1
|
Arya G, Pal M, Sharma M, Singh B, Singh S, Agrawal V, Chaba R. Molecular insights into effector binding by DgoR, a GntR/FadR family transcriptional repressor of D-galactonate metabolism in Escherichia coli. Mol Microbiol 2020; 115:591-609. [PMID: 33068046 DOI: 10.1111/mmi.14625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 01/23/2023]
Abstract
Several GntR/FadR transcriptional regulators govern sugar acid metabolism in bacteria. Although effectors have been identified for a few sugar acid regulators, the mode of effector binding is unknown. Even in the overall FadR subfamily, there are limited details on effector-regulator interactions. Here, we identified the effector-binding cavity in Escherichia coli DgoR, a FadR subfamily transcriptional repressor of D-galactonate metabolism that employs D-galactonate as its effector. Using a genetic screen, we isolated several dgoR superrepressor alleles. Blind docking suggested eight amino acids corresponding to these alleles to form a part of the effector-binding cavity. In vivo and in vitro assays showed that these mutations compromise the inducibility of DgoR without affecting its oligomeric status or affinity for target DNA. Taking Bacillus subtilis GntR as a representative, we demonstrated that the effector-binding cavity is similar among FadR subfamily sugar acid regulators. Finally, a comparison of sugar acid regulators with other FadR members suggested conserved features of effector-regulator recognition within the FadR subfamily. Sugar acid metabolism is widely implicated in bacterial colonization and virulence. The present study sets the basis to investigate the influence of natural genetic variations in FadR subfamily regulators on their sensitivity to sugar acids and ultimately on host-bacterial interactions.
Collapse
Affiliation(s)
- Garima Arya
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Mohinder Pal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Monika Sharma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, India
| | - Bhupinder Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Swati Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Vishal Agrawal
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Rachna Chaba
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| |
Collapse
|
2
|
Lemmens L, Tilleman L, De Koning E, Valegård K, Lindås AC, Van Nieuwerburgh F, Maes D, Peeters E. YtrA Sa, a GntR-Family Transcription Factor, Represses Two Genetic Loci Encoding Membrane Proteins in Sulfolobus acidocaldarius. Front Microbiol 2019; 10:2084. [PMID: 31552000 PMCID: PMC6746942 DOI: 10.3389/fmicb.2019.02084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/23/2019] [Indexed: 11/25/2022] Open
Abstract
In bacteria, the GntR family is a widespread family of transcription factors responsible for the regulation of a myriad of biological processes. In contrast, despite their occurrence in archaea only a little information is available on the function of GntR-like transcription factors in this domain of life. The thermoacidophilic crenarchaeon Sulfolobus acidocaldarius harbors a GntR-like regulator belonging to the YtrA subfamily, encoded as the first gene in an operon with a second gene encoding a putative membrane protein. Here, we present a detailed characterization of this regulator, named YtrASa, with a focus on regulon determination and mechanistic analysis with regards to DNA binding. Genome-wide chromatin immunoprecipitation and transcriptome experiments, the latter employing a ytrASa overexpression strain, demonstrate that the regulator acts as a repressor on a very restricted regulon, consisting of only two targets including the operon encoding its own gene and a distinct genetic locus encoding another putative membrane protein. For both targets, a conserved 14-bp semi-palindromic binding motif was delineated that covers the transcriptional start site and that is surrounded by additional half-site motifs. The crystallographic structure of YtrASa was determined, revealing a compact dimeric structure in which the DNA-binding motifs are oriented ideally to enable a specific high-affinity interaction with the core binding motif. This study provides new insights into the functioning of a YtrA-like regulator in the archaeal domain of life.
Collapse
Affiliation(s)
- Liesbeth Lemmens
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laurentijn Tilleman
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Ezra De Koning
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karin Valegård
- Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Ann-Christin Lindås
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Filip Van Nieuwerburgh
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Dominique Maes
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
3
|
Abstract
The virulence of many bacterial pathogens, including the important human pathogen Staphylococcus aureus, depends on the secretion of frequently large amounts of toxins. Toxin production involves the need for the bacteria to make physiological adjustments for energy conservation. While toxins are primarily targets of gene regulation, such changes may be accomplished by regulatory functions of the toxins themselves. However, mechanisms by which toxins regulate gene expression have remained poorly understood. We show here that the staphylococcal phenol-soluble modulin (PSM) toxins have gene regulatory functions that, in particular, include inducing expression of their own transport system by direct interference with a GntR-type repressor protein. This capacity was most pronounced in PSMs with low cytolytic capacity, demonstrating functional specification among closely related members of that toxin family during evolution. Our study presents a molecular mechanism of gene regulation by a bacterial toxin that adapts bacterial physiology to enhanced toxin production. Toxins play a major role in many bacterial diseases. When toxins are produced during infection, the bacteria need to balance this energy-consuming task with other physiological processes. However, it has remained poorly understood how toxins can impact gene expression to trigger such adaptations. We found that specific members of a toxin family in the major human pathogen Staphylococcus aureus have evolved for gene regulatory purposes. These specific toxins interact with a DNA-binding regulator protein to enable production of the toxin export machinery and ascertain that the machinery is not expressed when toxins are not made and it is not needed. Our study gives mechanistic insight into how toxins may directly adjust bacterial physiology to times of toxin production during infection.
Collapse
|
4
|
Jain D. Allosteric control of transcription in GntR family of transcription regulators: A structural overview. IUBMB Life 2015; 67:556-63. [PMID: 26172911 DOI: 10.1002/iub.1401] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 01/24/2023]
Abstract
The GntR family of transcription regulators constitutes one of the most abundant family of transcription factors. These modulators are involved in a variety of mechanisms controlling various metabolic processes. GntR family members are typically two domain proteins with a smaller N-terminus domain (NTD) with conserved architecture of winged-helix-turn-helix (wHTH) for DNA binding and a larger C-terminus domain (CTD) or the effector binding domain which is also involved in oligomerization. Interestingly, the CTD shows structural heterogeneity depending upon the type of effector molecule that it binds and displays structural homology to various classes of proteins. Binding of the effector molecule to the CTD brings about a conformational change in the transcription factor such that its affinity for its cognate DNA sequence is altered. This review summarizes the structural information available on the members of GntR family and discusses the common features of the DNA binding and operator recognition within the family. The variation in the allosteric mechanism employed by the members of this family is also discussed.
Collapse
Affiliation(s)
- Deepti Jain
- Transcription Regulation Laboratory Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
5
|
Shepard W, Soutourina O, Courtois E, England P, Haouz A, Martin-Verstraete I. Insights into the Rrf2 repressor family--the structure of CymR, the global cysteine regulator of Bacillus subtilis. FEBS J 2011; 278:2689-701. [PMID: 21624051 DOI: 10.1111/j.1742-4658.2011.08195.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The global regulator CymR represses the transcription of a large set of genes involved in cystine uptake and cysteine biosynthesis in Bacillus subtilis and Staphylococcus aureus. This repressor belongs to the widespread and poorly characterized Rrf2 family of regulators. The crystal structure of CymR from B. subtilis reveals a biologically active dimer, where each monomer folds into two tightly packed domains: a DNA-binding domain, which houses a winged helix-turn-helix (wHTH) motif; and a long dimerization domain, which places the wHTH motifs at the extremes. This architecture explains how these small regulators can span 23-27-bp DNA targets. The wHTH motif of CymR resembles those of the GntR superfamily of regulators, such as FadR and HutC. Superimposing the FadR wHTH motifs bound to their DNA fragments onto the wHTH motifs of the CymR dimer structure suggests that the DNA target and/or the protein must undergo some conformational changes upon binding. The CymR structure also hints at a possible location of the Fe-S centre associated with several Rrf2-type regulators.
Collapse
Affiliation(s)
- William Shepard
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, BP48, Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
6
|
Schröder J, Tauch A. Transcriptional regulation of gene expression inCorynebacterium glutamicum: the role of global, master and local regulators in the modular and hierarchical gene regulatory network. FEMS Microbiol Rev 2010; 34:685-737. [DOI: 10.1111/j.1574-6976.2010.00228.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
7
|
Gao YG, Suzuki H, Itou H, Zhou Y, Tanaka Y, Wachi M, Watanabe N, Tanaka I, Yao M. Structural and functional characterization of the LldR from Corynebacterium glutamicum: a transcriptional repressor involved in L-lactate and sugar utilization. Nucleic Acids Res 2008; 36:7110-23. [PMID: 18988622 PMCID: PMC2602784 DOI: 10.1093/nar/gkn827] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 10/09/2008] [Accepted: 10/14/2008] [Indexed: 12/01/2022] Open
Abstract
LldR (CGL2915) from Corynebacterium glutamicum is a transcription factor belonging to the GntR family, which is typically involved in the regulation of oxidized substrates associated with amino acid metabolism. In the present study, the crystal structure of LldR was determined at 2.05-A resolution. The structure consists of N- and C-domains similar to those of FadR, but with distinct domain orientations. LldR and FadR dimers achieve similar structures by domain swapping, which was first observed in dimeric assembly of transcription factors. A structural feature of Zn(2+) binding in the regulatory domain was also observed, as a difference from the FadR subfamily. DNA microarray and DNase I footprint analyses suggested that LldR acts as a repressor regulating cgl2917-lldD and cgl1934-fruK-ptsF operons, which are indispensable for l-lactate and fructose/sucrose utilization, respectively. Furthermore, the stoichiometries and affinities of LldR and DNAs were determined by isothermal titration calorimetry measurements. The transcriptional start site and repression of LldR on the cgl2917-lldD operon were analysed by primer extension assay. Mutation experiments showed that residues Lys4, Arg32, Arg42 and Gly63 are crucial for DNA binding. The location of the putative ligand binding cavity and the regulatory mechanism of LldR on its affinity for DNA were proposed.
Collapse
Affiliation(s)
- Yong-Gui Gao
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Department of Bioengineering, Tokyo Institute of Technology, Yokohama 226-8503 and National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Hiroaki Suzuki
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Department of Bioengineering, Tokyo Institute of Technology, Yokohama 226-8503 and National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Hiroshi Itou
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Department of Bioengineering, Tokyo Institute of Technology, Yokohama 226-8503 and National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Yong Zhou
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Department of Bioengineering, Tokyo Institute of Technology, Yokohama 226-8503 and National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Yoshikazu Tanaka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Department of Bioengineering, Tokyo Institute of Technology, Yokohama 226-8503 and National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Masaaki Wachi
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Department of Bioengineering, Tokyo Institute of Technology, Yokohama 226-8503 and National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Nobuhisa Watanabe
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Department of Bioengineering, Tokyo Institute of Technology, Yokohama 226-8503 and National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Isao Tanaka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Department of Bioengineering, Tokyo Institute of Technology, Yokohama 226-8503 and National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Min Yao
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Department of Bioengineering, Tokyo Institute of Technology, Yokohama 226-8503 and National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
8
|
Tauch A, Schneider J, Szczepanowski R, Tilker A, Viehoever P, Gartemann KH, Arnold W, Blom J, Brinkrolf K, Brune I, Götker S, Weisshaar B, Goesmann A, Dröge M, Pühler A. Ultrafast pyrosequencing of Corynebacterium kroppenstedtii DSM44385 revealed insights into the physiology of a lipophilic corynebacterium that lacks mycolic acids. J Biotechnol 2008; 136:22-30. [PMID: 18430482 DOI: 10.1016/j.jbiotec.2008.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 02/20/2008] [Accepted: 03/11/2008] [Indexed: 10/22/2022]
Abstract
Corynebacterium kroppenstedtii is a lipophilic corynebacterial species that lacks in the cell envelope the characteristic alpha-alkyl-beta-hydroxy long-chain fatty acids, designated mycolic acids. We report here the bioinformatic analysis of genome data obtained by pyrosequencing of the type strain C. kroppenstedtii DSM44385 that was initially isolated from human sputum. A single run with the Genome Sequencer FLX system revealed 560,248 shotgun reads with 110,018,974 detected bases that were assembled into a contiguous genomic sequence with a total size of 2,446,804bp. Automatic annotation of the complete genome sequence resulted in the prediction of 2122 coding sequences, of which 29% were considered as specific for C. kroppenstedtii when compared with predicted proteins from hitherto sequenced pathogenic corynebacteria. This comparative content analysis of the genome data revealed a large repertoire of genes involved in sugar uptake and central carbohydrate metabolism and the presence of the mevalonate route for isoprenoid biosynthesis. The lack of mycolic acids and the lipophilic lifestyle of C. kroppenstedtii are apparently caused by gene loss, including a condensase gene cluster, a mycolate reductase gene, and a microbial type I fatty acid synthase gene. A complete beta-oxidation pathway involved in the degradation of fatty acids is present in the genome. Evaluation of the genomic data indicated that lipophilism is the dominant feature involved in pathogenicity of C. kroppenstedtii.
Collapse
Affiliation(s)
- Andreas Tauch
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|