1
|
Gurvic D, Zachariae U. Multidrug efflux in Gram-negative bacteria: structural modifications in active compounds leading to efflux pump avoidance. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:6. [PMID: 39843816 PMCID: PMC11721645 DOI: 10.1038/s44259-024-00023-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2025]
Abstract
Gram-negative bacteria cause the majority of critically drug-resistant infections, necessitating the rapid development of new drugs with Gram-negative activity. However, drug design is hampered by the low permeability of the Gram-negative cell envelope and the function of drug efflux pumps, which extrude foreign molecules from the cell. A better understanding of the molecular determinants of compound recognition by efflux pumps is, therefore, essential. Here, we quantitatively analysed the activity of 73,737 compounds, recorded in the publicly accessible database CO-ADD, across three strains of E. coli - the wild-type, the efflux-deficient tolC variant, and the hyper-permeable lpxC variant, to elucidate the molecular principles of evading efflux pumps. We computationally investigated molecular features within this dataset that promote, or reduce, the propensity of being recognised by the TolC-dependent efflux systems in E. coli. Our results show that, alongside a range of physicochemical features, the presence or absence of specific chemical groups in the compounds substantially increases the probability of avoiding efflux. A comparison of our findings with inward permeability data further underscores the primary role of efflux in determining drug bioactivity in Gram-negative bacteria.
Collapse
Affiliation(s)
- Dominik Gurvic
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| | - Ulrich Zachariae
- Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
- Biochemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
2
|
Jeong WJ, Song WJ. Design and directed evolution of noncanonical β-stereoselective metalloglycosidases. Nat Commun 2022; 13:6844. [PMID: 36369431 PMCID: PMC9652281 DOI: 10.1038/s41467-022-34713-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
Metallohydrolases are ubiquitous in nearly all subclasses of hydrolases, utilizing metal elements to activate a water molecule and facilitate its subsequent dissociation of diverse chemical bonds. However, such a catalytic role of metal ions is rarely found with glycosidases that hydrolyze the glycosidic bonds in sugars. Herein, we design metalloglycosidases by constructing a hydrolytically active Zn-binding site within a barrel-shaped outer membrane protein OmpF. Structure- and mechanism-based redesign and directed evolution have led to the emergence of Zn-dependent glycosidases with catalytic proficiency of 2.8 × 109 and high β-stereoselectivity. Biochemical characterizations suggest that the Zn-binding site constitutes a key catalytic motif along with at least one adjacent acidic residue. This work demonstrates that unprecedented metalloenzymes can be tailor-made, expanding the scope of inorganic reactivities in proteinaceous environments, resetting the structural and functional diversity of metalloenzymes, and providing the potential molecular basis of unidentified metallohydrolases and novel whole-cell biocatalysts.
Collapse
Affiliation(s)
- Woo Jae Jeong
- grid.31501.360000 0004 0470 5905Department of Chemistry, Seoul National University, Seoul, 08826 Republic of Korea
| | - Woon Ju Song
- grid.31501.360000 0004 0470 5905Department of Chemistry, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
3
|
Gurvic D, Leach AG, Zachariae U. Data-Driven Derivation of Molecular Substructures That Enhance Drug Activity in Gram-Negative Bacteria. J Med Chem 2022; 65:6088-6099. [PMID: 35427114 PMCID: PMC9059115 DOI: 10.1021/acs.jmedchem.1c01984] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Indexed: 11/28/2022]
Abstract
The complex cell envelope of Gram-negative bacteria creates a formidable barrier to antibiotic influx. Reduced drug uptake impedes drug development and contributes to a wide range of drug-resistant bacterial infections, including those caused by extremely resistant species prioritized by the World Health Organization. To develop new and efficient treatments, a better understanding of the molecular features governing Gram-negative permeability is essential. Here, we present a data-driven approach, using matched molecular pair analysis and machine learning on minimal inhibitory concentration data from Gram-positive and Gram-negative bacteria to uncover chemical features that influence Gram-negative bioactivity. We find recurring chemical moieties, of a wider range than previously known, that consistently improve activity and suggest that this insight can be used to optimize compounds for increased Gram-negative uptake. Our findings may help to expand the chemical space of broad-spectrum antibiotics and aid the search for new antibiotic compound classes.
Collapse
Affiliation(s)
- Dominik Gurvic
- Computational
Biology, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Andrew G. Leach
- Division
of Pharmacy and Optometry, University of
Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Medchemica
Limited, Mereside, Alderley
Park, Macclesfield, SK10
4TG, United Kingdom
| | - Ulrich Zachariae
- Computational
Biology, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| |
Collapse
|
4
|
Solov'eva T, Likhatskaya G, Khomenko V, Guzev K, Kim N, Bystritskaya E, Novikova O, Stenkova A, Rakin A, Isaeva M. The impact of length variations in the L2 loop on the structure and thermal stability of non-specific porins: The case of OmpCs from the Yersinia pseudotuberculosis complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:515-525. [PMID: 29038023 DOI: 10.1016/j.bbamem.2017.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 09/25/2017] [Accepted: 10/11/2017] [Indexed: 10/18/2022]
Abstract
Porins are integral proteins of the outer membranes of gram-negative bacteria. In membranes, they exist as homotrimers and the L2 loops contribute to their stability. Comparison of OmpC porins of the Yersinia pseudotuberculosis complex with other enterobacterial porins demonstrated L2 loop length diversity, which is caused by varying numbers of dipeptide/tripeptide repeats. The OmpC porins are highly homologous to each other, and they can be subdivided into five isoforms based on their L2 loop structure. Optical spectroscopy and SDS-PAGE experiments revealed that particularities of the L2 loops affected the structure and thermal stability of the porins. Thermal denaturation studies showed that porins with shorter loops, compared to porins with longer loops, had more stable tertiary and less stable secondary and quaternary structures. According to our comparative modeling results, the L2 loops differ in their structure by adopting different spatial positions and forming different polar bonds with a neighbor monomer. The replacement of asparagine with arginine at the C-terminus of the L2 loop shifts the loop upwards and causes the loss of contacts with the arginine clusters within the pores. The increase in the length of these loops ensures that they shift down toward the pore and restore their contacts with arginines on the channel wall, as is the case in classical nonspecific porins. Despite the fact that the surface charge density varies considerably among the OmpC porins, the L2 loops form a typical negatively charged region in the center of the trimer.
Collapse
Affiliation(s)
- T Solov'eva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 690022 Prospect 100-let Vladivostoku 159, Vladivostok, Russia
| | - G Likhatskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 690022 Prospect 100-let Vladivostoku 159, Vladivostok, Russia
| | - V Khomenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 690022 Prospect 100-let Vladivostoku 159, Vladivostok, Russia
| | - K Guzev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 690022 Prospect 100-let Vladivostoku 159, Vladivostok, Russia
| | - N Kim
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 690022 Prospect 100-let Vladivostoku 159, Vladivostok, Russia
| | - E Bystritskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 690022 Prospect 100-let Vladivostoku 159, Vladivostok, Russia
| | - O Novikova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 690022 Prospect 100-let Vladivostoku 159, Vladivostok, Russia
| | - A Stenkova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 690022 Prospect 100-let Vladivostoku 159, Vladivostok, Russia
| | - A Rakin
- Institute for Bacterial Infections and Zoonoses, Federal Research Institute for Animal Health, Naumburger Str. 96 a, 07743 Jena, Germany
| | - M Isaeva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 690022 Prospect 100-let Vladivostoku 159, Vladivostok, Russia.
| |
Collapse
|
5
|
Volokhina I, Gusev Y, Mazilov S, Moiseeva Y, Chumakov M. Computer evaluation of VirE2 protein complexes for ssDNA transfer ability. Comput Biol Chem 2017; 68:64-70. [DOI: 10.1016/j.compbiolchem.2017.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 11/16/2022]
|
6
|
Rana A, Thakur S, Bhardwaj N, Kumar D, Akhter Y. Excavating the surface-associated and secretory proteome of Mycobacterium leprae for identifying vaccines and diagnostic markers relevant immunodominant epitopes. Pathog Dis 2016; 74:ftw110. [PMID: 27856491 DOI: 10.1093/femspd/ftw110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/13/2016] [Accepted: 11/13/2016] [Indexed: 02/03/2023] Open
Abstract
For centuries, Mycobacterium leprae, etiological agent of leprosy, has been afflicting mankind regardless of extensive use of live-attenuated vaccines and antibiotics. Surface-associated and secretory proteins (SASPs) are attractive targets against bacteria. We have integrated biological knowledge with computational approaches and present a proteome-wide identification of SASPs. We also performed computational assignment of immunodominant epitopes as coordinates of prospective antigenic candidates in most important class of SASPs, the outer membrane proteins (OMPs). Exploiting the known protein sequence and structural characteristics shared by the SASPs from bacteria, 17 lipoproteins, 11 secretory and 19 novel OMPs (including 4 essential proteins) were identified in M. leprae As OMPs represent the most exposed antigens on the cell surface, their immunoinformatics analysis showed that the identified 19 OMPs harbor T-cell MHC class I epitopes and class II epitopes against HLA-DR alleles (54), while 15 OMPs present potential T-cell class II epitopes against HLA-DQ alleles (6) and 7 OMPs possess T-cell class II epitopes against HLA-DP alleles (5) of humans. Additionally, 11 M. leprae OMPs were found to have B-cell epitopes and these may be considered as prime candidates for the development of new immunotherapeutics against M. leprae.
Collapse
Affiliation(s)
- Aarti Rana
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, District-Kangra, Himachal Pradesh-176206, India
| | - Shweta Thakur
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, District-Kangra, Himachal Pradesh-176206, India
| | - Nupur Bhardwaj
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, District-Kangra, Himachal Pradesh-176206, India
| | - Devender Kumar
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, District-Kangra, Himachal Pradesh-176206, India
| | - Yusuf Akhter
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, District-Kangra, Himachal Pradesh-176206, India
| |
Collapse
|
7
|
Solano CJF, Pothula KR, Prajapati JD, De Biase PM, Noskov SY, Kleinekathöfer U. BROMOCEA Code: An Improved Grand Canonical Monte Carlo/Brownian Dynamics Algorithm Including Explicit Atoms. J Chem Theory Comput 2016; 12:2401-17. [DOI: 10.1021/acs.jctc.5b01196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carlos J. F. Solano
- Department
of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Karunakar R. Pothula
- Department
of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Jigneshkumar D. Prajapati
- Department
of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Pablo M. De Biase
- Centre
for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Sergei Yu. Noskov
- Centre
for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Ulrich Kleinekathöfer
- Department
of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
8
|
Modi N, Bárcena-Uribarri I, Bains M, Benz R, Hancock REW, Kleinekathöfer U. Tuning the affinity of anion binding sites in porin channels with negatively charged residues: molecular details for OprP. ACS Chem Biol 2015; 10:441-51. [PMID: 25333751 DOI: 10.1021/cb500399j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The cell envelope of the Gram negative opportunistic pathogen Pseudomonas aeruginosa is poorly permeable to many classes of hydrophilic molecules including antibiotics due to the presence of the narrow and selective porins. Here we focused on one of the narrow-channel porins, that is, OprP, which is responsible for the high-affinity uptake of phosphate ions. Its two central binding sites for phosphate contain a number of positively charged amino acids together with a single negatively charged residue (D94). The presence of this negatively charged residue in a binding site for negatively charged phosphate ions is highly surprising due to the potentially reduced binding affinity. The goal of this study was to better understand the role of D94 in phosphate binding, selectivity, and transport using a combination of mutagenesis, electrophysiology, and free-energy calculations. The presence of a negatively charged residue in the binding site is critical for this specific porin OprP as emphasized by the evolutionary conservation of such negatively charged residue in the binding site of several anion-selective porins. Mutations of D94 in OprP to any positively charged or neutral residue increased the binding affinity of phosphate for OprP. Detailed analysis indicated that this anionic residue in the phosphate binding site of OprP, despite its negative charge, maintained energetically favorable phosphate binding sites in the central region of the channel and at the same time decreased residence time thus preventing excessively strong binding of phosphate that would oppose phosphate flux through the channel. Intriguingly mutations of D94 to positively charged residues, lysine and arginine, resulted in very different binding affinities and free energy profiles, indicating the importance of side chain conformations of these positively charged residues in phosphate binding to OprP.
Collapse
Affiliation(s)
- Niraj Modi
- School
of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Iván Bárcena-Uribarri
- School
of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Manjeet Bains
- Centre for Microbial Diseases and Immunity Research,
Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Roland Benz
- School
of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research,
Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Ulrich Kleinekathöfer
- School
of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
9
|
Rana A, Rub A, Akhter Y. Proteome-scale identification of outer membrane proteins in Mycobacterium avium subspecies paratuberculosis using a structure based combined hierarchical approach. ACTA ACUST UNITED AC 2014; 10:2329-37. [DOI: 10.1039/c4mb00234b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The overall strategy used for the proteome-wide comprehensive computational investigation to identify outer membrane proteins fromMycobacterium aviumsubsp.paratuberculosis.
Collapse
Affiliation(s)
- Aarti Rana
- School of Life Sciences
- Central University of Himachal Pradesh
- District-Kangra, India
| | - Abdur Rub
- Infection and Immunity Lab
- Department of Biotechnology
- Jamia Millia Islamia (A Central University)
- New Delhi, India-110025
| | - Yusuf Akhter
- School of Life Sciences
- Central University of Himachal Pradesh
- District-Kangra, India
| |
Collapse
|
10
|
Dreyer J, Strodel P, Ippoliti E, Finnerty J, Eisenberg B, Carloni P. Ion permeation in the NanC porin from Escherichia coli: free energy calculations along pathways identified by coarse-grain simulations. J Phys Chem B 2013; 117:13534-42. [PMID: 24147565 DOI: 10.1021/jp4081838] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Using the X-ray structure of a recently discovered bacterial protein, the N-acetylneuraminic acid-inducible channel (NanC), we investigate computationally K(+) and Cl(-) ions' permeation. We identify ion permeation pathways that are likely to be populated using coarse-grain Monte Carlo simulations. Next, we use these pathways as reaction coordinates for umbrella sampling-based free energy simulations. We find distinct tubelike pathways connecting specific binding sites for K(+) and, more pronounced, for Cl(-) ions. Both ions permeate the porin preserving almost all of their first hydration shell. The calculated free energy barriers are G(#) ≈ 4 kJ/mol and G(#) ≈ 8 kJ/mol for Cl(-) and K(+), respectively. Within the approximations associated with these values, discussed in detail in this work, we suggest that the porin is slightly selective for Cl(-) versus K(+). Our suggestion is consistent with the experimentally observed weak Cl(-) over K(+) selectivity. A rationale for the latter is suggested by a comparison with previous calculations on strongly anion selective porins.
Collapse
Affiliation(s)
- Jens Dreyer
- Computational Biophysics, German Research School for Simulation Sciences , D-52425 Jülich, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
The outer membrane of Gram-negative bacteria contains a large number of channel-forming proteins, porins, for the uptake of small nutrient molecules. Neisseria gonorrhoeae PorBIA (PorB of serotype A) are associated with disseminating diseases and mediate a rapid bacterial invasion into host cells in a phosphate-sensitive manner. To gain insights into this structure-function relationship we analysed PorBIA by X-ray crystallography in the presence of phosphate and ATP. The structure of PorBIA in the complex solved at a resolution of 3.3 Å (1 Å=0.1 nm) displays a surplus of positive charges inside the channel. ATP ligand-binding in the channel is co-ordinated by the positively charged residues of the channel interior. These residues ligate the aromatic, sugar and pyrophosphate moieties of the ligand. Two phosphate ions were observed in the structure, one of which clamped by two arginine residues (Arg92 and Arg124) localized at the extraplasmic channel exit. A short β-bulge in β2-strand together with the long L3 loop narrow the barrel diameter significantly and further support substrate specificity through hydrogen bond interactions. Interestingly the structure also comprised a small peptide as a remnant of a periplasmic protein which physically links porin molecules to the peptidoglycan network. To test the importance of Arg92 on bacterial invasion the residue was mutated. In vivo assays of bacteria carrying a R92S mutation confirmed the importance of this residue for host-cell invasion. Furthermore systematic sequence and structure comparisons of PorBIA from Neisseriaceae indicated Arg92 to be unique in disseminating N. gonorrhoeae thereby possibly distinguishing invasion-promoting porins from other neisserial porins.
Collapse
|
12
|
Aguilella-Arzo M, Aguilella VM. Continuum electrostatic calculations of the pKa of ionizable residues in an ion channel: dynamic vs. static input structure. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2010; 31:429-439. [PMID: 20419466 DOI: 10.1140/epje/i2010-10597-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/18/2010] [Accepted: 03/22/2010] [Indexed: 05/29/2023]
Abstract
We have computed the pK(a)'s of the ionizable residues of a protein ion channel, the Staphylococcus aureus toxin alpha-hemolysin, by using two types of input structures, namely the crystal structure of the heptameric alpha-hemolysin and a set of over four hundred snapshots from a 4.38 ns Molecular Dynamics simulation of the protein inserted in a phospholipid planar bilayer. The comparison of the dynamic picture provided by the Molecular Simulation with the static one based on the X-ray crystal structure of the protein embedded in a lipid membrane allows analyzing the influence of the fluctuations in the protein structure on its ionization properties. We find that the use of the dynamic structure provides interesting information about the sensitivity of the computed pK(a) of a given residue to small changes in the local structure. The calculated pK(a) are consistent with previous indirect estimations obtained from single-channel conductance and selectivity measurements.
Collapse
Affiliation(s)
- M Aguilella-Arzo
- Department of Physics, Universitat Jaume I, Av. Sos Baynat s/n, E-12078, Castellón, Spain
| | | |
Collapse
|
13
|
Abstract
The outer membrane of Gram-negative bacteria serves as a protective barrier against the external environment but is rendered selectively permeable to nutrients and waste by proteins called porins. Other outer membrane proteins (OMPs) provide the membrane with a variety of other functions including active transport, catalysis, pathogenesis and signal transduction. A relatively small number of crystal or NMR structures of these proteins are known, and it is therefore essential that the maximum possible information be extracted. In this respect, computational techniques enable extrapolation from time- and space-averaged static structures to dynamic, physiological events. Electrostatics approaches have been used to investigate the structures of porins. The stochastic simulation of ion trajectories through these channels has been possible with Brownian dynamics, which treats the membrane and solvent approximately, enabling the prediction of conduction properties. Molecular dynamics has also been applied, enabling fully atomistic descriptions of 'virtual outer membranes'. This has provided atomic resolution descriptions of solute permeation through porins. It has also yielded insights into the dynamics of gating in active transporters and ion channels, as well as providing clues to catalytic mechanisms in outer membrane enzymes. Additionally, simulations are beginning to reveal the common features of interactions between membrane proteins and lipids, with biological implications for OMP folding, stability and mechanism. Future prospects include the simulation of longer, larger and more complex outer membrane systems, with more accurate descriptions of inter-atomic forces.
Collapse
Affiliation(s)
- Peter J Bond
- Department of Biochemistry, The University of Oxford, Oxford, UK
| | | |
Collapse
|
14
|
Song Y, Gunner M. Using Multiconformation Continuum Electrostatics to Compare Chloride Binding Motifs in α-Amylase, Human Serum Albumin, and Omp32. J Mol Biol 2009; 387:840-56. [DOI: 10.1016/j.jmb.2009.01.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Starikov EB, Panas I, Nordén B. Chemical-to-Mechanical Energy Conversion in Biomacromolecular Machines: A Plasmon and Optimum Control Theory for Directional Work. 1. General Considerations. J Phys Chem B 2008; 112:8319-29. [DOI: 10.1021/jp801580d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Evgeni B. Starikov
- Institute for Nanotechnology, Research Center Karlsruhe, Post Box 3640, D-76021 Karlsruhe, Germany, and Department of Physical Chemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Itai Panas
- Institute for Nanotechnology, Research Center Karlsruhe, Post Box 3640, D-76021 Karlsruhe, Germany, and Department of Physical Chemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Bengt Nordén
- Institute for Nanotechnology, Research Center Karlsruhe, Post Box 3640, D-76021 Karlsruhe, Germany, and Department of Physical Chemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
16
|
Song H, Sandie R, Wang Y, Andrade-Navarro MA, Niederweis M. Identification of outer membrane proteins of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2008; 88:526-44. [PMID: 18439872 DOI: 10.1016/j.tube.2008.02.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 02/08/2008] [Accepted: 02/18/2008] [Indexed: 01/03/2023]
Abstract
The cell wall of mycobacteria includes an unusual outer membrane of extremely low permeability. While Escherichia coli uses more than 60 proteins to functionalize its outer membrane, only two mycobacterial outer membrane proteins (OMPs) are known. The porin MspA of Mycobacterium smegmatis provided the proof of principle that integral mycobacterial OMPs share the beta-barrel structure, the absence of hydrophobic alpha-helices and the presence of a signal peptide with OMPs of gram-negative bacteria. These properties were exploited in a multi-step bioinformatic approach to predict OMPs of M. tuberculosis. A secondary structure analysis was performed for 587 proteins of M. tuberculosis predicted to be exported. Scores were calculated for the beta-strand content and the amphiphilicity of the beta-strands. Reference OMPs of gram-negative bacteria defined threshold values for these parameters that were met by 144 proteins of unknown function of M. tuberculosis. Two of them were verified as OMPs by a novel two-step experimental approach. Rv1698 and Rv1973 were detected only in the total membrane fraction of M. bovis BCG in Western blot experiments, while proteinase K digestion of whole cells showed the surface accessibility of these proteins. These findings established that Rv1698 and Rv1973 are indeed localized in the outer membrane and tripled the number of known OMPs of M. tuberculosis. Significantly, these results provide evidence for the usefulness of the bioinformatic approach to predict mycobacterial OMPs and indicate that M. tuberculosis likely has many OMPs with beta-barrel structure. Our findings pave the way to identify the set of proteins which functionalize the outer membrane of M. tuberculosis.
Collapse
Affiliation(s)
- Houhui Song
- Department of Microbiology, University of Alabama at Birmingham, 609 Bevill Biomedical Research Building, 845 19th Street South, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
17
|
Moraes TF, Bains M, Hancock REW, Strynadka NCJ. An arginine ladder in OprP mediates phosphate-specific transfer across the outer membrane. Nat Struct Mol Biol 2006; 14:85-7. [PMID: 17187075 DOI: 10.1038/nsmb1189] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 12/06/2006] [Indexed: 11/09/2022]
Abstract
The outer membrane protein OprP mediates the transport of essential phosphate anions into the pathogenic bacterium Pseudomonas aeruginosa. Here we report the crystallographic structure of trimeric OprP at 1.9-A resolution, revealing an unprecedented 9-residue arginine 'ladder' that spans from the extracellular surface down through a constriction zone where phosphate is coordinated. Lysine residues coat the inner periplasmic surface, creating an 'electropositive sink' that pulls the phosphates through the eyelet and into the cell.
Collapse
Affiliation(s)
- Trevor F Moraes
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | |
Collapse
|
18
|
Zachariae U, Klühspies T, De S, Engelhardt H, Zeth K. High resolution crystal structures and molecular dynamics studies reveal substrate binding in the porin Omp32. J Biol Chem 2006; 281:7413-20. [PMID: 16434398 DOI: 10.1074/jbc.m510939200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The porin Omp32 is the major outer membrane protein of the bacterium Delftia acidovorans. The crystal structures of the strongly anion-selective porin alone and in complex with the substrate malate were solved at 1.5 and 1.45 A resolution, respectively, and revealed a malate-binding motif adjacent to the channel constriction zone. Binding is mediated by interaction with a cluster of two arginine residues and two threonines. This binding site is specific for Omp32 and reflects the physiological adaptation of the organism to organic acids. Structural studies are combined with a 7-ns unbiased molecular dynamics simulation of the trimeric channel in a model membrane. Molecular dynamics trajectories show how malate ions are efficiently captured from the surrounding bulk solution by the electrostatic potential of the channel, translocated to the binding site region, and immobilized in the constriction zone. In accordance with these results, conductance measurements with Omp32 inserted in planar lipid membranes revealed binding of malate. The anion-selective channel Omp32 is the first reported example of a porin with a 16-stranded beta-barrel and proven substrate specificity. This finding suggests a new view on the correlation of porin structure with substrate binding in specific channels.
Collapse
Affiliation(s)
- Ulrich Zachariae
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
19
|
Mahfoud M, Sukumaran S, Hülsmann P, Grieger K, Niederweis M. Topology of the porin MspA in the outer membrane of Mycobacterium smegmatis. J Biol Chem 2005; 281:5908-15. [PMID: 16352610 DOI: 10.1074/jbc.m511642200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MspA is the major porin of Mycobacterium smegmatis mediating the exchange of hydrophilic solutes across the outer membrane (OM). It is the prototype of a new family of octameric porins with a single central channel of 9.6 nm in length and consists of two hydrophobic beta-barrels of 3.7 nm in length and a more hydrophilic, globular rim domain. The length of the hydrophobic domain of MspA does not match the thicknesses of mycobacterial OMs of 5-12 nm as derived from electron micrographs. Further, the membrane topology of MspA is unknown as it is for any other mycobacterial OM protein. We used MspA as a molecular ruler to define the boundaries of the OM of M. smegmatis by surface labeling of single cysteine mutants. Seventeen mutants covered the surface of the rim domain and were biotinylated with a membrane-impermeable reagent. The label efficiencies in vitro were remarkably similar to the predicted accessibilities of the cysteines. By contrast, six of these mutants were protected from biotinylation in M. smegmatis cells. Tryptophan 21 defines a horizontal plane that dissects the surface-exposed versus the membrane-protected residues of MspA. The 8 phenylalanines at position 99 form a ring at the periplasmic end of the hydrophobic beta-barrel domain. These results indicated that (i) the membrane boundaries of MspA are defined by aromatic girdles as in porins of Gram-negative bacteria and (ii) loops and a 3.4-nm long part of the hydrophilic rim domain are embedded into the OM of M. smegmatis. This is the first report suggesting that elements other than hydrophobic alpha-helices or beta-sheets are integrated into a lipid membrane.
Collapse
Affiliation(s)
- Maysa Mahfoud
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | | | | | | | | |
Collapse
|
20
|
Vrouenraets M, Wierenga J, Meijberg W, Miedema H. Chemical modification of the bacterial porin OmpF: gain of selectivity by volume reduction. Biophys J 2005; 90:1202-11. [PMID: 16299071 PMCID: PMC1367271 DOI: 10.1529/biophysj.105.072298] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OmpF is an essentially nonselective porin isolated from the outer membrane of Escherichia coli. Here we report on the manipulation of the ion selectivity of OmpF by chemical modification with MTS reagents (MTSET, MTSEA, and MTSES) and the (rather bulky) tripeptide glutathione, all cysteine specific. When recorded in a gradient of 0.1//1 M CaCl2 or 0.1//1 M NaCl, pH 7.4 solutions, measured reversal potentials of the most cation-selective modified mutants were (virtually) identical to the Nernst potential of Ca2+ or Na+. Compared to this full cation selectivity, the anion-selective modified mutants performed somewhat less but nevertheless showed high anion selectivity. We conclude that a low permanent charge in combination with a narrow pore can render the same selectivity as a highly charged but wider pore. These results favor the view that both the electrostatic potential arising form the fixed charge in the pore and the space available at the selectivity filter contribute to the charge selection (i.e., cation versus anion selectivity) of a biological ion channel.
Collapse
Affiliation(s)
- Maarten Vrouenraets
- Biomade Technology Foundation, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | |
Collapse
|
21
|
Abstract
Gram-negative bacteria characteristically are surrounded by an additional membrane layer, the outer membrane. Although outer membrane components often play important roles in the interaction of symbiotic or pathogenic bacteria with their host organisms, the major role of this membrane must usually be to serve as a permeability barrier to prevent the entry of noxious compounds and at the same time to allow the influx of nutrient molecules. This review summarizes the development in the field since our previous review (H. Nikaido and M. Vaara, Microbiol. Rev. 49:1-32, 1985) was published. With the discovery of protein channels, structural knowledge enables us to understand in molecular detail how porins, specific channels, TonB-linked receptors, and other proteins function. We are now beginning to see how the export of large proteins occurs across the outer membrane. With our knowledge of the lipopolysaccharide-phospholipid asymmetric bilayer of the outer membrane, we are finally beginning to understand how this bilayer can retard the entry of lipophilic compounds, owing to our increasing knowledge about the chemistry of lipopolysaccharide from diverse organisms and the way in which lipopolysaccharide structure is modified by environmental conditions.
Collapse
Affiliation(s)
- Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA.
| |
Collapse
|
22
|
Koumanov A, Zachariae U, Engelhardt H, Karshikoff A. Improved 3D continuum calculations of ion flux through membrane channels. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2003; 32:689-702. [PMID: 12879311 DOI: 10.1007/s00249-003-0330-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2003] [Revised: 05/14/2003] [Accepted: 05/16/2003] [Indexed: 10/26/2022]
Abstract
A continuum model, based on the Poisson-Nernst-Planck (PNP) theory, is applied to simulate steady-state ion flux through protein channels. The PNP equations are modified to explicitly account (1) for the desolvation of mobile ions in the membrane pore and (2) for effects related to ion sizes. The proposed algorithm for a three-dimensional self-consistent solution of PNP equations, in which final results are refined by a focusing technique, is shown to be suitable for arbitrary channel geometry and arbitrary protein charge distribution. The role of the pore shape and protein charge distribution in formation of basic electrodiffusion properties, such as channel conductivity and selectivity, as well as concentration distributions of mobile ions in the pore region, are illustrated by simulations on model channels. The influence of the ionic strength in the bulk solution and of the externally applied electric field on channel properties are also discussed.
Collapse
Affiliation(s)
- Assen Koumanov
- Department of Biosciences at Novum, Karolinska Institute, 14157 Huddinge, Sweden.
| | | | | | | |
Collapse
|
23
|
Mafé S, Ramı́rez P, Alcaraz A. Simple molecular model for the binding of antibiotic molecules to bacterial ion channels. J Chem Phys 2003. [DOI: 10.1063/1.1606438] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Zachariae U, Helms V, Engelhardt H. Multistep mechanism of chloride translocation in a strongly anion-selective porin channel. Biophys J 2003; 85:954-62. [PMID: 12885642 PMCID: PMC1303216 DOI: 10.1016/s0006-3495(03)74534-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The strongly anion-selective porin channel Omp32 from the bacterium Delftia acidovorans differs from other unspecific porins by its pronounced selectivity for anions and its particularly small channel cross-section. Multinanosecond molecular dynamics simulations of chloride ion movement in this pore protein suggest that translocated anions interact intimately with the charges of a "basic ladder", whose dynamics lead the anions in a stepwise manner through the constriction zone of the channel. The ladder-steps comprise the central clustered arginine groups and flanking basic residues at its exoplasmic and periplasmic sides. The computed free energy profile of ion movement in and around the constriction zone shows a corresponding succession of free energy minima and barriers. A number of polar atoms from other amino acids contribute to the coordination of Cl(-) at certain sites and to its temporary immobilization in the channel. A special binding site occurs at the transition of the constriction zone to the periplasmic funnel, binding the chloride ion over significant lengths of time. The results from our MD study offer a possible explanation for the nonlinear conductance properties and unusual salt-dependent characteristics of Omp32 observed earlier in experimental measurements.
Collapse
|
25
|
Domene C, Bond PJ, Sansom MS. Membrane protein simulations: ion channels and bacterial outer membrane proteins. ADVANCES IN PROTEIN CHEMISTRY 2003; 66:159-93. [PMID: 14631819 DOI: 10.1016/s0065-3233(03)66005-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Carmen Domene
- Laboratory of Molecular Biophysics (LMB), Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|