1
|
An artificial cationic oligosaccharide combined with phosphorothioate linkages strongly improves siRNA stability. Sci Rep 2020; 10:14845. [PMID: 32908235 PMCID: PMC7481297 DOI: 10.1038/s41598-020-71896-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/21/2020] [Indexed: 11/08/2022] Open
Abstract
Small interfering RNAs (siRNAs) are potential tools for gene-silencing therapy, but their instability is one of the obstacles in the development of siRNA-based drugs. To improve siRNA stability, we synthesised a double-stranded RNA-binding cationic oligodiaminogalactose 4mer (ODAGal4) and investigated here its characteristics for siRNA stabilisation in vitro. ODAGal4 improved the resistance of various siRNAs against serum degradation. The effect of ODAGal4 on siRNA stabilisation was further amplified by introduction of modified nucleotides into the siRNA. In particular, a combination of ODAGal4 and incorporation of phosphorothioate linkages into the siRNA prominently prevented degradation by serum. The half-lives of fully phosphorothioate-modified RNA duplexes with ODAGal4 were more than 15 times longer than those of unmodified siRNAs without ODAGal4; this improvement in serum stability was superior to that observed for other chemical modifications. Serum degradation assays of RNAs with multiple chemical modifications showed that ODAGal4 preferentially improves the stability of RNAs with phosphorothioate modification among chemical modifications. Furthermore, melting temperature analysis showed that ODAGal4 greatly increases the thermal stability of phosphorothioate RNAs. Importantly, ODAGal4 did not interrupt gene-silencing activity of all the RNAs tested. Collectively, these findings demonstrate that ODAGal4 is a potent stabiliser of siRNAs, particularly nucleotides with phosphorothioate linkages, representing a promising tool in the development of gene-silencing therapies.
Collapse
|
2
|
Kesel AJ, Day CW, Montero CM, Schinazi RF. A new oxygen modification cyclooctaoxygen binds to nucleic acids as sodium crown complex. Biochim Biophys Acta Gen Subj 2016; 1860:785-94. [PMID: 26825775 PMCID: PMC4780752 DOI: 10.1016/j.bbagen.2016.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/19/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Oxygen exists in two gaseous and six solid allotropic modifications. An additional allotropic modification of oxygen, the cyclooctaoxygen, was predicted to exist in 1990. METHODS Cyclooctaoxygen sodium was synthesized in vitro from atmospheric oxygen, or catalase effect-generated oxygen, under catalysis of cytosine nucleosides and either ninhydrin or eukaryotic low-molecular weight RNA. Thin-layer chromatographic mobility shift assays were applied on specific nucleic acids and the cyclooctaoxygen sodium complex. RESULTS We report the first synthesis and characterization of cyclooctaoxygen as its sodium crown complex, isolated in the form of three cytosine nucleoside hydrochloride complexes. The cationic cyclooctaoxygen sodium complex is shown to bind to nucleic acids (RNA and DNA), to associate with single-stranded DNA and spermine phosphate, and to be essentially non-toxic to cultured mammalian cells at 0.1-1.0mM concentration. CONCLUSIONS We postulate that cyclooctaoxygen is formed in most eukaryotic cells in vivo from dihydrogen peroxide in a catalase reaction catalyzed by cytidine and RNA. A molecular biological model is deduced for a first epigenetic shell of eukaryotic in vivo DNA. This model incorporates an epigenetic explanation for the interactions of the essential micronutrient selenium (as selenite) with eukaryotic in vivo DNA. GENERAL SIGNIFICANCE Since the sperminium phosphate/cyclooctaoxygen sodium complex is calculated to cover the active regions (2.6%) of bovine lymphocyte interphase genome, and 12.4% of murine enterocyte mitotic chromatin, we propose that the sperminium phosphate/cyclooctaoxygen sodium complex coverage of nucleic acids is essential to eukaryotic gene regulation and promoted proto-eukaryotic evolution.
Collapse
Affiliation(s)
- Andreas J Kesel
- Chammünsterstr. 47, D-81827 München, Bayern/Bavaria, Germany.
| | - Craig W Day
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Science, Utah State University, Logan, UT 84322, USA
| | - Catherine M Montero
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Veterans Affairs Medical Center, Decatur, GA 30033, USA
| |
Collapse
|
3
|
The first crystal structure of human RNase 6 reveals a novel substrate-binding and cleavage site arrangement. Biochem J 2016; 473:1523-36. [PMID: 27013146 PMCID: PMC4888456 DOI: 10.1042/bcj20160245] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/24/2016] [Indexed: 12/29/2022]
Abstract
We describe the first human RNase 6 crystal structure in complex with sulfate anions. Kinetic analysis, site-directed mutagenesis and molecular dynamics simulations identified novel substrate recognition and cleavage sites. Human RNase 6 is a cationic secreted protein that belongs to the RNase A superfamily. Its expression is induced in neutrophils and monocytes upon bacterial infection, suggesting a role in host defence. We present here the crystal structure of RNase 6 obtained at 1.72 Å (1 Å=0.1 nm) resolution, which is the first report for the protein 3D structure and thereby setting the basis for functional studies. The structure shows an overall kidney-shaped globular fold shared with the other known family members. Three sulfate anions bound to RNase 6 were found, interacting with residues at the main active site (His15, His122 and Gln14) and cationic surface-exposed residues (His36, His39, Arg66 and His67). Kinetic characterization, together with prediction of protein–nucleotide complexes by molecular dynamics, was applied to analyse the RNase 6 substrate nitrogenous base and phosphate selectivity. Our results reveal that, although RNase 6 is a moderate catalyst in comparison with the pancreatic RNase type, its structure includes lineage-specific features that facilitate its activity towards polymeric nucleotide substrates. In particular, enzyme interactions at the substrate 5′ end can provide an endonuclease-type cleavage pattern. Interestingly, the RNase 6 crystal structure revealed a novel secondary active site conformed by the His36–His39 dyad that facilitates the polynucleotide substrate catalysis.
Collapse
|
4
|
Gagné D, French RL, Narayanan C, Simonović M, Agarwal PK, Doucet N. Perturbation of the Conformational Dynamics of an Active-Site Loop Alters Enzyme Activity. Structure 2015; 23:2256-2266. [PMID: 26655472 DOI: 10.1016/j.str.2015.10.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/05/2015] [Accepted: 10/13/2015] [Indexed: 01/28/2023]
Abstract
The role of internal dynamics in enzyme function is highly debated. Specifically, how small changes in structure far away from the reaction site alter protein dynamics and overall enzyme mechanisms is of wide interest in protein engineering. Using RNase A as a model, we demonstrate that elimination of a single methyl group located >10 Å away from the reaction site significantly alters conformational integrity and binding properties of the enzyme. This A109G mutation does not perturb structure or thermodynamic stability, both in the apo and ligand-bound states. However, significant enhancement in conformational dynamics was observed for the bound variant, as probed over nano- to millisecond timescales, resulting in major ligand repositioning. These results illustrate the large effects caused by small changes in structure on long-range conformational dynamics and ligand specificities within proteins, further supporting the importance of preserving wild-type dynamics in enzyme systems that rely on flexibility for function.
Collapse
Affiliation(s)
- Donald Gagné
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Rachel L French
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 South Ashland, Chicago, IL 60607, USA
| | - Chitra Narayanan
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Miljan Simonović
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 South Ashland, Chicago, IL 60607, USA
| | - Pratul K Agarwal
- Computational Biology Institute and Computer Science and Mathematics Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA; Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Nicolas Doucet
- INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada; PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, 1045 Avenue de la Médecine, Université Laval, QC G1V 0A6, Canada; GRASP, the Groupe de Recherche Axé sur la Structure des Protéines, 3649 Promenade Sir William Osler, McGill University, Montréal, QC H3G 0B1, Canada.
| |
Collapse
|
5
|
Cuchillo CM, Nogués MV, Raines RT. Bovine pancreatic ribonuclease: fifty years of the first enzymatic reaction mechanism. Biochemistry 2011; 50:7835-41. [PMID: 21838247 DOI: 10.1021/bi201075b] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fifty years ago, the group of Tony Mathias and Bob Rabin at University College London deduced the first mechanism for catalysis by an enzyme, ribonuclease [Findlay, D., Herries, D. G., Mathias, A. P., Rabin, B. R., and Ross, C. A. (1961) Nature 190, 781-784]. Here, we celebrate this historic accomplishment by surveying knowledge of enzymology and protein science at that time, facts that led to the formulation of the mechanism, criticisms and alternative mechanisms, data that supported the proposed mechanism, and some of the refinements that have since provided a more precise picture of catalysis of RNA cleavage by ribonucleases. The Mathias and Rabin mechanism has appeared in numerous textbooks, monographs, and reviews and continues to have a profound impact on biochemistry.
Collapse
Affiliation(s)
- Claudi M Cuchillo
- Departament de Bioquímica i Biologia Molecular, Unitat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | | | | |
Collapse
|
6
|
Moussaoui M, Cuchillo CM, Nogués MV. A phosphate-binding subsite in bovine pancreatic ribonuclease A can be converted into a very efficient catalytic site. Protein Sci 2007; 16:99-109. [PMID: 17192592 PMCID: PMC2222832 DOI: 10.1110/ps.062251707] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A general acid-base catalytic mechanism is responsible for the cleavage of the phosphodiester bonds of the RNA by ribonuclease A (RNase A). The main active site is formed by the amino acid residues His12, His119, and Lys41, and the process follows an endonucleolytic pattern that depends on the existence of a noncatalytic phosphate-binding subsite adjacent, on the 3'-side, to the active site; in this region the phosphate group of the substrate establishes electrostatic interactions through the side chains of Lys7 and Arg10. We have obtained, by means of site-directed mutagenesis, RNase A variants with His residues both at positions 7 and 10. These mutations have been introduced with the aim of transforming a noncatalytic binding subsite into a putative new catalytic active site. The RNase activity of these variants was determined by the zymogram technique and steady-state kinetic parameters were obtained by spectrophotometric methods. The variants showed a catalytic efficiency in the same order of magnitude as the wild-type enzyme. However, we have demonstrated in these variants important effects on the substrate's cleavage pattern. The quadruple mutant K7H/R10H/H12K/H119Q shows a clear increase of the exonucleolytic activity; in this case the original native active site has been suppressed, and, as consequence, its activity can only be associated to the new active site. In addition, the mutant K7H/R10H, with two putative active sites, also shows an increase in the exonucleolytic preference with respect to the wild type, a fact that may be correlated with the contribution of the new active site.
Collapse
Affiliation(s)
- Mohammed Moussaoui
- Department de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Spain
| | | | | |
Collapse
|
7
|
Nikolovski Z, Buzón V, Ribó M, Moussaoui M, Vilanova M, Cuchillo CM, Cladera J, Nogués MV. Thermal unfolding of eosinophil cationic protein/ribonuclease 3: a nonreversible process. Protein Sci 2006; 15:2816-27. [PMID: 17088327 PMCID: PMC2242447 DOI: 10.1110/ps.062196406] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Eosinophil cationic protein (ECP)/ribonuclease 3 is a member of the RNase A superfamily involved in inflammatory processes mediated by eosinophils. ECP is bactericidal, helminthotoxic, and cytotoxic to tracheal epithelium cells and to several mammalian cell lines although its RNase activity is low. We studied the thermal stability of ECP by fourth-derivative UV absorbance spectra, circular dichroism, differential scanning calorimetry, and Fourier transform infrared spectroscopy. The T (1/2) values obtained with the different techniques were in very good agreement (T (1/2) approximately 72 degrees C), and the stability was maintained in the pH range between 5 and 7. The ECP calorimetric melting curve showed, in addition to the main transition, a pretransitional conformational change with a T (1/2) of 44 degrees C. Both calorimetric transitions disappeared after successive re-heatings, and the ratio DeltaH versus DeltaH (vH) of 2.2 indicated a significant deviation from the two-state model. It was observed that the thermal unfolding was irreversible. The unfolding process gives rise to changes in the environment of aromatic amino acids that are partially maintained in the refolded protein with the loss of secondary structure and the formation of oligomers. From the thermodynamic analysis of ECP variants, the contribution of specific amino acids, such as Trp10 and the region 115-122, to thermal stability was also determined. The high thermal stability of ECP may contribute to its resistance to degradation when the protein is secreted to the extracellular medium during the immune response.
Collapse
Affiliation(s)
- Zoran Nikolovski
- Unitat de Bioquímica, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | | | | | | | | | |
Collapse
|