1
|
Cate RL. Anti-Müllerian Hormone Signal Transduction involved in Müllerian Duct Regression. Front Endocrinol (Lausanne) 2022; 13:905324. [PMID: 35721723 PMCID: PMC9201060 DOI: 10.3389/fendo.2022.905324] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Over seventy years ago it was proposed that the fetal testis produces a hormone distinct from testosterone that is required for complete male sexual development. At the time the hormone had not yet been identified but was invoked by Alfred Jost to explain why the Müllerian duct, which develops into the female reproductive tract, regresses in the male fetus. That hormone, anti-Müllerian hormone (AMH), and its specific receptor, AMHR2, have now been extensively characterized and belong to the transforming growth factor-β families of protein ligands and receptors involved in growth and differentiation. Much is now known about the downstream events set in motion after AMH engages AMHR2 at the surface of specific Müllerian duct cells and initiates a cascade of molecular interactions that ultimately terminate in the nucleus as activated transcription factors. The signals generated by the AMH signaling pathway are then integrated with signals coming from other pathways and culminate in a complex gene regulatory program that redirects cellular functions and fates and leads to Müllerian duct regression.
Collapse
|
2
|
Gipson GR, Goebel EJ, Hart KN, Kappes EC, Kattamuri C, McCoy JC, Thompson TB. Structural perspective of BMP ligands and signaling. Bone 2020; 140:115549. [PMID: 32730927 PMCID: PMC7502536 DOI: 10.1016/j.bone.2020.115549] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022]
Abstract
The Bone Morphogenetic Proteins (BMPs) are the largest class signaling molecules within the greater Transforming Growth Factor Beta (TGFβ) family, and are responsible for a wide array of biological functions, including dorsal-ventral patterning, skeletal development and maintenance, as well as cell homeostasis. As such, dysregulation of BMPs results in a number of diseases, including fibrodysplasia ossificans progressiva (FOP) and pulmonary arterial hypertension (PAH). Therefore, understanding BMP signaling and regulation at the molecular level is essential for targeted therapeutic intervention. This review discusses the recent advances in the structural and biochemical characterization of BMPs, from canonical ligand-receptor interactions to co-receptors and antagonists. This work aims to highlight how BMPs differ from other members of the TGFβ family, and how that information can be used to further advance the field. Lastly, this review discusses several gaps in the current understanding of BMP structures, with the aim that discussion of these gaps will lead to advancements in the field.
Collapse
Affiliation(s)
- Gregory R Gipson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Erich J Goebel
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Kaitlin N Hart
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Emily C Kappes
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Chandramohan Kattamuri
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Jason C McCoy
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Medical Sciences Building, Cincinnati, OH 45267, USA.
| |
Collapse
|
3
|
Structural consequences of BMPR2 kinase domain mutations causing pulmonary arterial hypertension. Sci Rep 2019; 9:18351. [PMID: 31797984 PMCID: PMC6892941 DOI: 10.1038/s41598-019-54830-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/14/2019] [Indexed: 11/09/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are secreted ligands of the transforming growth factor-β (TGF-β) family that control embryonic patterning, as well as tissue development and homeostasis. Loss of function mutations in the type II BMP receptor BMPR2 are the leading cause of pulmonary arterial hypertension (PAH), a rare disease of vascular occlusion that leads to high blood pressure in the pulmonary arteries. To understand the structural consequences of these mutations, we determined the crystal structure of the human wild-type BMPR2 kinase domain at 2.35 Å resolution. The structure revealed an active conformation of the catalytic domain that formed canonical interactions with the bound ligand Mg-ADP. Disease-associated missense mutations were mapped throughout the protein structure, but clustered predominantly in the larger kinase C-lobe. Modelling revealed that the mutations will destabilize the protein structure by varying extents consistent with their previously reported functional heterogeneity. The most severe mutations introduced steric clashes in the hydrophobic protein core, whereas those found on the protein surface were less destabilizing and potentially most favorable for therapeutic rescue strategies currently under clinical investigation.
Collapse
|
4
|
He L, Gasser RB, Li T, Di W, Li F, Zhang H, Zhou C, Fang R, Hu M. A TGF-β type II receptor that associates with developmental transition in Haemonchus contortus in vitro. PLoS Negl Trop Dis 2019; 13:e0007913. [PMID: 31790412 PMCID: PMC6938378 DOI: 10.1371/journal.pntd.0007913] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 12/31/2019] [Accepted: 11/09/2019] [Indexed: 11/19/2022] Open
Abstract
Background The TGF-β signalling pathway plays a key role in regulating dauer formation in the free-living nematode Caenorhabditis elegans, and previous work has shown that TGF-β receptors are involved in parasitic nematodes. Here, we explored the structure and function of a TGF-β type II receptor homologue in the TGF-β signalling pathway in Haemonchus contortus, a highly pathogenic, haematophagous parasitic nematode. Methodology/Principal findings Amino acid sequence and phylogenetic analyses revealed that the protein, called Hc-TGFBR2 (encoded by the gene Hc-tgfbr2), is a member of TGF-β type II receptor family and contains conserved functional domains, both in the extracellular region containing cysteine residues that form a characteristic feature (CXCX4C) of TGF-β type II receptor and in the intracellular regions containing a serine/threonine kinase domain. The Hc-tgfbr2 gene was transcribed in all key developmental stages of H. contortus, with particularly high levels in the infective third-stage larvae (L3s) and male adults. Immunohistochemical results revealed that Hc-TGFBR2 was expressed in the intestine, ovary and eggs within the uterus of female adults, and also in the testes of male adults of H. contortus. Double-stranded RNA interference (RNAi) in this nematode by soaking induced a marked decrease in transcription of Hc-tgfbr2 and in development from the exsheathed L3 to the fourth-stage larva (L4) in vitro. Conclusions/Significance These results indicate that Hc-TGFBR2 plays an important role in governing developmental processes in H. contortus via the TGF-β signalling pathway, particularly in the transition from the free-living to the parasitic stages. Haemonchus contortus is a gastrointestinal parasitic nematode that causes major economic losses in small ruminants. Here, we investigated the structure and function of a TGF-β type II receptor homologue (Hc-TGFBR2) and its role in regulating H. contortus development. The results showed that the Hc-tgfbr2 gene was transcribed in all developmental stages of H. contortus, with the highest level in L3s and male adults; the encoded protein Hc-TGFBR2 was expressed in the intestine and gonads of adult stages of this nematode. The transcriptional abundance of Hc-tgfbr2 decreased significantly following knockdown by RNA interference in xL3s of H. contortus, which also caused a marked reduction in the number of xL3s developing to L4s in vitro. These findings reveal that the TGF-β type II receptor (Hc-TGFBR2) associates with development of H. contortus, particularly in its transition from the free-living to the parasitic stage.
Collapse
Affiliation(s)
- Li He
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Robin B. Gasser
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Tingting Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wenda Di
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fangfang Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hongrun Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Caixian Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
5
|
Goebel EJ, Hart KN, McCoy JC, Thompson TB. Structural biology of the TGFβ family. Exp Biol Med (Maywood) 2019; 244:1530-1546. [PMID: 31594405 DOI: 10.1177/1535370219880894] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The transforming growth factor beta (TGFβ) signaling pathway orchestrates a wide breadth of biological processes, ranging from bone development to reproduction. Given this, there has been a surge of interest from the drug development industry to modulate the pathway – at several points. This review discusses and provides additional context for several layers of the TGFβ signaling pathway from a structural biology viewpoint. The combination of structural techniques coupled with biophysical studies has provided a foundational knowledge of the molecular mechanisms governing this high impact, ubiquitous pathway, underlying many of the current therapeutic pursuits. This work seeks to consolidate TGFβ-related structural knowledge and educate other researchers of the apparent gaps that still prove elusive. We aim to highlight the importance of these structures and provide the contextual information to understand the contribution to the field, with the hope of advancing the discussion and exploration of the TGFβ signaling pathway. Impact statement The transforming growth factor beta (TGFβ) signaling pathway is a multifacetted and highly regulated pathway, forming the underpinnings of a large range of biological processes. Here, we review and consolidate the key steps in TGFβ signaling using literature rooted in structural and biophysical techniques, with a focus on molecular mechanisms and gaps in knowledge. From extracellular regulation to ligand–receptor interactions and intracellular activation cascades, we hope to provide an introductory base for understanding the TGFβ pathway as a whole.
Collapse
Affiliation(s)
- Erich J Goebel
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Kaitlin N Hart
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jason C McCoy
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
6
|
Molecular characterization and computational structure prediction of activin receptor type IIB in aseel and broiler chicken. Res Vet Sci 2019; 126:139-149. [PMID: 31491670 DOI: 10.1016/j.rvsc.2019.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/19/2019] [Accepted: 08/27/2019] [Indexed: 11/20/2022]
Abstract
The present study was formulated to characterize and comprehend the molecular structural characteristics of ACTRIIB receptor in Aseel and control broiler (CB) populations. The full length coding sequence (1539 bp) of the receptor was amplified, cloned, sequenced and analyzed using bioinformatic tools. The physico chemical properties of protein and structural features like secondary structure, solvent accessibility and disorder regions were computed. The 3D structure was predicted by I-TASSER and evaluated by Ramachandran Plot and tools under Structural Analysis and Verification Server. The nucleotides differences between CB and Aseel were c. [156G > A; 210 T > C; 493C > T; c.520G > C; 665A > C; 686G > A; 937C > G; 1011A > C; 1130A > G; 1208 T > A; 1326 T > C; 1433 T > C]. The amino acid substitutions between CB and Aseel were p. [(Pro165Ser; Glu174Gln; Gln222Pro; Ser229Asn; His313Asp; Gln377Arg; Val403Asp; and Ile478Thr)]. While, the silent changes includes p. [(Lys53=; Glu71=; Leu337=; Asp442=)]. The molecular weight of mature protein was predicted to be 55.51 kDa and 57.80 kDa in Aseel and CB, respectively. The higher rank 3D model had a C-score of -1.60 in Aseel and - 1.41 in CB, while the estimated TM-score (0.54 ± 0.14) and RMSD (5.8 ± 1.2 Å) were found to be similar in Aseel and CB. Among the 512 residues, >90% were in favored region, 4.7% in allowed region and <1.5% in disallowed region in both Aseel and CB. The pattern of contact map was comparable in Aseel and CB. The Hydrogen bond plots of the Aseel and CB shared similar secondary structure pattern. The ACTRIIB protein was predicted to interact with ACVR1B, ACVR1C, INHBA, SMAD 1,2,5,7 & 9 and BMPR1A&B. Clustal and phylogenetic analysis implied that both the lines were closely related and formed a sub cluster with in avian cluster. The current research provides insights about structural and functional aspects of the receptor and also aids in understanding the evolutionary history of ACTRIIB.
Collapse
|
7
|
Chung AK, OuYang CN, Liu H, Chao M, Luo JD, Lee CY, Lu YJ, Chung IC, Chen LC, Wu SM, Tsang NM, Chang KP, Hsu CL, Li HP, Chang YS. Targeted sequencing of cancer-related genes in nasopharyngeal carcinoma identifies mutations in the TGF-β pathway. Cancer Med 2019; 8:5116-5127. [PMID: 31328403 PMCID: PMC6718742 DOI: 10.1002/cam4.2429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022] Open
Abstract
Approximately, 25% of nasopharyngeal carcinoma (NPC) patients develop recurrent disease. NPC may involve relatively few genomic alterations compared to other cancers due to its association with Epstein‐Barr virus (EBV). We envisioned that in‐depth sequencing of tumor tissues might provide new insights into the genetic alterations of this cancer. Thirty‐three NPC paired tumor/adjacent normal or peripheral blood mononuclear cell samples were deep‐sequenced (>1000×) with respect to a panel of 409 cancer‐related genes. Newly identified mutations and its correlation with clinical outcomes were evaluated. Profiling of somatic mutations and copy number variations (CNV) in NPC tumors identified alterations in RTK/RAS/PI3K, NOTCH, DNA repair, chromatin remodeling, cell cycle, NF‐κB, and TGF‐β pathways. In addition, patients harbored CNV among 409 cancer‐related genes and missense mutations in TGF‐β/SMAD signaling were associated with poor overall survival and poor recurrence‐free survival, respectively. The CNV events were correlated with plasma EBV copies, while mutations in TGFBR2 and SMAD4 abrogate SMAD‐dependent TGF‐β signaling. Functional analysis revealed that the new TGFBR2 kinase domain mutants were incapable of transducing the signal, leading to failure of phosphorylation of SMAD2/3 and activation of downstream TGF‐β‐mediated cell growth arrest. This study provides evidence supporting CNV and dysregulated TGF‐β signaling contributes to exacerbating the NPC pathogenesis.
Collapse
Affiliation(s)
- An-Ko Chung
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| | - Chun-Nan OuYang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| | - Hsuan Liu
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Department of Biochemistry, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Taoyuan City, Taiwan, Republic of China
| | - Mei Chao
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Department of Microbiology and Immunology, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan, Republic of China
| | - Ji-Dung Luo
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Bioinformatics Center, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| | - Cheng-Yang Lee
- Research Information Session, Office of Information Technology, Taipei Medical University, Taipei City, Taiwan, Republic of China
| | - Yen-Jung Lu
- ACT Genomics, Co. Ltd., Taipei City, Taiwan, Republic of China
| | - I-Che Chung
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| | - Lih-Chyang Chen
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan, Republic of China
| | - Shao-Min Wu
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| | - Ngan-Ming Tsang
- Department of Radiation, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| | - Kai-Ping Chang
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| | - Cheng-Lung Hsu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| | - Hsin-Pai Li
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Department of Microbiology and Immunology, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| | - Yu-Sun Chang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan, Republic of China.,Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| |
Collapse
|
8
|
Hahn O, Stubbs TM, Reik W, Grönke S, Beyer A, Partridge L. Hepatic gene body hypermethylation is a shared epigenetic signature of murine longevity. PLoS Genet 2018; 14:e1007766. [PMID: 30462643 PMCID: PMC6281273 DOI: 10.1371/journal.pgen.1007766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/05/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022] Open
Abstract
Dietary, pharmacological and genetic interventions can extend health- and lifespan in diverse mammalian species. DNA methylation has been implicated in mediating the beneficial effects of these interventions; methylation patterns deteriorate during ageing, and this is prevented by lifespan-extending interventions. However, whether these interventions also actively shape the epigenome, and whether such epigenetic reprogramming contributes to improved health at old age, remains underexplored. We analysed published, whole-genome, BS-seq data sets from mouse liver to explore DNA methylation patterns in aged mice in response to three lifespan-extending interventions: dietary restriction (DR), reduced TOR signaling (rapamycin), and reduced growth (Ames dwarf mice). Dwarf mice show enhanced DNA hypermethylation in the body of key genes in lipid biosynthesis, cell proliferation and somatotropic signaling, which strongly correlates with the pattern of transcriptional repression. Remarkably, DR causes a similar hypermethylation in lipid biosynthesis genes, while rapamycin treatment increases methylation signatures in genes coding for growth factor and growth hormone receptors. Shared changes of DNA methylation were restricted to hypermethylated regions, and they were not merely a consequence of slowed ageing, thus suggesting an active mechanism driving their formation. By comparing the overlap in ageing-independent hypermethylated patterns between all three interventions, we identified four regions, which, independent of genetic background or gender, may serve as novel biomarkers for longevity-extending interventions. In summary, we identified gene body hypermethylation as a novel and partly conserved signature of lifespan-extending interventions in mouse, highlighting epigenetic reprogramming as a possible intervention to improve health at old age.
Collapse
Affiliation(s)
- Oliver Hahn
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cellular Networks and Systems Biology, CECAD, University of Cologne, Cologne, Germany
| | - Thomas M. Stubbs
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Wolf Reik
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- The Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | | | - Andreas Beyer
- Cellular Networks and Systems Biology, CECAD, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| |
Collapse
|
9
|
Cousin MA, Zimmermann MT, Mathison AJ, Blackburn PR, Boczek NJ, Oliver GR, Lomberk GA, Urrutia RA, Deyle DR, Klee EW. Functional validation reveals the novel missense V419L variant in TGFBR2 associated with Loeys-Dietz syndrome (LDS) impairs canonical TGF-β signaling. Cold Spring Harb Mol Case Stud 2017; 3:mcs.a001727. [PMID: 28679693 PMCID: PMC5495030 DOI: 10.1101/mcs.a001727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/12/2017] [Indexed: 12/31/2022] Open
Abstract
TGF-β-related heritable connective tissue disorders are characterized by a similar pattern of cardiovascular defects, including aortic root dilatation, mitral valve prolapse, vascular aneurysms, and vascular dissections and exhibit incomplete penetrance and variable expressivity. Because of the phenotypic overlap of these disorders, panel-based genetic testing is frequently used to confirm the clinical findings. Unfortunately in many cases, variants of uncertain significance (VUSs) obscure the genetic diagnosis until more information becomes available. Here, we describe and characterize the functional impact of a novel VUS in the TGFBR2 kinase domain (c.1255G>T; p.Val419Leu), in a patient with the clinical diagnosis of Marfan syndrome spectrum. We assessed the structural and functional consequence of this VUS using molecular modeling, molecular dynamic simulations, and in vitro cell-based assays. A high-quality homology-based model of TGFBR2 was generated and computational mutagenesis followed by refinement and molecular dynamics simulations were used to assess structural and dynamic changes. Relative to wild type, the V419L induced conformational and dynamic changes that may affect ATP binding, increasing the likelihood of adopting an inactive state, and, we hypothesize, alter canonical signaling. Experimentally, we tested this by measuring the canonical TGF-β signaling pathway activation at two points; V419L significantly delayed SMAD2 phosphorylation by western blot and significantly decreased TGF-β-induced gene transcription by reporter assays consistent with known pathogenic variants in this gene. Thus, our results establish that the V419L variant leads to aberrant TGF-β signaling and confirm the diagnosis of Loeys-Dietz syndrome in this patient.
Collapse
Affiliation(s)
- Margot A Cousin
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Michael T Zimmermann
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Angela J Mathison
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Patrick R Blackburn
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida 32224, USA.,Center for Individualized Medicine, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Nicole J Boczek
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Gavin R Oliver
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Gwen A Lomberk
- Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Raul A Urrutia
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.,Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - David R Deyle
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Clinic Genomics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Eric W Klee
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Clinic Genomics, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
10
|
Molecular modeling and molecular dynamic simulation of the effects of variants in the TGFBR2 kinase domain as a paradigm for interpretation of variants obtained by next generation sequencing. PLoS One 2017; 12:e0170822. [PMID: 28182693 PMCID: PMC5300139 DOI: 10.1371/journal.pone.0170822] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/11/2017] [Indexed: 01/01/2023] Open
Abstract
Variants in the TGFBR2 kinase domain cause several human diseases and can increase propensity for cancer. The widespread application of next generation sequencing within the setting of Individualized Medicine (IM) is increasing the rate at which TGFBR2 kinase domain variants are being identified. However, their clinical relevance is often uncertain. Consequently, we sought to evaluate the use of molecular modeling and molecular dynamics (MD) simulations for assessing the potential impact of variants within this domain. We documented the structural differences revealed by these models across 57 variants using independent MD simulations for each. Our simulations revealed various mechanisms by which variants may lead to functional alteration; some are revealed energetically, while others structurally or dynamically. We found that the ATP binding site and activation loop dynamics may be affected by variants at positions throughout the structure. This prediction cannot be made from the linear sequence alone. We present our structure-based analyses alongside those obtained using several commonly used genomics-based predictive algorithms. We believe the further mechanistic information revealed by molecular modeling will be useful in guiding the examination of clinically observed variants throughout the exome, as well as those likely to be discovered in the near future by clinical tests leveraging next-generation sequencing through IM efforts.
Collapse
|
11
|
Chaikuad A, Bullock AN. Structural Basis of Intracellular TGF-β Signaling: Receptors and Smads. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a022111. [PMID: 27549117 DOI: 10.1101/cshperspect.a022111] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Stimulation of the transforming growth factor β (TGF-β) family receptors activates an intracellular phosphorylation-dependent signaling cascade that culminates in Smad transcriptional activation and turnover. Structural studies have identified a number of allosteric mechanisms that control the localization, conformation, and oligomeric state of the receptors and Smads. Such mechanisms dictate the ordered binding of substrate and adaptor proteins that determine the directionality of the signaling process. Activation of the pathway has been illustrated by the various structures of the receptor-activated Smads (R-Smads) with SARA, Smad4, and YAP, respectively, whereas mechanisms of down-regulation have been elucidated by the structural complexes of FKBP12, Ski, and Smurf1. Interesting parallels have emerged between the R-Smads and the Forkhead-associated (FHA) and interferon regulatory factor (IRF)-associated domains, as well as the Hippo pathway. However, important questions remain as to the mechanism of Smad-independent signaling.
Collapse
Affiliation(s)
- Apirat Chaikuad
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Alex N Bullock
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
12
|
Yadin D, Knaus P, Mueller TD. Structural insights into BMP receptors: Specificity, activation and inhibition. Cytokine Growth Factor Rev 2015; 27:13-34. [PMID: 26690041 DOI: 10.1016/j.cytogfr.2015.11.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 11/13/2015] [Indexed: 12/29/2022]
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-β family (TGFβ), which signal through hetero-tetrameric complexes of type I and type II receptors. In humans there are many more TGFβ ligands than receptors, leading to the question of how particular ligands can initiate specific signaling responses. Here we review structural features of the ligands and receptors that contribute to this specificity. Ligand activity is determined by receptor-ligand interactions, growth factor prodomains, extracellular modulator proteins, receptor assembly and phosphorylation of intracellular signaling proteins, including Smad transcription factors. Detailed knowledge about the receptors has enabled the development of BMP-specific type I receptor kinase inhibitors. In future these may help to treat human diseases such as fibrodysplasia ossificans progressiva.
Collapse
Affiliation(s)
- David Yadin
- Institute for Chemistry and Biochemistry, Free University Berlin, Institute of Chemistry and Biochemistry, D-14195 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Campus Virchow Klinikum, Augustenburger Platz 1, D-13351 Berlin, Germany.
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Free University Berlin, Institute of Chemistry and Biochemistry, D-14195 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Campus Virchow Klinikum, Augustenburger Platz 1, D-13351 Berlin, Germany.
| | - Thomas D Mueller
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute of the University Wuerzburg, Julius-von-Sachs-Platz 2, D-97082 Wuerzburg, Germany.
| |
Collapse
|
13
|
Horbelt D, Boergermann JH, Chaikuad A, Alfano I, Williams E, Lukonin I, Timmel T, Bullock AN, Knaus P. Small molecules dorsomorphin and LDN-193189 inhibit myostatin/GDF8 signaling and promote functional myoblast differentiation. J Biol Chem 2014; 290:3390-404. [PMID: 25368322 PMCID: PMC4319009 DOI: 10.1074/jbc.m114.604397] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GDF8, or myostatin, is a member of the TGF-β superfamily of secreted polypeptide growth factors. GDF8 is a potent negative regulator of myogenesis both in vivo and in vitro. We found that GDF8 signaling was inhibited by the small molecule ATP competitive inhibitors dorsomorphin and LDN-193189. These compounds were previously shown to be potent inhibitors of BMP signaling by binding to the BMP type I receptors ALK1/2/3/6. We present the crystal structure of the type II receptor ActRIIA with dorsomorphin and demonstrate that dorsomorphin or LDN-193189 target GDF8 induced Smad2/3 signaling and repression of myogenic transcription factors. As a result, both inhibitors rescued myogenesis in myoblasts treated with GDF8. As revealed by quantitative live cell microscopy, treatment with dorsomorphin or LDN-193189 promoted the contractile activity of myotubular networks in vitro. We therefore suggest these inhibitors as suitable tools to promote functional myogenesis.
Collapse
Affiliation(s)
- Daniel Horbelt
- From the Institute for Chemistry-Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jan H Boergermann
- From the Institute for Chemistry-Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Apirat Chaikuad
- the Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom, and
| | - Ivan Alfano
- the Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom, and
| | - Eleanor Williams
- the Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom, and
| | - Ilya Lukonin
- From the Institute for Chemistry-Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Tobias Timmel
- the Muscle Research Unit, Experimental and Clinical Research Center, 13125 Berlin, Germany
| | - Alex N Bullock
- the Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom, and
| | - Petra Knaus
- From the Institute for Chemistry-Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany,
| |
Collapse
|
14
|
Funkenstein B, Krol E, Esterin E, Kim YS. Structural and functional characterizations of activin type 2B receptor (acvr2b) ortholog from the marine fish, gilthead sea bream, Sparus aurata: evidence for gene duplication of acvr2b in fish. J Mol Endocrinol 2012; 49:175-92. [PMID: 22911153 DOI: 10.1530/jme-12-0075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myostatin (MSTN), a negative regulator of muscle growth and a member of the transforming growth factor-β superfamily, can bind the two activin type 2 receptors (ACVR2). It has been previously shown that WT mice injected with ACVR2B extracellular domain (ACVR2B-ECD) had higher muscle mass. Likewise, fish larvae immersed in Pichia pastoris culture supernatant, containing goldfish Acvr2b-ECD, showed enhanced larval growth. However, it is not clear whether fish Mstn1 and Mstn2 signal through the same receptor and whether fish express more than one acvr2b gene. In the current study, three cDNAs encoding acvr2b (saacvr2b-1, saacvr2b-2a, and saacvr2b-2b) were cloned from gilthead sea bream. All three contain the short extracellular binding domain, a short transmembrane region, and a conserved catalytic domain of serine/threonine protein kinase. Bioinformatics analysis provided evidence for the existence of two acvr2b genes (acvr2b-1 and acvr2b-2) in several other fish species as well, probably as a result of gene or genome duplication. The two isoforms differ in their amino acid sequences. The direct inhibitory effect of Acvr2b-ECD on Mstn activity was tested in vitro. The saAcvr2b-1-ECD was expressed in the yeast P. pastoris. Evidence is provided for N-glycosylation of Acvr2b-1-ECD. The affinity-purified Acvr2b-1-ECD inhibited recombinant mouse/rat/human mature MSTN activity when determined in vitro using the CAGA-luciferase assay in A204 cells. A lower inhibitory activity was obtained when unprocessed purified, furin-digested, and activated saMstn1 was used. Results of this study demonstrate for the first time the existence of two acvr2b genes in fish. In addition, the study shows that bioactive fish Acvr2b-ECD can be produced from P. pastoris.
Collapse
Affiliation(s)
- Bruria Funkenstein
- Department of Marine Biology and Biotechnology, National Institute of Oceanography, Israel Oceanographic and Limnological Research, Tel-Shikmona, Haifa 31080, Israel.
| | | | | | | |
Collapse
|
15
|
Chaikuad A, Alfano I, Kerr G, Sanvitale CE, Boergermann JH, Triffitt JT, von Delft F, Knapp S, Knaus P, Bullock AN. Structure of the bone morphogenetic protein receptor ALK2 and implications for fibrodysplasia ossificans progressiva. J Biol Chem 2012; 287:36990-8. [PMID: 22977237 PMCID: PMC3481300 DOI: 10.1074/jbc.m112.365932] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 08/28/2012] [Indexed: 11/21/2022] Open
Abstract
Bone morphogenetic protein (BMP) receptor kinases are tightly regulated to control development and tissue homeostasis. Mutant receptor kinase domains escape regulation leading to severely degenerative diseases and represent an important therapeutic target. Fibrodysplasia ossificans progressiva (FOP) is a rare but devastating disorder of extraskeletal bone formation. FOP-associated mutations in the BMP receptor ALK2 reduce binding of the inhibitor FKBP12 and promote leaky signaling in the absence of ligand. To establish structural mechanisms of receptor regulation and to address the effects of FOP mutation, we determined the crystal structure of the cytoplasmic domain of ALK2 in complex with the inhibitors FKBP12 and dorsomorphin. FOP mutations break critical interactions that stabilize the inactive state of the kinase, thereby facilitating structural rearrangements that diminish FKBP12 binding and promote the correct positioning of the glycine-serine-rich loop and αC helix for kinase activation. The balance of these effects accounts for the comparable activity of R206H and L196P. Kinase activation in the clinically benign mutant L196P is far weaker than R206H but yields equivalent signals due to the stronger interaction of FKBP12 with R206H. The presented ALK2 structure offers a valuable template for the further design of specific inhibitors of BMP signaling.
Collapse
MESH Headings
- Activin Receptors, Type I/antagonists & inhibitors
- Activin Receptors, Type I/chemistry
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/metabolism
- Amino Acid Motifs
- Animals
- Bone Morphogenetic Protein 4/physiology
- Catalytic Domain
- Crystallography, X-Ray
- Enzyme Activation
- Gene Expression Regulation
- Genes, Reporter
- Humans
- Hydrogen Bonding
- Hydrophobic and Hydrophilic Interactions
- Luciferases, Firefly/biosynthesis
- Luciferases, Firefly/genetics
- Mice
- Models, Molecular
- Mutation, Missense
- Myositis Ossificans/enzymology
- Myositis Ossificans/genetics
- Protein Binding
- Pyrazoles/chemistry
- Pyrimidines/chemistry
- Signal Transduction
- Tacrolimus/pharmacology
- Tacrolimus Binding Protein 1A/antagonists & inhibitors
- Tacrolimus Binding Protein 1A/chemistry
- Tacrolimus Binding Protein 1A/metabolism
Collapse
Affiliation(s)
- Apirat Chaikuad
- From the Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Ivan Alfano
- From the Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Georgina Kerr
- From the Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Caroline E. Sanvitale
- From the Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Jan H. Boergermann
- the Institute for Chemistry/Biochemistry, Freie Universität Berlin, Berlin 14195, Germany, and
| | - James T. Triffitt
- the Botnar Research Centre, University of Oxford, Oxford OX3 7LD, United Kingdom
| | - Frank von Delft
- From the Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Stefan Knapp
- From the Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Petra Knaus
- the Institute for Chemistry/Biochemistry, Freie Universität Berlin, Berlin 14195, Germany, and
| | - Alex N. Bullock
- From the Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
16
|
Walton KL, Makanji Y, Harrison CA. New insights into the mechanisms of activin action and inhibition. Mol Cell Endocrinol 2012; 359:2-12. [PMID: 21763751 DOI: 10.1016/j.mce.2011.06.030] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 06/27/2011] [Accepted: 06/27/2011] [Indexed: 12/29/2022]
Abstract
Like other members of the transforming growth factor-β (TGF-β) superfamily, activins are synthesised as precursor molecules comprising an N-terminal prodomain and C-terminal mature region. During synthesis, the prodomain interacts non-covalently with mature activin, maintaining the molecule in a conformation competent for dimerisation. Dimeric precursors are cleaved by proprotein convertases and activin is secreted from the cell non-covalently associated with its propeptide. Extracellularly, the propeptide interacts with heparan sulfate proteoglycans to regulate activin localization within tissues. The mature activin dimer exhibits the classic 'open-hand' structure of TGF-β ligands with 'finger-like' domains projecting outward from the cysteine knot core of the molecule. These finger domains form the binding epitopes for type I and II serine/threonine kinase receptors. Activins ability to access its signalling receptors is regulated by the extracellular binding proteins, follistatin, follistatin-like-3, and by inhibins, which, in the presence of betaglycan, sequester type II receptors.
Collapse
Affiliation(s)
- Kelly L Walton
- Prince Henry's Institute of Medical Research, 246 Clayton Road, Clayton, Vic 3168, Australia
| | | | | |
Collapse
|
17
|
Ehrlich M, Gutman O, Knaus P, Henis YI. Oligomeric interactions of TGF-β and BMP receptors. FEBS Lett 2012; 586:1885-96. [PMID: 22293501 DOI: 10.1016/j.febslet.2012.01.040] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 01/15/2012] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
Abstract
Transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) cytokines participate in a multiplicity of ways in the regulation of numerous physiological and pathological processes. Their wide-ranging biological functions are controlled by several mechanisms, including regulation of transcription, complex formation among the signaling receptors (oligomerization) and with co-receptors, binding of the receptors to scaffolding proteins or their targeting to specific membrane domains. Here, we address the generation of TGF-β and BMP receptor homo- and hetero-oligomers and its roles as a mechanism capable of fast regulation of signaling by these crucial cytokines. We examine the available biochemical, biophysical and structural evidence for the ternary structure of these complexes, and the possible roles of homomeric and heteromeric receptor oligomers in signaling.
Collapse
Affiliation(s)
- Marcelo Ehrlich
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
18
|
Abstract
Activin receptor type IIB (ActRIIB) belongs to a type II transforming growth factor-β (TGF-β) serine/threonine kinase receptor family which is integral to the activin and myostatin signaling pathway. Actvin and myostatin bind to activin type II receptors (ActRIIA and ActRIIB), and the glycine-serine-rich domains of type I receptors are phosphorylated by type II receptors. Activin enhances follicle-stimulating hormone biosynthesis and secretion and is involved in apoptosis, fibrosis, inflammation, and neurogenesis. Because of its essential role, activin is regarded as a novel drug target. Myostatin, also referred as growth and differentiation factor 8 (GDF-8), modulates skeletal muscle growth and has been a therapeutic target for disease conditions such as muscular dystrophy, sarcopenia, cashexia, and diabetes mellitus. The AcRIIB kinase domain from human represents a distinct type II receptor serine/threonine kinase subfamily identifiable in part by common features of Thr265 as a gatekeeper residue and back pocket supported by Phe247. The human ActRII kinase domain structure provides a basis for a more integrated understanding of substrate recognition and catalysis and will also be of help for developing chemical inhibitors.
Collapse
Affiliation(s)
- Seungil Han
- Pfizer Inc., Pfizer Global Research & Development, Groton, Connecticut, USA
| |
Collapse
|
19
|
Homomeric and heteromeric complexes among TGF-β and BMP receptors and their roles in signaling. Cell Signal 2011; 23:1424-32. [PMID: 21515362 DOI: 10.1016/j.cellsig.2011.04.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 04/04/2011] [Indexed: 02/08/2023]
Abstract
Transforming growth factor-β (TGF-β) ligands and bone morphogenetic proteins (BMPs) play myriad roles in many biological processes and diseases. Their pluripotent activities are subject to multiple levels of regulation, including receptor oligomerization, endocytosis, association with co-receptors, cellular scaffolds or membrane domains, as well as transcriptional control. In this review, we focus on TGF-β and BMP receptor homomeric and heteromeric complex formation and their modulation by ligand binding, which regulate signaling on a near-immediate timescale. We discuss the current structural, biochemical and biophysical evidence for the oligomerization of these receptors, and the potential roles of distinct oligomeric interactions in signaling.
Collapse
|
20
|
Li L, Orner BP, Huang T, Hinck AP, Kiessling LL. Peptide ligands that use a novel binding site to target both TGF-β receptors. MOLECULAR BIOSYSTEMS 2010; 6:2392-402. [PMID: 20890540 PMCID: PMC3064480 DOI: 10.1039/c0mb00115e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The transforming growth factor beta (TGF-β) signaling pathway plays myriad roles in development and disease. TGF-β isoforms initiate signaling by organizing their cell surface receptors TβRI and TβRII. Exploration and exploitation of the versatility of TGF-β signaling requires an enhanced understanding of structure-function relationships in this pathway. To this end, small molecule, peptide, and antibody effectors that bind key signaling components would serve as valuable probes. We focused on the extracellular domain of TβR1 (TβRI-ED) as a target for effector screening. The observation that TβRI-ED can bind to a TGF-β coreceptor (endoglin) suggests that the TβRI-ED may have multiple interaction sites. Using phage display, we identified two peptides LTGKNFPMFHRN (Pep1) and MHRMPSFLPTTL (Pep2) that bind the TβRI-ED (K(d)≈ 10(-5) M). Although our screen focused on TβRI-ED, the hit peptides interact with the TβRII-ED with similar affinities. The peptide ligands occupy the same binding sites on TβRI and TβRII, as demonstrated by their ability to compete with each other for receptor binding. Moreover, neither interferes with TGF-β binding. These results indicate that both TβRI and TβRII possess hot spots for protein-protein interactions that are distinct from those used by their known ligand TGF-β. To convert these compounds into high affinity probes, we exploited the observation that TβRI and TβRII exist as dimers on the cell surface; therefore, we assembled a multivalent ligand. Specifically, we displayed one of our receptor-binding peptides on a dendrimer scaffold. We anticipate that the potent multivalent ligand that resulted can be used to probe the role of receptor assembly in TGF-β function.
Collapse
Affiliation(s)
- Lingyin Li
- Department of Chemistry and Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
21
|
Horbelt D, Guo G, Robinson PN, Knaus P. Quantitative analysis of TGFBR2 mutations in Marfan-syndrome-related disorders suggests a correlation between phenotypic severity and Smad signaling activity. J Cell Sci 2010; 123:4340-50. [PMID: 21098638 DOI: 10.1242/jcs.074773] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mutations in the gene encoding transforming growth factor-beta receptor type II (TGFBR2) have been described in patients with Loeys-Dietz syndrome (LDS), Marfan syndrome type 2 (MFS2) and familial thoracic aortic aneurysms and dissections (TAAD). Here, we present a comprehensive and quantitative analysis of TGFBR2 expression, turnover and TGF-β-induced Smad and ERK signaling activity for nine mutations identified in patients with LDS, MFS2 and TAAD. The mutations had different effects on protein stability, internalization and signaling. A dominant-negative effect was demonstrated for mutations associated with LDS and MFS2. No mutation showed evidence of an immediate cell-autonomous paradoxical activation of TGF-β signaling. There were no cell biological differences between mutations described in patients with LDS and MFS2. By contrast, R460C, which has been found in familial TAAD but not in MFS2 or LDS, showed a less-severe dominant-negative effect and retained residual Smad phosphorylation and transcriptional activity. TAAD is characterized primarily by thoracic aortic aneurysms or dissections. By contrast, MFS2 is characterized by numerous skeletal abnormalities, and patients with LDS additionally can display craniofacial and other abnormalities. Therefore, our findings suggest that the balance between defects in Smad and ERK signaling might be an important determinant of phenotypic severity in disorders related to mutations in TGFBR2.
Collapse
Affiliation(s)
- Daniel Horbelt
- Institute for Chemistry-Biochemistry, Freie Universität Berlin, Berlin, 14195, Germany
| | | | | | | |
Collapse
|
22
|
Song C, Wang X, Zhou H. Molecular cloning of activin type I and type II receptors and differential regulation of their expression by activin in grass carp pituitary cells. Gen Comp Endocrinol 2010; 166:211-6. [PMID: 19699739 DOI: 10.1016/j.ygcen.2009.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 08/03/2009] [Accepted: 08/13/2009] [Indexed: 10/20/2022]
Abstract
Activins, like other members of the transforming growth factor-beta superfamily, signal via two structurally related transmembrane serine/threonine kinase receptors classified as types II and I. Two cDNAs encoding activin type IIB receptor (ActRIIB) and activin type IB receptor (ActRIB) were cloned and characterized from grass carp. The deduced ActRIIB protein of 510 amino acids shared 79-90% identity with those in other vertebrates, while the predicted ActRIB protein of 505 amino acids exhibited high sequence identity (80-96%) to its counterparts in human, rat, mouse, frog, and zebrafish. Comparative analysis showed that both receptors contained the conserved amino acid residues required for ligand binding, and comprised the characteristic regions of an extracellular ligand binding domain, a single transmembrane region, and an intracellular serine/threonine kinase domain. Real-time PCR analysis revealed that both ActRIIB and ActRIB transcripts were ubiquitously expressed in all tissues examined, in particular with high expression levels in extra-gonadal tissues, including pituitary, brain, and liver. Using a static incubation approach, the feedback effects of exogenous activin on ActRIIB and ActRIB mRNA expression were examined at the pituitary level. Activin significantly stimulated ActRIB mRNA expression in a time- and dose-dependent manner, but had no effect on ActRIIB mRNA levels. These findings support the notion that activin receptors may serve as a local regulatory point involving in pituitary function of activin in fish.
Collapse
Affiliation(s)
- Chunlei Song
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | | | | |
Collapse
|
23
|
Belville C, Maréchal JD, Pennetier S, Carmillo P, Masgrau L, Messika-Zeitoun L, Galey J, Machado G, Treton D, Gonzalès J, Picard JY, Josso N, Cate RL, di Clemente N. Natural mutations of the anti-Mullerian hormone type II receptor found in persistent Mullerian duct syndrome affect ligand binding, signal transduction and cellular transport. Hum Mol Genet 2009; 18:3002-13. [PMID: 19457927 DOI: 10.1093/hmg/ddp238] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The anti-Müllerian hormone type II (AMHRII) receptor is the primary receptor for anti-Müllerian hormone (AMH), a protein produced by Sertoli cells and responsible for the regression of the Müllerian duct in males. AMHRII is a membrane protein containing an N-terminal extracellular domain (ECD) that binds AMH, a transmembrane domain, and an intracellular domain with serine/threonine kinase activity. Mutations in the AMHRII gene lead to persistent Müllerian duct syndrome in human males. In this paper, we have investigated the effects of 10 AMHRII mutations, namely 4 mutations in the ECD and 6 in the intracellular domain. Molecular models of the extra- and intracellular domains are presented and provide insight into how the structure and function of eight of the mutant receptors, which are still expressed at the cell surface, are affected by their mutations. Interestingly, two soluble receptors truncated upstream of the transmembrane domain are not secreted, unless the transforming growth factor beta type II receptor signal sequence is substituted for the endogenous one. This shows that the AMHRII signal sequence is defective and suggests that AMHRII uses its transmembrane domain instead of its signal sequence to translocate to the endoplasmic reticulum, a characteristic of type III membrane proteins.
Collapse
|
24
|
Chen C, Song C, Wang X, Zhou H. Molecular cloning, characterization and tissue distribution of six splice variants of activin type IIA receptor (ActRIIA) from grass carp (Ctenopharyngodon idellus). Genes Genet Syst 2009; 84:335-44. [DOI: 10.1266/ggs.84.335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Chao Chen
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China
| | - Chunlei Song
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China
| | - Xinyan Wang
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China
| | - Hong Zhou
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China
| |
Collapse
|
25
|
Konikoff CE, Wisotzkey RG, Newfeld SJ. Lysine conservation and context in TGFbeta and Wnt signaling suggest new targets and general themes for posttranslational modification. J Mol Evol 2008; 67:323-33. [PMID: 18797952 DOI: 10.1007/s00239-008-9159-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 07/11/2008] [Accepted: 08/07/2008] [Indexed: 12/22/2022]
Abstract
TGFbeta and Wnt pathways play important roles in the development of animals from sponges to humans. In both pathways posttranslational modification as a means of regulating their function, such as lysine modification by ubiquitination and sumoylation, has been observed. However, a gap exists between the immunological observation of posttranslational modification and the identification of the target lysine. To fill this gap, we conducted a phylogenetic analysis of lysine conservation and context in TGFbeta and Wnt pathway receptors and signal transducers and suggest numerous high-probability candidates for posttranslational modification. Further comparison of results from both pathways suggests two general features for biochemical regulation of intercellular signaling: receptors are less frequent targets for modification than signal transduction agonists, and a lysine adjacent to an upstream hydrophobic residue may be a preferred context for modification. Overall the results suggest numerous applications for an evolutionary approach to the biochemical regulation of developmental pathways, including (1) streamlining of the identification of the target lysine, (2) determination of when members of a multigene family acquire distinct activities, (3) application to any conserved protein family, and (4) application to any modification of a specific amino acid.
Collapse
|