loop during the chemical step, we studied the hydride transfer in wild type (WT) ecDHFR using hybrid quantum mechanics-molecular mechanics free energy simulations with the Met20 loop in a closed and disordered conformation. Additionally, we investigated three mutant forms (I14X; X = Val, Ala, Gly) of the enzyme that have increased active site flexibility and donor-acceptor distance dynamics in closed and disordered Met20 loop states. We found that the conformation of the Met20 loop has a dramatic effect on the ordering of active site hydration, although the Met20 loop conformation only has a moderate effect on the hydride transfer rate and donor-acceptor distance dynamics. Finally, we evaluated the pKa of the substrate N5 position in closed and disordered Met20 loop states and found a strong correlation between N5 basicity and the conformation of the Met20 loop.
Collapse
Affiliation(s)
- Anil R Mhashal
- From the Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Alexandra Vardi-Kilshtain
- From the Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242
| | - Dan Thomas Major
- From the Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
11
|
Luk LYP, Loveridge EJ, Allemann RK. Protein motions and dynamic effects in enzyme catalysis. Phys Chem Chem Phys 2016; 17:30817-27. [PMID: 25854702 DOI: 10.1039/c5cp00794a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The role of protein motions in promoting the chemical step of enzyme catalysed reactions remains a subject of considerable debate. Here, a unified view of the role of protein dynamics in dihydrofolate reductase catalysis is described. Recently the role of such motions has been investigated by characterising the biophysical properties of isotopically substituted enzymes through a combination of experimental and computational analyses. Together with previous work, these results suggest that dynamic coupling to the chemical coordinate is detrimental to catalysis and may have been selected against during DHFR evolution. The full catalytic power of Nature's catalysts appears to depend on finely tuning protein motions in each step of the catalytic cycle.
Collapse
Affiliation(s)
- Louis Y P Luk
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| | - E Joel Loveridge
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| | - Rudolf K Allemann
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
12
|
Pshetitsky Y, Eitan R, Verner G, Kohen A, Major DT. Improved Sugar Puckering Profiles for Nicotinamide Ribonucleoside for Hybrid QM/MM Simulations. J Chem Theory Comput 2016; 12:5179-5189. [PMID: 27490188 DOI: 10.1021/acs.jctc.6b00401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The coenzyme nicotinamide adenine dinucleotide (NAD+) and its reduced form (NADH) play ubiquitous roles as oxidizing and reducing agents in nature. The binding, and possibly the chemical redox step, of NAD+/NADH may be influenced by the cofactor conformational distribution and, in particular, by the ribose puckering of its nicotinamide-ribonucleoside (NR) moiety. In many hybrid quantum mechanics-molecular mechanics (QM/MM) studies of NAD+/NADH dependent enzymes, the QM region is treated by semiempirical (SE) methods. Recent work suggests that SE methods do not adequately describe the ring puckering in sugar molecules. In the present work we adopt an efficient and practical strategy to correct for this deficiency for NAD+/NADH. We have implemented a cost-effective correction to a SE Hamiltonian by adding a correction potential, which is defined as the difference between an accurate benchmark density functional theory (DFT) potential energy surface (PES) and the SE PES. In practice, this is implemented via a B-spline interpolation scheme for the grid-based potential energy difference surface. We find that the puckering population distributions obtained from free energy QM(SE)/MM simulations are in good agreement with DFT and in fair accord with experimental results. The corrected PES should facilitate a more accurate description of the ribose puckering in the NAD+/NADH cofactor in simulations of biological systems.
Collapse
Affiliation(s)
- Yaron Pshetitsky
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar-Ilan University , Ramat-Gan 52900, Israel
| | - Reuven Eitan
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar-Ilan University , Ramat-Gan 52900, Israel
| | - Gilit Verner
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar-Ilan University , Ramat-Gan 52900, Israel
| | - Amnon Kohen
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Dan Thomas Major
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar-Ilan University , Ramat-Gan 52900, Israel
| |
Collapse
|
13
|
Rabelo VW, Sampaio TF, Duarte LD, Lopes DHB, Abreu PA. Structure–activity relationship of a series of 1,2-dihydroquinoline analogues and binding mode with Vibrio cholerae dihydrofolate reductase. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1583-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
Hanoian P, Liu CT, Hammes-Schiffer S, Benkovic S. Perspectives on electrostatics and conformational motions in enzyme catalysis. Acc Chem Res 2015; 48:482-9. [PMID: 25565178 PMCID: PMC4334233 DOI: 10.1021/ar500390e] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
![]()
Enzymes
are essential for all living organisms, and their effectiveness as
chemical catalysts has driven more than a half century of research
seeking to understand the enormous rate enhancements they provide.
Nevertheless, a complete understanding of the factors that govern
the rate enhancements and selectivities of enzymes remains elusive,
due to the extraordinary complexity and cooperativity that are the
hallmarks of these biomolecules. We have used a combination of site-directed
mutagenesis, pre-steady-state kinetics, X-ray crystallography, nuclear
magnetic resonance (NMR), vibrational and fluorescence spectroscopies,
resonance energy transfer, and computer simulations to study the implications
of conformational motions and electrostatic interactions on enzyme
catalysis in the enzyme dihydrofolate reductase (DHFR). We have
demonstrated that modest equilibrium conformational changes are functionally
related to the hydride transfer reaction. Results obtained for mutant
DHFRs illustrated that reductions in hydride transfer rates are correlated
with altered conformational motions, and analysis of the evolutionary
history of DHFR indicated that mutations appear to have occurred to
preserve both the hydride transfer rate and the associated conformational
changes. More recent results suggested that differences in local electrostatic
environments contribute to finely tuning the substrate pKa in the initial protonation step. Using a combination
of primary and solvent kinetic isotope effects, we demonstrated that
the reaction mechanism is consistent across a broad pH range, and
computer simulations suggested that deprotonation of the active site
Tyr100 may play a crucial role in substrate protonation at high pH. Site-specific incorporation of vibrational thiocyanate probes into
the ecDHFR active site provided an experimental tool
for interrogating these microenvironments and for investigating changes
in electrostatics along the DHFR catalytic cycle. Complementary molecular
dynamics simulations in conjunction with mixed quantum mechanical/molecular
mechanical calculations accurately reproduced the vibrational frequency
shifts in these probes and provided atomic-level insight into the
residues influencing these changes. Our findings indicate that conformational
and electrostatic changes are intimately related and functionally
essential. This approach can be readily extended to the study of other
enzyme systems to identify more general trends in the relationship
between conformational fluctuations and electrostatic interactions.
These results are relevant to researchers seeking to design novel
enzymes as well as those seeking to develop therapeutic agents that
function as enzyme inhibitors.
Collapse
Affiliation(s)
- Philip Hanoian
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - C. Tony Liu
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sharon Hammes-Schiffer
- Department
of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Stephen Benkovic
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
15
|
Liu CT, Francis K, Layfield JP, Huang X, Hammes-Schiffer S, Kohen A, Benkovic SJ. Escherichia coli dihydrofolate reductase catalyzed proton and hydride transfers: temporal order and the roles of Asp27 and Tyr100. Proc Natl Acad Sci U S A 2014; 111:18231-6. [PMID: 25453098 PMCID: PMC4280594 DOI: 10.1073/pnas.1415940111] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The reaction catalyzed by Escherichia coli dihydrofolate reductase (ecDHFR) has become a model for understanding enzyme catalysis, and yet several details of its mechanism are still unresolved. Specifically, the mechanism of the chemical step, the hydride transfer reaction, is not fully resolved. We found, unexpectedly, the presence of two reactive ternary complexes [enzyme:NADPH:7,8-dihydrofolate (E:NADPH:DHF)] separated by one ionization event. Furthermore, multiple kinetic isotope effect (KIE) studies revealed a stepwise mechanism in which protonation of the DHF precedes the hydride transfer from the nicotinamide cofactor (NADPH) for both reactive ternary complexes of the WT enzyme. This mechanism was supported by the pH- and temperature-independent intrinsic KIEs for the C-H→C hydride transfer between NADPH and the preprotonated DHF. Moreover, we showed that active site residues D27 and Y100 play a synergistic role in facilitating both the proton transfer and subsequent hydride transfer steps. Although D27 appears to have a greater effect on the overall rate of conversion of DHF to tetrahydrofolate, Y100 plays an important electrostatic role in modulating the pKa of the N5 of DHF to enable the preprotonation of DHF by an active site water molecule.
Collapse
Affiliation(s)
- C Tony Liu
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
| | - Kevin Francis
- Department of Chemistry, The University of Iowa, Iowa City, IA 52242; and
| | - Joshua P Layfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3364
| | - Xinyi Huang
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
| | - Sharon Hammes-Schiffer
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3364
| | - Amnon Kohen
- Department of Chemistry, The University of Iowa, Iowa City, IA 52242; and
| | - Stephen J Benkovic
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802;
| |
Collapse
|
16
|
Toward resolving the catalytic mechanism of dihydrofolate reductase using neutron and ultrahigh-resolution X-ray crystallography. Proc Natl Acad Sci U S A 2014; 111:18225-30. [PMID: 25453083 DOI: 10.1073/pnas.1415856111] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Dihydrofolate reductase (DHFR) catalyzes the NADPH-dependent reduction of dihydrofolate (DHF) to tetrahydrofolate (THF). An important step in the mechanism involves proton donation to the N5 atom of DHF. The inability to determine the protonation states of active site residues and substrate has led to a lack of consensus regarding the catalytic mechanism involved. To resolve this ambiguity, we conducted neutron and ultrahigh-resolution X-ray crystallographic studies of the pseudo-Michaelis ternary complex of Escherichia coli DHFR with folate and NADP(+). The neutron data were collected to 2.0-Å resolution using a 3.6-mm(3) crystal with the quasi-Laue technique. The structure reveals that the N3 atom of folate is protonated, whereas Asp27 is negatively charged. Previous mechanisms have proposed a keto-to-enol tautomerization of the substrate to facilitate protonation of the N5 atom. The structure supports the existence of the keto tautomer owing to protonation of the N3 atom, suggesting that tautomerization is unnecessary for catalysis. In the 1.05-Å resolution X-ray structure of the ternary complex, conformational disorder of the Met20 side chain is coupled to electron density for a partially occupied water within hydrogen-bonding distance of the N5 atom of folate; this suggests direct protonation of substrate by solvent. We propose a catalytic mechanism for DHFR that involves stabilization of the keto tautomer of the substrate, elevation of the pKa value of the N5 atom of DHF by Asp27, and protonation of N5 by water that gains access to the active site through fluctuation of the Met20 side chain even though the Met20 loop is closed.
Collapse
|
17
|
Doron D, Stojković V, Gakhar L, Vardi-Kilshtain A, Kohen A, Major DT. Free energy simulations of active-site mutants of dihydrofolate reductase. J Phys Chem B 2014; 119:906-16. [PMID: 25382260 DOI: 10.1021/jp5059963] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study employs hybrid quantum mechanics-molecular mechanics (QM/MM) simulations to investigate the effect of mutations of the active-site residue I14 of E. coli dihydrofolate reductase (DHFR) on the hydride transfer. Recent kinetic measurements of the I14X mutants (X = V, A, and G) indicated slower hydride transfer rates and increasingly temperature-dependent kinetic isotope effects (KIEs) with systematic reduction of the I14 side chain. The QM/MM simulations show that when the original isoleucine residue is substituted in silico by valine, alanine, or glycine (I14V, I14A, and I14G DHFR, respectively), the free energy barrier height of the hydride transfer reaction increases relative to the wild-type enzyme. These trends are in line with the single-turnover rate measurements reported for these systems. In addition, extended dynamics simulations of the reactive Michaelis complex reveal enhanced flexibility in the mutants, and in particular for the I14G mutant, including considerable fluctuations of the donor-acceptor distance (DAD) and the active-site hydrogen bonding network compared with those detected in the native enzyme. These observations suggest that the perturbations induced by the mutations partly impair the active-site environment in the reactant state. On the other hand, the average DADs at the transition state of all DHFR variants are similar. Crystal structures of I14 mutants (V, A, and G) confirmed the trend of increased flexibility of the M20 and other loops.
Collapse
Affiliation(s)
- Dvir Doron
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar-Ilan University , Ramat-Gan 5290002, Israel
| | | | | | | | | | | |
Collapse
|
18
|
Wan Q, Kovalevsky AY, Wilson MA, Bennett BC, Langan P, Dealwis C. Preliminary joint X-ray and neutron protein crystallographic studies of ecDHFR complexed with folate and NADP+. Acta Crystallogr F Struct Biol Commun 2014; 70:814-8. [PMID: 24915100 PMCID: PMC4051544 DOI: 10.1107/s2053230x1400942x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 04/26/2014] [Indexed: 11/10/2022] Open
Abstract
A crystal of Escherichia coli dihydrofolate reductase (ecDHFR) complexed with folate and NADP+ of 4×1.3×0.7 mm (3.6 mm3) in size was obtained by sequential application of microseeding and macroseeding. A neutron diffraction data set was collected to 2.0 Å resolution using the IMAGINE diffractometer at the High Flux Isotope Reactor within Oak Ridge National Laboratory. A 1.6 Å resolution X-ray data set was also collected from a smaller crystal at room temperature. The neutron and X-ray data were used together for joint refinement of the ecDHFR-folate-NADP+ ternary-complex structure in order to examine the protonation state, protein dynamics and solvent structure of the complex, furthering understanding of the catalytic mechanism.
Collapse
Affiliation(s)
- Qun Wan
- Department of Biochemistry, College of Medicine, Yangzhou University, 11 HuaiHai Road, Yangzhou 225001, People’s Republic of China
| | - Andrey Y. Kovalevsky
- Biology and Soft Matter Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| | - Mark A. Wilson
- Department of Biochemistry/Redox Biology Center, University of Nebraska, 1901 Vine Street, Lincoln, NE 68588, USA
| | - Brad C. Bennett
- Department of Molecular Physiology and Biological Physics, University of Virginia, PO Box 800793, Charlottesville, VA 22908, USA
| | - Paul Langan
- Biology and Soft Matter Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| | - Chris Dealwis
- Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
19
|
Ruiz-Pernia JJ, Luk LYP, García-Meseguer R, Martí S, Loveridge EJ, Tuñón I, Moliner V, Allemann RK. Increased dynamic effects in a catalytically compromised variant of Escherichia coli dihydrofolate reductase. J Am Chem Soc 2013; 135:18689-96. [PMID: 24252106 PMCID: PMC3949409 DOI: 10.1021/ja410519h] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Indexed: 01/19/2023]
Abstract
Isotopic substitution ((15)N, (13)C, (2)H) of a catalytically compromised variant of Escherichia coli dihydrofolate reductase, EcDHFR-N23PP/S148A, has been used to investigate the effect of these mutations on catalysis. The reduction of the rate constant of the chemical step in the EcDHFR-N23PP/S148A catalyzed reaction is essentially a consequence of an increase of the quasi-classical free energy barrier and to a minor extent of an increased number of recrossing trajectories on the transition state dividing surface. Since the variant enzyme is less well set up to catalyze the reaction, a higher degree of active site reorganization is needed to reach the TS. Although millisecond active site motions are lost in the variant, there is greater flexibility on the femtosecond time scale. The "dynamic knockout" EcDHFR-N23PP/S148A is therefore a "dynamic knock-in" at the level of the chemical step, and the increased dynamic coupling to the chemical coordinate is in fact detrimental to catalysis. This finding is most likely applicable not just to hydrogen transfer in EcDHFR but also to other enzymatic systems.
Collapse
Affiliation(s)
- J. Javier Ruiz-Pernia
- Departament
de Química Física i Analítica, Universitat Jaume I, 12071 Castello, Spain
| | - Louis Y. P. Luk
- School
of Chemistry & Cardiff Catalysis Institute, Cardiff University, Park Place, Cardiff, CF10
3AT, U.K.
| | | | - Sergio Martí
- Departament
de Química Física i Analítica, Universitat Jaume I, 12071 Castello, Spain
| | - E. Joel Loveridge
- School
of Chemistry & Cardiff Catalysis Institute, Cardiff University, Park Place, Cardiff, CF10
3AT, U.K.
| | - Iñaki Tuñón
- Departament
de Química Física, Universitat
de València, 46100 Burjassot, Spain
| | - Vicent Moliner
- Departament
de Química Física i Analítica, Universitat Jaume I, 12071 Castello, Spain
| | - Rudolf K. Allemann
- School
of Chemistry & Cardiff Catalysis Institute, Cardiff University, Park Place, Cardiff, CF10
3AT, U.K.
| |
Collapse
|
20
|
Guo J, Loveridge EJ, Luk LYP, Allemann RK. Effect of Dimerization on Dihydrofolate Reductase Catalysis. Biochemistry 2013; 52:3881-7. [DOI: 10.1021/bi4005073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jiannan Guo
- School of Chemistry and
Cardiff Catalysis Institute, Cardiff University, Main Building, Park Place, Cardiff
CF10 3AT, United Kingdom
| | - E. Joel Loveridge
- School of Chemistry and
Cardiff Catalysis Institute, Cardiff University, Main Building, Park Place, Cardiff
CF10 3AT, United Kingdom
| | - Louis Y. P. Luk
- School of Chemistry and
Cardiff Catalysis Institute, Cardiff University, Main Building, Park Place, Cardiff
CF10 3AT, United Kingdom
| | - Rudolf K. Allemann
- School of Chemistry and
Cardiff Catalysis Institute, Cardiff University, Main Building, Park Place, Cardiff
CF10 3AT, United Kingdom
| |
Collapse
|
21
|
Fan Y, Cembran A, Ma S, Gao J. Connecting protein conformational dynamics with catalytic function as illustrated in dihydrofolate reductase. Biochemistry 2013; 52:2036-49. [PMID: 23297871 DOI: 10.1021/bi301559q] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Combined quantum mechanics/molecular mechanics molecular dynamics simulations reveal that the M20 loop conformational dynamics of dihydrofolate reductase (DHFR) is severely restricted at the transition state of the hydride transfer as a result of the M42W/G121V double mutation. Consequently, the double-mutant enzyme has a reduced entropy of activation, i.e., increased entropic barrier, and altered temperature dependence of kinetic isotope effects in comparison with those of wild-type DHFR. Interestingly, in both wild-type DHFR and the double mutant, the average donor-acceptor distances are essentially the same in the Michaelis complex state (~3.5 Å) and the transition state (2.7 Å). It was found that an additional hydrogen bond is formed to stabilize the M20 loop in the closed conformation in the M42W/G121V double mutant. The computational results reflect a similar aim designed to knock out precisely the dynamic flexibility of the M20 loop in a different double mutant, N23PP/S148A.
Collapse
Affiliation(s)
- Yao Fan
- Department of Chemistry, Digital Technology Center, and Supercomputing Institute, University of Minnesota , 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | | | | | | |
Collapse
|
22
|
Arora K, Brooks CL. Multiple intermediates, diverse conformations, and cooperative conformational changes underlie the catalytic hydride transfer reaction of dihydrofolate reductase. Top Curr Chem (Cham) 2013; 337:165-87. [PMID: 23420416 PMCID: PMC4394636 DOI: 10.1007/128_2012_408] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It has become increasingly clear that protein motions play an essential role in enzyme catalysis. However, exactly how these motions are related to an enzyme's chemical step is still intensely debated. This chapter examines the possible role of protein motions that display a hierarchy of timescales in enzyme catalysis. The linkage between protein motions and catalysis is investigated in the context of a model enzyme, E. coli dihydrofolate reductase (DHFR), that catalyzes the hydride transfer reaction in the conversion of dihydrofolate to tetrahydrofolate. The results of extensive computer simulations probing the protein motions that are manifest during different steps along the turnover cycle of DHFR are summarized. Evidence is presented that the protein motions modulate the catalytic efficacy of DHFR by generating a conformational ensemble conducive to the hydride transfer. The alteration of the equilibrium conformational ensemble rather than any protein dynamical effects is found to be sufficient to explain the rate-diminishing effects of mutation on the kinetics of the enzyme. These data support the view that the protein motions facilitate catalysis by establishing reaction competent conformations of the enzyme, but they do not directly couple to the chemical reaction itself. These findings have broad implications for our understanding of enzyme mechanisms and the design of novel protein catalysts.
Collapse
Affiliation(s)
- Karunesh Arora
- Department of Chemistry and Biophysics Program, University of Michigan, Ann Arbor, MI 48109
| | - Charles L. Brooks
- Department of Chemistry and Biophysics Program, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
23
|
Hu X, Legler PM, Khavrutskii I, Scorpio A, Compton JR, Robertson KL, Friedlander AM, Wallqvist A. Probing the donor and acceptor substrate specificity of the γ-glutamyl transpeptidase. Biochemistry 2012; 51:1199-212. [PMID: 22257032 DOI: 10.1021/bi200987b] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
γ-Glutamyl transpeptidase (GGT) is a two-substrate enzyme that plays a central role in glutathione metabolism and is a potential target for drug design. GGT catalyzes the cleavage of γ-glutamyl donor substrates and the transfer of the γ-glutamyl moiety to an amine of an acceptor substrate or water. Although structures of bacterial GGT have revealed details of the protein-ligand interactions at the donor site, the acceptor substrate site is relatively undefined. The recent identification of a species-specific acceptor site inhibitor, OU749, suggests that these inhibitors may be less toxic than glutamine analogues. Here we investigated the donor and acceptor substrate preferences of Bacillus anthracis GGT (CapD) and applied computational approaches in combination with kinetics to probe the structural basis of the enzyme's substrate and inhibitor binding specificities and compare them with human GGT. Site-directed mutagenesis studies showed that the R432A and R520S variants exhibited 6- and 95-fold decreases in hydrolase activity, respectively, and that their activity was not stimulated by the addition of the l-Cys acceptor substrate, suggesting an additional role in acceptor binding and/or catalysis of transpeptidation. Rat GGT (and presumably HuGGT) has strict stereospecificity for L-amino acid acceptor substrates, while CapD can utilize both L- and D-acceptor substrates comparably. Modeling and kinetic analysis suggest that R520 and R432 allow two alternate acceptor substrate binding modes for L- and D-acceptors. R432 is conserved in Francisella tularensis, Yersinia pestis, Burkholderia mallei, Helicobacter pylori and Escherichia coli, but not in human GGT. Docking and MD simulations point toward key residues that contribute to inhibitor and acceptor substrate binding, providing a guide to designing novel and specific GGT inhibitors.
Collapse
Affiliation(s)
- Xin Hu
- Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702, United States.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Stojković V, Perissinotti LL, Willmer D, Benkovic SJ, Kohen A. Effects of the donor-acceptor distance and dynamics on hydride tunneling in the dihydrofolate reductase catalyzed reaction. J Am Chem Soc 2012; 134:1738-45. [PMID: 22171795 DOI: 10.1021/ja209425w] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A significant contemporary question in enzymology involves the role of protein dynamics and hydrogen tunneling in enhancing enzyme catalyzed reactions. Here, we report a correlation between the donor-acceptor distance (DAD) distribution and intrinsic kinetic isotope effects (KIEs) for the dihydrofolate reductase (DHFR) catalyzed reaction. This study compares the nature of the hydride-transfer step for a series of active-site mutants, where the size of a side chain that modulates the DAD (I14 in E. coli DHFR) is systematically reduced (I14V, I14A, and I14G). The contributions of the DAD and its dynamics to the hydride-transfer step were examined by the temperature dependence of intrinsic KIEs, hydride-transfer rates, activation parameters, and classical molecular dynamics (MD) simulations. Results are interpreted within the framework of the Marcus-like model where the increase in the temperature dependence of KIEs arises as a direct consequence of the deviation of the DAD from its distribution in the wild type enzyme. Classical MD simulations suggest new populations with larger average DADs, as well as broader distributions, and a reduction in the population of the reactive conformers correlated with the decrease in the size of the hydrophobic residue. The more flexible active site in the mutants required more substantial thermally activated motions for effective H-tunneling, consistent with the hypothesis that the role of the hydrophobic side chain of I14 is to restrict the distribution and dynamics of the DAD and thus assist the hydride-transfer. These studies establish relationships between the distribution of DADs, the hydride-transfer rates, and the DAD's rearrangement toward tunneling-ready states. This structure-function correlation shall assist in the interpretation of the temperature dependence of KIEs caused by mutants far from the active site in this and other enzymes, and may apply generally to C-H→C transfer reactions.
Collapse
Affiliation(s)
- Vanja Stojković
- Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
25
|
Goh GB, Knight JL, Brooks CL. Constant pH Molecular Dynamics Simulations of Nucleic Acids in Explicit Solvent. J Chem Theory Comput 2011; 8:36-46. [PMID: 22337595 DOI: 10.1021/ct2006314] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nucleosides of adenine and cytosine have pKa values of 3.50 and 4.08, respectively, and are assumed to be unprotonated under physiological conditions. However, evidence from recent NMR and X-Ray crystallography studies has revealed the prevalence of protonated adenine and cytosine in RNA macromolecules. Such nucleotides with elevated pKa values may play a role in stabilizing RNA structure and participate in the mechanism of ribozyme catalysis. With the work presented here, we establish the framework and demonstrate the first constant pH MD simulations (CPHMD) for nucleic acids in explicit solvent in which the protonation state is coupled to the dynamical evolution of the RNA system via λ-dynamics. We adopt the new functional form λ(Nexp) for λ that was recently developed for Multi-Site λ-Dynamics (MSλD) and demonstrate good sampling characteristics in which rapid and frequent transitions between the protonated and unprotonated states at pH = pKa are achieved. Our calculated pKa values of simple nucleotides are in a good agreement with experimentally measured values, with a mean absolute error of 0.24 pKa units. This work demonstrates that CPHMD can be used as a powerful tool to investigate pH-dependent biological properties of RNA macromolecules.
Collapse
Affiliation(s)
- Garrett B Goh
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| | | | | |
Collapse
|
26
|
Doron D, Major DT, Kohen A, Thiel W, Wu X. Hybrid Quantum and Classical Simulations of the Dihydrofolate Reductase Catalyzed Hydride Transfer Reaction on an Accurate Semi-Empirical Potential Energy Surface. J Chem Theory Comput 2011; 7:3420-37. [PMID: 26598171 DOI: 10.1021/ct2004808] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dihydrofolate reductase (DHFR) catalyzes the reduction of 7,8-dihydrofolate by nicotinamide adenine dinucleotide phosphate hydride (NADPH) to form 5,6,7,8-tetrahydrofolate and oxidized nicotinamide. DHFR is a small, flexible, monomeric protein with no metals or SS bonds and serves as one of the enzymes commonly used to examine basic aspects in enzymology. In the current work, we present extensive benchmark calculations for several model reactions in the gas phase that are relevant to the DHFR catalyzed hydride transfer. To this end, we employ G4MP2 and CBS-QB3 ab initio calculations as well as numerous density functional theory methods. Using these results, we develop two specific reaction parameter (SRP) Hamiltonians based on the semiempirical AM1 method. The first generation SRP Hamiltonian does not account for dispersion, while the second generation SRP accounts for dispersion implicitly via the AM1 core-repulsion functions. These SRP semiempirical Hamiltonians are subsequently used in hybrid quantum mechanics/molecular mechanics simulations of the DHFR catalyzed reaction. Finally, kinetic isotope effects are computed using a mass-perturbation-based path-integral approach.
Collapse
Affiliation(s)
- Dvir Doron
- Department of Chemistry, The Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar-Ilan University , Ramat-Gan 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry, The Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar-Ilan University , Ramat-Gan 52900, Israel
| | - Amnon Kohen
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Xin Wu
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
27
|
Bhabha G, Lee J, Ekiert DC, Gam J, Wilson IA, Dyson HJ, Benkovic SJ, Wright PE. A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis. Science 2011; 332:234-8. [PMID: 21474759 DOI: 10.1126/science.1198542] [Citation(s) in RCA: 365] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Conformational dynamics play a key role in enzyme catalysis. Although protein motions have clear implications for ligand flux, a role for dynamics in the chemical step of enzyme catalysis has not been clearly established. We generated a mutant of Escherichia coli dihydrofolate reductase that abrogates millisecond-time-scale fluctuations in the enzyme active site without perturbing its structural and electrostatic preorganization. This dynamic knockout severely impairs hydride transfer. Thus, we have found a link between conformational fluctuations on the millisecond time scale and the chemical step of an enzymatic reaction, with broad implications for our understanding of enzyme mechanisms and for design of novel protein catalysts.
Collapse
Affiliation(s)
- Gira Bhabha
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Arora K, Brooks Iii CL. Functionally important conformations of the Met20 loop in dihydrofolate reductase are populated by rapid thermal fluctuations. J Am Chem Soc 2010; 131:5642-7. [PMID: 19323547 DOI: 10.1021/ja9000135] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Conformational changes in enzymes are well recognized to play an important role in the organization of the reactive groups for efficient catalysis. This study reveals atomic and energetic details of the conformational change process that precedes the catalytic reaction of the enzyme dihydrofolate reductase. The computed free energy profile provides insights into the ligand binding mechanism and a quantitative estimate of barrier heights separating different conformational states along the pathway. Studies show that the ternary complex comprised of NADPH cofactor and substrate dihydrofolate undergoes transitions between a closed state and an occluded state via an intermediate "open" conformation. During these transitions the largest conformational change occurs in the Met20 loop of DHFR and is accompanied by the motion of the cofactor into and out of the binding pocket. When the cofactor is out of the binding pocket, the enzyme frequently samples open and occluded conformations with a small (approximately 5 k(B)T) free energy barrier between the two states. However, when the cofactor is in the binding pocket, the closed conformation is thermodynamically most favored. The determination of a profile characterizing the position-dependent diffusion of the Met20 loop allowed us to apply reaction rate theory and deduce the kinetics of loop motions based on the computed free energy landscape.
Collapse
Affiliation(s)
- Karunesh Arora
- Department of Chemistry and Biophysics Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
29
|
Butterfoss GL, DeRose EF, Gabel SA, Perera L, Krahn JM, Mueller GA, Zheng X, London RE. Conformational dependence of 13C shielding and coupling constants for methionine methyl groups. JOURNAL OF BIOMOLECULAR NMR 2010; 48:31-47. [PMID: 20734113 PMCID: PMC5598763 DOI: 10.1007/s10858-010-9436-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 07/13/2010] [Indexed: 05/12/2023]
Abstract
Methionine residues fulfill a broad range of roles in protein function related to conformational plasticity, ligand binding, and sensing/mediating the effects of oxidative stress. A high degree of internal mobility, intrinsic detection sensitivity of the methyl group, and low copy number have made methionine labeling a popular approach for NMR investigation of selectively labeled protein macromolecules. However, selective labeling approaches are subject to more limited information content. In order to optimize the information available from such studies, we have performed DFT calculations on model systems to evaluate the conformational dependence of (3)J (CSCC), (3)J (CSCH), and the isotropic shielding, sigma(iso). Results have been compared with experimental data reported in the literature, as well as data obtained on [methyl-(13)C]methionine and on model compounds. These studies indicate that relative to oxygen, the presence of the sulfur atom in the coupling pathway results in a significantly smaller coupling constant, (3)J (CSCC)/(3)J (COCC) approximately 0.7. It is further demonstrated that the (3)J (CSCH) coupling constant depends primarily on the subtended CSCH dihedral angle, and secondarily on the CSCC dihedral angle. Comparison of theoretical shielding calculations with the experimental shift range of the methyl group for methionine residues in proteins supports the conclusion that the intra-residue conformationally-dependent shift perturbation is the dominant determinant of delta(13)Cepsilon. Analysis of calmodulin data based on these calculations indicates that several residues adopt non-standard rotamers characterized by very large approximately 100 degrees chi(3) values. The utility of the delta(13)Cepsilon as a basis for estimating the gauche/trans ratio for chi(3) is evaluated, and physical and technical factors that limit the accuracy of both the NMR and crystallographic analyses are discussed.
Collapse
Affiliation(s)
- Glenn L. Butterfoss
- The Courant Institute of Mathematical Sciences and the Center for Genomics & Systems Biology, New York University, New York, NY 10003 USA
| | - Eugene F. DeRose
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709
| | - Scott A. Gabel
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709
| | - Lalith Perera
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709
| | - Joseph M. Krahn
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709
| | - Geoffrey A. Mueller
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709
| | - Xunhai Zheng
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709
| | - Robert E. London
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709
| |
Collapse
|
30
|
Evans RM, Behiry EM, Tey LH, Guo J, Loveridge EJ, Allemann RK. Catalysis by Dihydrofolate Reductase from the Psychropiezophile Moritella profunda. Chembiochem 2010; 11:2010-7. [DOI: 10.1002/cbic.201000341] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Loveridge EJ, Maglia G, Allemann RK. The role of arginine 28 in catalysis by dihydrofolate reductase from the hyperthermophile Thermotoga maritima. Chembiochem 2010; 10:2624-7. [PMID: 19816891 DOI: 10.1002/cbic.200900465] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- E Joel Loveridge
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK
| | | | | |
Collapse
|
32
|
Loveridge EJ, Behiry EM, Swanwick RS, Allemann RK. Different Reaction Mechanisms for Mesophilic and Thermophilic Dihydrofolate Reductases. J Am Chem Soc 2009; 131:6926-7. [DOI: 10.1021/ja901441k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- E. Joel Loveridge
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, U.K
| | - Enas M. Behiry
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, U.K
| | - Richard S. Swanwick
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, U.K
| | - Rudolf K. Allemann
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, U.K
| |
Collapse
|
33
|
Bas DC, Rogers DM, Jensen JH. Very fast prediction and rationalization of pKa values for protein-ligand complexes. Proteins 2008; 73:765-83. [PMID: 18498103 DOI: 10.1002/prot.22102] [Citation(s) in RCA: 892] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Delphine C Bas
- Equipe de Chimie et Biochimie Théoriques, UMR 7565 - CNRS, Université Henri Poincaré, Nancy I, Boulevard des Aiguillettes BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | | | | |
Collapse
|