1
|
Melnik TN, Majorina MA, Vorobeva DE, Nagibina GS, Veselova VR, Glukhova KA, Pak MA, Ivankov DN, Uversky VN, Melnik BS. Design of stable circular permutants of the GroEL chaperone apical domain. Cell Commun Signal 2024; 22:90. [PMID: 38303060 PMCID: PMC10836027 DOI: 10.1186/s12964-023-01426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/08/2023] [Indexed: 02/03/2024] Open
Abstract
Enhancing protein stability holds paramount significance in biotechnology, therapeutics, and the food industry. Circular permutations offer a distinctive avenue for manipulating protein stability while keeping intra-protein interactions intact. Amidst the creation of circular permutants, determining the optimal placement of the new N- and C-termini stands as a pivotal, albeit largely unexplored, endeavor. In this study, we employed PONDR-FIT's predictions of disorder propensity to guide the design of circular permutants for the GroEL apical domain (residues 191-345). Our underlying hypothesis posited that a higher predicted disorder value would correspond to reduced stability in the circular permutants, owing to the increased likelihood of fluctuations in the novel N- and C-termini. To substantiate this hypothesis, we engineered six circular permutants, positioning glycines within the loops as locations for the new N- and C-termini. We demonstrated the validity of our hypothesis along the set of the designed circular permutants, as supported by measurements of melting temperatures by circular dichroism and differential scanning microcalorimetry. Consequently, we propose a novel computational methodology that rationalizes the design of circular permutants with projected stability. Video Abstract.
Collapse
Affiliation(s)
- Tatiana N Melnik
- Institute of Protein Research, Russian Academy of Sciences, Institutskaja Str. 4, Pushchino, Moscow Region, 142290, Russia
| | - Maria A Majorina
- Institute of Protein Research, Russian Academy of Sciences, Institutskaja Str. 4, Pushchino, Moscow Region, 142290, Russia
| | - Daria E Vorobeva
- Institute of Protein Research, Russian Academy of Sciences, Institutskaja Str. 4, Pushchino, Moscow Region, 142290, Russia
| | - Galina S Nagibina
- Institute of Protein Research, Russian Academy of Sciences, Institutskaja Str. 4, Pushchino, Moscow Region, 142290, Russia
| | - Victoria R Veselova
- Institute of Protein Research, Russian Academy of Sciences, Institutskaja Str. 4, Pushchino, Moscow Region, 142290, Russia
| | - Ksenia A Glukhova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaja Str. 3, Puschino, Moscow Region, 142290, Russia
| | - Marina A Pak
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, Moscow, 121205, Russia
| | - Dmitry N Ivankov
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, Moscow, 121205, Russia
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Center and Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | - Bogdan S Melnik
- Institute of Protein Research, Russian Academy of Sciences, Institutskaja Str. 4, Pushchino, Moscow Region, 142290, Russia.
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
2
|
GroEL—A Versatile Chaperone for Engineering and a Plethora of Applications. Biomolecules 2022; 12:biom12050607. [PMID: 35625535 PMCID: PMC9138447 DOI: 10.3390/biom12050607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/16/2022] Open
Abstract
Chaperones play a vital role in the life of cells by facilitating the correct folding of other proteins and maintaining them in a functional state, being themselves, as a rule, more stable than the rest of cell proteins. Their functional properties naturally tempt investigators to actively adapt them for biotechnology needs. This review will mostly focus on the applications found for the bacterial chaperonin GroE and its counterparts from other organisms, in biotechnology or for research purposes, both in their engineered or intact versions.
Collapse
|
3
|
Sternke M, Tripp KW, Barrick D. Surface residues and non-additive interactions stabilize a consensus homeodomain protein. Biophys J 2021; 120:5267-5278. [PMID: 34757081 DOI: 10.1016/j.bpj.2021.10.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022] Open
Abstract
Despite the widely reported success of consensus design in producing highly stabilized proteins, little is known about the physical mechanisms underlying this stabilization. Here we explore the potential sources of stabilization by performing a systematic analysis of the 29 substitutions that we previously found to collectively stabilize a consensus homeodomain compared to an extant homeodomain. By separately introducing groups of consensus substitutions that alter or preserve charge state, occur at varying degrees of residue burial, and occur at positions of varying degrees of conservation, we determine the extent to which these three features contribute to the consensus stability enhancement. Surprisingly, we find that the largest total contribution to stability comes from consensus substitutions on the protein surface and that the largest per-substitution contributions come from substitutions that maintain charge state. This finding suggests that although consensus proteins are often enriched in charged residues, consensus stabilization does not result primarily from interactions involving charged residues. Although consensus substitutions at strongly conserved positions also contribute disproportionately to stabilization, significant stabilization is also contributed from substitutions at weakly conserved positions. Furthermore, we find that identical consensus substitutions show larger stabilizing effects when introduced into the consensus background than when introduced into an extant homeodomain, indicating that synergistic, stabilizing interactions among the consensus residues contribute to consensus stability enhancement of the homeodomain. By measuring DNA binding affinity for the same set of variants, we find that although consensus design of the homeodomain increases both affinity and folding stability, it does so using a largely non-overlapping set of substitutions.
Collapse
Affiliation(s)
- Matt Sternke
- The T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 USA
| | - Katherine W Tripp
- The T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 USA
| | - Doug Barrick
- The T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 USA.
| |
Collapse
|
4
|
Oda K, Lee Y, Wiriyasermkul P, Tanaka Y, Takemoto M, Yamashita K, Nagamori S, Nishizawa T, Nureki O. Consensus mutagenesis approach improves the thermal stability of system x c - transporter, xCT, and enables cryo-EM analyses. Protein Sci 2020; 29:2398-2407. [PMID: 33016372 PMCID: PMC7679960 DOI: 10.1002/pro.3966] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 12/20/2022]
Abstract
System xc− is an amino acid antiporter that imports L‐cystine into cells and exports intracellular L‐glutamate, at a 1:1 ratio. As L‐cystine is an essential precursor for glutathione synthesis, system xc− supports tumor cell growth through glutathione‐based oxidative stress resistance and is considered as a potential therapeutic target for cancer treatment. System xc− consists of two subunits, the light chain subunit SLC7A11 (xCT) and the heavy chain subunit SLC3A2 (also known as CD98hc or 4F2hc), which are linked by a conserved disulfide bridge. Although the recent structures of another SLC7 member, L‐type amino acid transporter 1 (LAT1) in complex with CD98hc, have provided the structural basis toward understanding the amino acid transport mechanism, the detailed molecular mechanism of xCT remains unknown. To revealthe molecular mechanism, we performed single‐particle analyses of the xCT‐CD98hc complex. As wild‐type xCT‐CD98hc displayed poor stability and could not be purified to homogeneity, we applied a consensus mutagenesis approach to xCT. The consensus mutated construct exhibited increased stability as compared to the wild‐type, and enabled the cryoelectron microscopy (cryo‐EM) map to be obtained at 6.2 Å resolution by single‐particle analysis. The cryo‐EM map revealed sufficient electron density to assign secondary structures. In the xCT structure, the hash and arm domains are well resolved, whereas the bundle domain shows some flexibility. CD98hc is positioned next to the xCT transmembrane domain. This study provides the structural basis of xCT, and our consensus‐based strategy could represent a good choice toward solving unstable protein structures.
Collapse
Affiliation(s)
- Kazumasa Oda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yongchan Lee
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Pattama Wiriyasermkul
- Department of Collaborative Research for Bio-Molecular Dynamics, Nara Medical University, Nara, Japan
| | - Yoko Tanaka
- Department of Collaborative Research for Bio-Molecular Dynamics, Nara Medical University, Nara, Japan
| | - Mizuki Takemoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Keitaro Yamashita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shushi Nagamori
- Department of Collaborative Research for Bio-Molecular Dynamics, Nara Medical University, Nara, Japan
| | - Tomohiro Nishizawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
5
|
Sternke M, Tripp KW, Barrick D. The use of consensus sequence information to engineer stability and activity in proteins. Methods Enzymol 2020; 643:149-179. [PMID: 32896279 DOI: 10.1016/bs.mie.2020.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The goal of protein design is to create proteins that are stable, soluble, and active. Here we focus on one approach to protein design in which sequence information is used to create a "consensus" sequence. Such consensus sequences comprise the most common residue at each position in a multiple sequence alignment (MSA). After describing some general ideas that relate MSA and consensus sequences and presenting a statistical thermodynamic framework that relates consensus and non-consensus sequences to stability, we detail the process of designing a consensus sequence and survey reports of consensus design and characterization from the literature. Many of these consensus proteins retain native biological activities including ligand binding and enzyme activity. Remarkably, in most cases the consensus protein shows significantly higher stability than extant versions of the protein, as measured by thermal or chemical denaturation, consistent with the statistical thermodynamic model. To understand this stability increase, we compare various features of consensus sequences with the extant MSA sequences from which they were derived. Consensus sequences show enrichment in charged residues (most notably glutamate and lysine) and depletion of uncharged polar residues (glutamine, serine, and asparagine). Surprisingly, a survey of stability changes resulting from point substitutions show little correlation with residue frequencies at the corresponding positions within the MSA, suggesting that the high stability of consensus proteins may result from interactions among residue pairs or higher-order clusters. Whatever the source, the large number of reported successes demonstrates that consensus design is a viable route to generating active and in many cases highly stabilized proteins.
Collapse
Affiliation(s)
- Matt Sternke
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States; Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, United States
| | - Katherine W Tripp
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States
| | - Doug Barrick
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
6
|
Georgoulis A, Louka M, Mylonas S, Stavros P, Nounesis G, Vorgias CE. Consensus protein engineering on the thermostable histone-like bacterial protein HUs significantly improves stability and DNA binding affinity. Extremophiles 2020; 24:293-306. [PMID: 31980943 DOI: 10.1007/s00792-020-01154-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/06/2020] [Indexed: 11/28/2022]
Abstract
Consensus-based protein engineering strategy has been applied to various proteins and it can lead to the design of proteins with enhanced biological performance. Histone-like HUs comprise a protein family with sequence variety within a highly conserved 3D-fold. HU function includes compacting and regulating bacterial DNA in a wide range of biological conditions in bacteria. To explore the possible impact of consensus-based design in the thermodynamic stability of HU proteins, the approach was applied using a dataset of sequences derived from a group of 40 mesostable, thermostable, and hyperthermostable HUs. The consensus-derived HU protein was named HUBest, since it is expected to perform best. The synthetic HU gene was overexpressed in E. coli and the recombinant protein was purified. Subsequently, HUBest was characterized concerning its correct folding and thermodynamic stability, as well as its ability to interact with plasmid DNA. A substantial increase in HUBest stability at high temperatures is observed. HUBest has significantly improved biological performance at ambience temperature, presenting very low Kd values for binding plasmid DNA as indicated from the Gibbs energy profile of HUBest. This Kd may be associated to conformational changes leading to decreased thermodynamic stability and, therefore, higher flexibility at ambient temperature.
Collapse
Affiliation(s)
- Anastasios Georgoulis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece
| | - Maria Louka
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece
| | - Stratos Mylonas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece
| | - Philemon Stavros
- Biomolecular Physics Laboratory, INRASTES, National Centre for Scientific Research "Demokritos", 153 10, Agia Paraskevi, Greece
| | - George Nounesis
- Biomolecular Physics Laboratory, INRASTES, National Centre for Scientific Research "Demokritos", 153 10, Agia Paraskevi, Greece
| | - Constantinos E Vorgias
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece.
| |
Collapse
|
7
|
Chandler PG, Broendum SS, Riley BT, Spence MA, Jackson CJ, McGowan S, Buckle AM. Strategies for Increasing Protein Stability. Methods Mol Biol 2020; 2073:163-181. [PMID: 31612442 DOI: 10.1007/978-1-4939-9869-2_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The stability of wild-type proteins is often a hurdle to their practical use in research, industry, and medicine. The route to engineering stability of a protein of interest lies largely with the available data. Where high-resolution structural data is available, rational design, based on fundamental principles of protein chemistry, can improve protein stability. Recent advances in computational biology and the use of nonnatural amino acids have also provided novel rational methods for improving protein stability. Likewise, the explosion of sequence and structural data available in public databases, in combination with improvements in freely available computational tools, has produced accessible phylogenetic approaches. Trawling modern sequence databases can identify the thermostable homologs of a target protein, and evolutionary data can be quickly generated using available phylogenetic tools. Grafting features from those thermostable homologs or ancestors provides stability improvement through a semi-rational approach. Further, molecular techniques such as directed evolution have shown great promise in delivering designer proteins. These strategies are well documented and newly accessible to the molecular biologist, allowing for rapid enhancements of protein stability.
Collapse
Affiliation(s)
- Peter G Chandler
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sebastian S Broendum
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Blake T Riley
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Matthew A Spence
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Sheena McGowan
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
8
|
Jones BJ, Kan CNE, Luo C, Kazlauskas RJ. Consensus Finder web tool to predict stabilizing substitutions in proteins. Methods Enzymol 2020; 643:129-148. [DOI: 10.1016/bs.mie.2020.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
9
|
Heiby JC, Goretzki B, Johnson CM, Hellmich UA, Neuweiler H. Methionine in a protein hydrophobic core drives tight interactions required for assembly of spider silk. Nat Commun 2019; 10:4378. [PMID: 31558722 PMCID: PMC6763431 DOI: 10.1038/s41467-019-12365-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/05/2019] [Indexed: 01/21/2023] Open
Abstract
Web spiders connect silk proteins, so-called spidroins, into fibers of extraordinary toughness. The spidroin N-terminal domain (NTD) plays a pivotal role in this process: it polymerizes spidroins through a complex mechanism of dimerization. Here we analyze sequences of spidroin NTDs and find an unusually high content of the amino acid methionine. We simultaneously mutate all methionines present in the hydrophobic core of a spidroin NTD from a nursery web spider’s dragline silk to leucine. The mutated NTD is strongly stabilized and folds at the theoretical speed limit. The structure of the mutant is preserved, yet its ability to dimerize is substantially impaired. We find that side chains of core methionines serve to mobilize the fold, which can thereby access various conformations and adapt the association interface for tight binding. Methionine in a hydrophobic core equips a protein with the capacity to dynamically change shape and thus to optimize its function. Spider silk is of interest in material science research. Here the authors show that the tight binding of a spider silk protein domain relies on the amino acid methionine, which is abundant in the domain core where it facilitates dynamic shape adaption of the binding interface.
Collapse
Affiliation(s)
- Julia C Heiby
- Department of Biotechnology and Biophysics, Julius-Maximilians-University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Benedikt Goretzki
- Institute for Pharmacy and Biochemistry, Johannes-Gutenberg-University Mainz, Johann-Joachim Becherweg 30, 55128, Mainz, Germany.,Center for Biomolecular Magnetic Resonance, Goethe-University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Christopher M Johnson
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ute A Hellmich
- Institute for Pharmacy and Biochemistry, Johannes-Gutenberg-University Mainz, Johann-Joachim Becherweg 30, 55128, Mainz, Germany. .,Center for Biomolecular Magnetic Resonance, Goethe-University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany.
| | - Hannes Neuweiler
- Department of Biotechnology and Biophysics, Julius-Maximilians-University Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
10
|
A novel strategy to improve the thermostability of Penicillium camembertii mono- and di-acylglycerol lipase. Biochem Biophys Res Commun 2018; 500:639-644. [DOI: 10.1016/j.bbrc.2018.04.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 04/14/2018] [Indexed: 01/24/2023]
|
11
|
Buß O, Rudat J, Ochsenreither K. FoldX as Protein Engineering Tool: Better Than Random Based Approaches? Comput Struct Biotechnol J 2018; 16:25-33. [PMID: 30275935 PMCID: PMC6158775 DOI: 10.1016/j.csbj.2018.01.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/21/2017] [Accepted: 01/20/2018] [Indexed: 02/04/2023] Open
Abstract
Improving protein stability is an important goal for basic research as well as for clinical and industrial applications but no commonly accepted and widely used strategy for efficient engineering is known. Beside random approaches like error prone PCR or physical techniques to stabilize proteins, e.g. by immobilization, in silico approaches are gaining more attention to apply target-oriented mutagenesis. In this review different algorithms for the prediction of beneficial mutation sites to enhance protein stability are summarized and the advantages and disadvantages of FoldX are highlighted. The question whether the prediction of mutation sites by the algorithm FoldX is more accurate than random based approaches is addressed.
Collapse
Affiliation(s)
- Oliver Buß
- Institute of Process Engineering in Life Sciences, Section II: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | | |
Collapse
|
12
|
Grishin DV, Pokrovskaya MV, Podobed OV, Gladilina JA, Pokrovsky VS, Aleksandrova SS, Sokolov NN. [Prediction of protein thermostability from their primary structure: the current state and development factors]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 63:124-131. [PMID: 28414283 DOI: 10.18097/pbmc20176302124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The construction of proteins and peptides with desired properties, including resistance to high temperatures, as well as optimization of their amino acid composition, is an important and complex task, which attracts much attention in various branches of the basic sciences, and also in biomedicine and biotechnology. This raises the question: what method is more relevant for the at the pilot stage of research in order to estimate the influence of the planned amino acid substitutions on the thermostability of the resultant protein construct? In this brief review we have classified existing basic practical and theoretical approaches used in studies and predicting the thermal stability of native and recombinant polypeptides. Particular attention has been paid to the predictive potential of statistical methods for studying the thermodynamic parameters of the primary protein structure and prospects of their use.
Collapse
Affiliation(s)
- D V Grishin
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - O V Podobed
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | | | - N N Sokolov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
13
|
Porebski BT, Keleher S, Hollins JJ, Nickson AA, Marijanovic EM, Borg NA, Costa MGS, Pearce MA, Dai W, Zhu L, Irving JA, Hoke DE, Kass I, Whisstock JC, Bottomley SP, Webb GI, McGowan S, Buckle AM. Smoothing a rugged protein folding landscape by sequence-based redesign. Sci Rep 2016; 6:33958. [PMID: 27667094 PMCID: PMC5036219 DOI: 10.1038/srep33958] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/01/2016] [Indexed: 11/09/2022] Open
Abstract
The rugged folding landscapes of functional proteins puts them at risk of misfolding and aggregation. Serine protease inhibitors, or serpins, are paradigms for this delicate balance between function and misfolding. Serpins exist in a metastable state that undergoes a major conformational change in order to inhibit proteases. However, conformational labiality of the native serpin fold renders them susceptible to misfolding, which underlies misfolding diseases such as α1-antitrypsin deficiency. To investigate how serpins balance function and folding, we used consensus design to create conserpin, a synthetic serpin that folds reversibly, is functional, thermostable, and polymerization resistant. Characterization of its structure, folding and dynamics suggest that consensus design has remodeled the folding landscape to reconcile competing requirements for stability and function. This approach may offer general benefits for engineering functional proteins that have risky folding landscapes, including the removal of aggregation-prone intermediates, and modifying scaffolds for use as protein therapeutics.
Collapse
Affiliation(s)
- Benjamin T Porebski
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Shani Keleher
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Jeffrey J Hollins
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Adrian A Nickson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Emilia M Marijanovic
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Natalie A Borg
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Mauricio G S Costa
- Programa de Computação Científica, Fundação Oswaldo Cruz, 21949900 Rio de Janeiro, Brazil
| | - Mary A Pearce
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Weiwen Dai
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Liguang Zhu
- Faculty of Information Technology, Monash University, Clayton, Victoria 3800, Australia
| | - James A Irving
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - David E Hoke
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Itamar Kass
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - James C Whisstock
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Stephen P Bottomley
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Geoffrey I Webb
- Faculty of Information Technology, Monash University, Clayton, Victoria 3800, Australia
| | - Sheena McGowan
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Ashley M Buckle
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
14
|
Abstract
A popular and successful strategy in semi-rational design of protein stability is the use of evolutionary information encapsulated in homologous protein sequences. Consensus design is based on the hypothesis that at a given position, the respective consensus amino acid contributes more than average to the stability of the protein than non-conserved amino acids. Here, we review the consensus design approach, its theoretical underpinnings, successes, limitations and challenges, as well as providing a detailed guide to its application in protein engineering.
Collapse
Affiliation(s)
- Benjamin T Porebski
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Faculty of Medicine, Monash University, Clayton, Victoria 3800, Australia Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ashley M Buckle
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Faculty of Medicine, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
15
|
Porebski BT, Nickson AA, Hoke DE, Hunter MR, Zhu L, McGowan S, Webb GI, Buckle AM. Structural and dynamic properties that govern the stability of an engineered fibronectin type III domain. Protein Eng Des Sel 2015; 28:67-78. [PMID: 25691761 PMCID: PMC4330816 DOI: 10.1093/protein/gzv002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Consensus protein design is a rapid and reliable technique for the improvement of protein stability, which relies on the use of homologous protein sequences. To enhance the stability of a fibronectin type III (FN3) domain, consensus design was employed using an alignment of 2123 sequences. The resulting FN3 domain, FN3con, has unprecedented stability, with a melting temperature >100°C, a ΔGD−N of 15.5 kcal mol−1 and a greatly reduced unfolding rate compared with wild-type. To determine the underlying molecular basis for stability, an X-ray crystal structure of FN3con was determined to 2.0 Å and compared with other FN3 domains of varying stabilities. The structure of FN3con reveals significantly increased salt bridge interactions that are cooperatively networked, and a highly optimized hydrophobic core. Molecular dynamics simulations of FN3con and comparison structures show the cooperative power of electrostatic and hydrophobic networks in improving FN3con stability. Taken together, our data reveal that FN3con stability does not result from a single mechanism, but rather the combination of several features and the removal of non-conserved, unfavorable interactions. The large number of sequences employed in this study has most likely enhanced the robustness of the consensus design, which is now possible due to the increased sequence availability in the post-genomic era. These studies increase our knowledge of the molecular mechanisms that govern stability and demonstrate the rising potential for enhancing stability via the consensus method.
Collapse
Affiliation(s)
- Benjamin T Porebski
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Adrian A Nickson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - David E Hoke
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Morag R Hunter
- Centre for Brain Research and Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Liguang Zhu
- Faculty of Information Technology, Monash University, Clayton, VIC 3800, Australia
| | - Sheena McGowan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Geoffrey I Webb
- Faculty of Information Technology, Monash University, Clayton, VIC 3800, Australia
| | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
16
|
The consensus-based approach for gene/enzyme replacement therapies and crystallization strategies: the case of human alanine-glyoxylate aminotransferase. Biochem J 2014; 462:453-63. [PMID: 24957194 DOI: 10.1042/bj20140250] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Protein stability is a fundamental issue in biomedical and biotechnological applications of proteins. Among these applications, gene- and enzyme-replacement strategies are promising approaches to treat inherited diseases that may benefit from protein engineering techniques, even though these beneficial effects have been largely unexplored. In the present study we apply a sequence-alignment statistics procedure (consensus-based approach) to improve the activity and stability of the human AGT (alanine-glyoxylate aminotransferase) protein, an enzyme which causes PH1 (primary hyperoxaluria type I) upon mutation. By combining only five consensus mutations, we obtain a variant (AGT-RHEAM) with largely enhanced in vitro thermal and kinetic stability, increased activity, and with no side effects on foldability and peroxisomal targeting in mammalian cells. The structure of AGT-RHEAM reveals changes at the dimer interface and improved electrostatic interactions responsible for increased kinetic stability. Consensus-based variants maintained the overall protein fold, crystallized more easily and improved the expression as soluble proteins in two different systems [AGT and CIPK24 (CBL-interacting serine/threonine-protein kinase) SOS2 (salt-overly-sensitive 2)]. Thus the consensus-based approach also emerges as a simple and generic strategy to increase the crystallization success for hard-to-get protein targets as well as to enhance protein stability and function for biomedical applications.
Collapse
|
17
|
Kawahara-Kobayashi A, Hitotsuyanagi M, Amikura K, Kiga D. Experimental evolution of a green fluorescent protein composed of 19 unique amino acids without tryptophan. ORIGINS LIFE EVOL B 2014; 44:75-86. [PMID: 25399308 DOI: 10.1007/s11084-014-9371-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 09/25/2014] [Indexed: 10/24/2022]
Abstract
At some stage of evolution, genes of organisms may have encoded proteins that were synthesized using fewer than 20 unique amino acids. Similar to evolution of the natural 19-amino-acid proteins GroEL/ES, proteins composed of 19 unique amino acids would have been able to evolve by accumulating beneficial mutations within the 19-amino-acid repertoire encoded in an ancestral genetic code. Because Trp is thought to be the last amino acid included in the canonical 20-amino-acid repertoire, this late stage of protein evolution could be mimicked by experimental evolution of 19-amino-acid proteins without tryptophan (Trp). To further understand the evolution of proteins, we tried to mimic the evolution of a 19-amino-acid protein involving the accumulation of beneficial mutations using directed evolution by random mutagenesis on the whole targeted gene sequence. We created active 19-amino-acid green fluorescent proteins (GFPs) without Trp from a poorly fluorescent 19-amino-acid mutant, S1-W57F, by using directed evolution with two rounds of mutagenesis and selection. The N105I and S205T mutations showed beneficial effects on the S1-W57F mutant. When these two mutations were combined on S1-W57F, we observed an additive effect on the fluorescence intensity. In contrast, these mutations showed no clear improvement individually or in combination on GFPS1, which is the parental GFP mutant composed of 20 amino acids. Our results provide an additional example for the experimental evolution of 19-amino-acid proteins without Trp, and would help understand the mechanisms underlying the evolution of 19-amino-acid proteins. (236 words).
Collapse
Affiliation(s)
- Akio Kawahara-Kobayashi
- Department of Computational Intelligence and Systems Science, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503, Japan
| | | | | | | |
Collapse
|
18
|
Socha RD, Tokuriki N. Modulating protein stability - directed evolution strategies for improved protein function. FEBS J 2013; 280:5582-95. [PMID: 23711026 DOI: 10.1111/febs.12354] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/16/2013] [Accepted: 05/20/2013] [Indexed: 11/29/2022]
Abstract
Protein engineering is widely used to generate proteins with novel or enhanced function. However, manipulating protein function in the laboratory can prove laborious, protracted and challenging. Recent developments in the understanding of protein evolutionary dynamics have unveiled the full extent by which the evolution of function is limited by protein stability - a revelation that may be applied to protein engineering on a whole. Thus, strategies that modulate protein stability and reduce its constraining effects may facilitate the engineering of protein function. A combinatorial approach involving the introduction of compensatory mutations and manipulation of the stability threshold by chaperone buffering during directed evolution can improve the functional adaptation of a protein, thereby fostering our ability to attain ever-more ambitious protein functions in the laboratory.
Collapse
Affiliation(s)
- Raymond D Socha
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
19
|
Komor RS, Romero PA, Xie CB, Arnold FH. Highly thermostable fungal cellobiohydrolase I (Cel7A) engineered using predictive methods. Protein Eng Des Sel 2012; 25:827-33. [PMID: 22961332 DOI: 10.1093/protein/gzs058] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Building on our previous efforts to generate thermostable chimeric fungal cellobiohydrolase I (CBH I, also known as Cel7A) cellulases by structure-guided recombination, we used FoldX and a 'consensus' sequence approach to identify individual mutations present in the five homologous parent CBH I enzymes which further stabilize the chimeras. Using the FoldX force field, we calculated the effect on ΔG(Folding) of each candidate mutation in a number of CBH I structures and chose those predicted to be stabilizing in multiple structures. With an alignment of 41 CBH I sequences, we also used amino acid frequencies at each candidate position to calculate predicted effects on ΔG(Folding). A combination of mutations chosen using these methods increased the T(50) of the most thermostable chimera by an additional 4.7°C, to yield a CBH I with T(50) of 72.1°C, which is 9.2°C higher than that of the most stable native CBH I, from Talaromyces emersonii. This increased stability resulted in a 10°C increase in the optimal temperature for activity, to 65°C, and a 50% increase in total sugar production from crystalline cellulose at the optimal temperature, compared with native T.emersonii CBH I.
Collapse
Affiliation(s)
- Russell S Komor
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
20
|
Jacobs SA, Diem MD, Luo J, Teplyakov A, Obmolova G, Malia T, Gilliland GL, O'Neil KT. Design of novel FN3 domains with high stability by a consensus sequence approach. Protein Eng Des Sel 2012; 25:107-17. [PMID: 22240293 DOI: 10.1093/protein/gzr064] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The use of consensus design to produce stable proteins has been applied to numerous structures and classes of proteins. Here, we describe the engineering of novel FN3 domains from two different proteins, namely human fibronectin and human tenascin-C, as potential alternative scaffold biotherapeutics. The resulting FN3 domains were found to be robustly expressed in Escherichia coli, soluble and highly stable, with melting temperatures of 89 and 78°C, respectively. X-ray crystallography was used to confirm that the consensus approach led to a structure consistent with the FN3 design despite having only low-sequence identity to natural FN3 domains. The ability of the Tenascin consensus domain to withstand mutations in the loop regions connecting the β-strands was investigated using alanine scanning mutagenesis demonstrating the potential for randomization in these regions. Finally, rational design was used to produce point mutations that significantly increase the stability of one of the consensus domains. Together our data suggest that consensus FN3 domains have potential utility as alternative scaffold therapeutics.
Collapse
Affiliation(s)
- Steven A Jacobs
- Janssen Research & Development, L.L.C., Radnor, PA 19087, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Akanuma S, Iwami S, Yokoi T, Nakamura N, Watanabe H, Yokobori SI, Yamagishi A. Phylogeny-Based Design of a B-Subunit of DNA Gyrase and Its ATPase Domain Using a Small Set of Homologous Amino Acid Sequences. J Mol Biol 2011; 412:212-25. [DOI: 10.1016/j.jmb.2011.07.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 10/17/2022]
|
22
|
Abstract
It has been known for more than 35 years that, during evolution, new proteins are formed by gene duplications, sequence and structural divergence and, in many cases, gene combinations. The genome projects have produced complete, or almost complete, descriptions of the protein repertoires of over 600 distinct organisms. Analyses of these data have dramatically increased our understanding of the formation of new proteins. At the present time, we can accurately trace the evolutionary relationships of about half the proteins found in most genomes, and it is these proteins that we discuss in the present review. Usually, the units of evolution are protein domains that are duplicated, diverge and form combinations. Small proteins contain one domain, and large proteins contain combinations of two or more domains. Domains descended from a common ancestor are clustered into superfamilies. In most genomes, the net growth of superfamily members means that more than 90% of domains are duplicates. In a section on domain duplications, we discuss the number of currently known superfamilies, their size and distribution, and superfamily expansions related to biological complexity and to specific lineages. In a section on divergence, we describe how sequences and structures diverge, the changes in stability produced by acceptable mutations, and the nature of functional divergence and selection. In a section on domain combinations, we discuss their general nature, the sequential order of domains, how combinations modify function, and the extraordinary variety of the domain combinations found in different genomes. We conclude with a brief note on other forms of protein evolution and speculations of the origins of the duplication, divergence and combination processes.
Collapse
|
23
|
Kiss C, Temirov J, Chasteen L, Waldo GS, Bradbury AR. Directed evolution of an extremely stable fluorescent protein. Protein Eng Des Sel 2009; 22:313-23. [DOI: 10.1093/protein/gzp006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
24
|
Leemhuis H, Nightingale KP, Hollfelder F. Directed evolution of a histone acetyltransferase--enhancing thermostability, whilst maintaining catalytic activity and substrate specificity. FEBS J 2008; 275:5635-47. [PMID: 18959749 DOI: 10.1111/j.1742-4658.2008.06689.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Histone acetylation plays an integral role in the epigenetic regulation of gene expression. Transcriptional activity reflects the recruitment of opposing classes of enzymes to promoter elements; histone acetyltransferases (EC 2.3.1.48) that deposit acetyl marks at a subset of histone residues and histone deacetylases that remove them. Many histone acetyltransferases are difficult to study in solution because of their limited stability once purified. We have developed a directed evolution protocol that allows the screening of hundreds of histone acetyltransferase mutants for histone acetylating activity, and used this to enhance the thermostability of the human P/CAF histone acetyltransferase. Two rounds of directed evolution significantly stabilized the enzyme without lowering the catalytic efficiency and substrate specificity of the enzyme. Twenty-four variants with higher thermostability were identified. Detailed analysis revealed twelve single amino acid mutants that were found to possess a higher thermostability. The residues affected are scattered over the entire protein structure, and are different from mutations predicted by sequence alignment approaches, suggesting that sequence comparison and directed evolution methods are complementary strategies in engineering increased protein thermostability. The stabilizing mutations are predominately located at surface of the enzyme, suggesting that the protein's surface is important for stability. The directed evolution approach described in the present study is easily adapted to other histone modifying enzymes, requiring only appropriate peptide substrates and antibodies, which are available from commercial suppliers.
Collapse
Affiliation(s)
- Hans Leemhuis
- Department of Biochemistry, University of Cambridge, UK
| | | | | |
Collapse
|
25
|
Bioinformatic method for protein thermal stabilization by structural entropy optimization. Proc Natl Acad Sci U S A 2008; 105:9594-7. [PMID: 18621726 DOI: 10.1073/pnas.0800938105] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Engineering proteins for higher thermal stability is an important and difficult challenge. We describe a bioinformatic method incorporating sequence alignments to redesign proteins to be more stable through optimization of local structural entropy. Using this method, improved configurational entropy (ICE), we were able to design more stable variants of a mesophilic adenylate kinase with only the sequence information of one psychrophilic homologue. The redesigned proteins display considerable increases in their thermal stabilities while still retaining catalytic activity. ICE does not require a three-dimensional structure or a large number of homologous sequences, indicating a broad applicability of this method. Our results also highlight the importance of entropy in the stability of protein structures.
Collapse
|
26
|
Bershtein S, Goldin K, Tawfik DS. Intense neutral drifts yield robust and evolvable consensus proteins. J Mol Biol 2008; 379:1029-44. [PMID: 18495157 DOI: 10.1016/j.jmb.2008.04.024] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 04/08/2008] [Accepted: 04/09/2008] [Indexed: 11/27/2022]
Abstract
What changes occur when a natural protein that had been under low mutation rates is subjected to a neutral drift at high mutational loads, thus generating genetically diverse (polymorphic) gene ensembles that all maintain the protein's original function and structure? To address this question we subjected large populations of TEM-1 beta-lactamase to a prolonged neutral drift, applying high mutation rates and purifying selection to maintain TEM-1's existing penicillinase activity. Purging of deleterious mutations and enrichment of beneficial ones maintained the sequence of these ensembles closer to TEM-1's family consensus and inferred ancestor. In particular, back-to-consensus/ancestor mutations that increase TEM-1's kinetic and thermodynamic stability were enriched. These acted as global suppressors and enabled the tolerance of a broad range of deleterious mutations, thus further increasing the genetic diversity of the drifting populations. The probability of a new function emerging (cefotaxime degradation) was also substantially increased in these ensembles owing to the presence of many gene variants carrying the global suppressors. Our findings indicate the unique features of large, polymorphic neutral ensembles generated under high mutational loads and prompt the speculation that the progenitors of today's proteins may have evolved under high mutational loads. The results also suggest that predictable back-to-consensus/ancestor changes can be used in the laboratory to generate highly diverse and evolvable gene libraries.
Collapse
Affiliation(s)
- Shimon Bershtein
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | |
Collapse
|
27
|
Jones LM, Yang W, Maniccia AW, Harrison A, van der Merwe PA, Yang JJ. Rational design of a novel calcium-binding site adjacent to the ligand-binding site on CD2 increases its CD48 affinity. Protein Sci 2008; 17:439-49. [PMID: 18287277 PMCID: PMC2248323 DOI: 10.1110/ps.073328208] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 12/04/2007] [Accepted: 12/07/2007] [Indexed: 10/22/2022]
Abstract
Electrostatic interactions are important for molecular recognition processes including Ca2+-binding and cell adhesion. To understand these processes, we have successfully introduced a novel Ca2+-binding site into the non-Ca2+-dependent cell adhesion protein CD2 using our criteria that are specifically tailored to the structural and functional properties of the protein environment and charged adhesion surface. This designed site with ligand residues exclusively from the beta-sheets selectively binds to Ca2+ and Ln3+ over other mono- and divalent cations. While Ca2+ and Ln3+ binding specifically alters the local environment of the designed Ca2+-binding site, the designed protein undergoes a significantly smaller conformation change compared with those observed in naturally occurring Ca2+-binding sites that are composed of at least part of the flexible loop and helical regions. In addition, the CD2-CD48-binding affinity increased approximately threefold after protein engineering, suggesting that the cell adhesion of CD2 can be modulated by altering the local electrostatic environment. The study provides site-specific information for regulating cell adhesion within CD2 and gives insight into the structural factors required for Ca2+-modulated biological processes.
Collapse
Affiliation(s)
- Lisa M Jones
- Department of Chemistry, Center for Drug Design and Biotechnology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | | | |
Collapse
|
28
|
Max KEA, Wunderlich M, Roske Y, Schmid FX, Heinemann U. Optimized variants of the cold shock protein from in vitro selection: structural basis of their high thermostability. J Mol Biol 2007; 369:1087-97. [PMID: 17481655 DOI: 10.1016/j.jmb.2007.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 04/03/2007] [Accepted: 04/04/2007] [Indexed: 11/20/2022]
Abstract
The bacterial cold shock proteins (Csp) are widely used as models for the experimental and computational analysis of protein stability. In a previous study, in vitro evolution was employed to identify strongly stabilizing mutations in Bs-CspB from Bacillus subtilis. The best variant found by this approach contained the mutations M1R, E3K and K65I, which raised the midpoint of thermal unfolding of Bs-CspB from 53.8 degrees C to 83.7 degrees C, and increased the Gibbs free energy of stabilization by 20.9 kJ mol(-1). Another selected variant with the two mutations A46K and S48R was stabilized by 11.1 kJ mol(-1). To elucidate the molecular basis of these stabilizations, we determined the crystal structures of these two Bs-CspB variants. The mutated residues are generally well ordered and provide additional stabilizing interactions, such as charge interactions, additional hydrogen bonds and improved side-chain packing. Several mutations improve the electrostatic interactions, either by the removal of unfavorable charges (E3K) or by compensating their destabilizing interactions (A46K, S48R). The stabilizing mutations are clustered at a contiguous surface area of Bs-CspB, which apparently is critically important for the stability of the beta-barrel structure but not well optimized in the wild-type protein.
Collapse
Affiliation(s)
- Klaas E A Max
- Makromolekulare Strukturen und Interaktionen, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | | | | | | | | |
Collapse
|
29
|
Dai M, Fisher HE, Temirov J, Kiss C, Phipps ME, Pavlik P, Werner JH, Bradbury ARM. The creation of a novel fluorescent protein by guided consensus engineering. Protein Eng Des Sel 2007; 20:69-79. [PMID: 17277006 DOI: 10.1093/protein/gzl056] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Consensus engineering has been used to increase the stability of a number of different proteins, either by creating consensus proteins from scratch or by modifying existing proteins so that their sequences more closely match a consensus sequence. In this paper we describe the first application of consensus engineering to the ab initio creation of a novel fluorescent protein. This was based on the alignment of 31 fluorescent proteins with >62% homology to monomeric Azami green (mAG) protein, and used the sequence of mAG to guide amino acid selection at positions of ambiguity. This consensus green protein is extremely well expressed, monomeric and fluorescent with red shifted absorption and emission characteristics compared to mAG. Although slightly less stable than mAG, it is better expressed and brighter under the excitation conditions typically used in single molecule fluorescence spectroscopy or confocal microscopy. This study illustrates the power of consensus engineering to create stable proteins using the subtle information embedded in the alignment of similar proteins and shows that the benefits of this approach may extend beyond stability.
Collapse
Affiliation(s)
- Mingha Dai
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Sánchez IE, Tejero J, Gómez-Moreno C, Medina M, Serrano L. Point mutations in protein globular domains: contributions from function, stability and misfolding. J Mol Biol 2006; 363:422-32. [PMID: 16978645 DOI: 10.1016/j.jmb.2006.08.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 07/25/2006] [Accepted: 08/08/2006] [Indexed: 11/25/2022]
Abstract
Several contrasting hypotheses have been formulated about the influence of functional and conformational properties, like stability and avoidance of misfolding, on the evolution of protein globular domains. Selection at functional sites has been suggested to be detrimental to stability or coupled to it. Avoidance of misfolding may be achieved by discarding misfolding-prone sequences or by maintaining a stable native state and thus destabilizing partially or fully unfolded states from which misfolding can take place. We have performed a hierarchical analysis of a large database of point mutations to dissect the relative contributions of function, stability and misfolding in the evolution of natural sequences. We show that at catalytic sites, selection for function overrules selection for stability but find no evidence for an anticorrelation between function and stability. Selection for stability plays a secondary role at binding sites, but is not fully coupled to selection for function. Remarkably, we did not find a selective pressure against misfolding-prone sequences in globular proteins at the level of individual positions. We suggest that such a selection would compromise native-state stability due to a correlation between the stabilities of native and misfolded states. Stabilization of the native state is the most frequent way in which natural proteins avoid misfolding.
Collapse
Affiliation(s)
- I E Sánchez
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
31
|
Polizzi KM, Chaparro-Riggers JF, Vazquez-Figueroa E, Bommarius AS. Structure-guided consensus approach to create a more thermostable penicillin G acylase. Biotechnol J 2006; 1:531-6. [PMID: 16892288 DOI: 10.1002/biot.200600029] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The thermostabilization of penicillin G acylase (PGA) is a difficult problem due to the large size of the protein and its complex maturation process. We developed a data-driven protein design method that requires fewer homologous sequences than the traditional consensus approach and utilizes structural information to limit the number of variants created. Approximately 50% of our 21 single-point mutants were found experimentally to be more thermostable than the wild-type PGA, two had almost threefold longer half-life at 50 degrees C, with very little effect on activity. An analysis of four programs that predict the thermostability conferred by point mutations shows little agreement between the programs and with the experimental data, emphasizing that the chosen stabilizing mutations are very difficult to predict, but that our data-driven design method should prove useful.
Collapse
Affiliation(s)
- Karen M Polizzi
- School of Chemical & Biomolecular Engineering, Parker H. Petit Institute of Bioengineering and Bioscience, Atlanta, GA 30332-0363, USA
| | | | | | | |
Collapse
|
32
|
Watanabe K, Ohkuri T, Yokobori SI, Yamagishi A. Designing thermostable proteins: ancestral mutants of 3-isopropylmalate dehydrogenase designed by using a phylogenetic tree. J Mol Biol 2005; 355:664-74. [PMID: 16309701 DOI: 10.1016/j.jmb.2005.10.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 10/05/2005] [Accepted: 10/05/2005] [Indexed: 11/16/2022]
Abstract
We have recently developed a new method for designing thermostable proteins using phylogenetic trees of enzymes. In this study, we investigated a method for designing proteins with improved stability using 3-isopropylmalate dehydrogenase (IPMDH) from Thermus thermophilus as a model enzyme. We designed 12 mutant enzymes, each having an ancestral amino acid residue that was present in the common ancestor of Bacteria and Archaea. At least six of the 12 ancestral mutants tested showed thermal stability higher than that of the original enzyme. The results supported the hyperthermophilic universal ancestor hypothesis. The effect of ancestral residues on IPMDHs of several organisms and on the related enzyme isocitrate dehydrogenase was summarised and analysed. The effect of an ancestral residue on thermostability did not depend on the degree of conservation of the residue at the site, suggesting that the stabilisation of these mutant proteins is not related to sequence conservation but to the antiquity of the introduced residues. The results suggest also that this method could be an efficient way of designing mutant enzymes with higher thermostability based only on the primary structure and a phylogenetic tree.
Collapse
Affiliation(s)
- Keiko Watanabe
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | |
Collapse
|
33
|
Flores H, Ellington AD. A modified consensus approach to mutagenesis inverts the cofactor specificity of Bacillus stearothermophilus lactate dehydrogenase. Protein Eng Des Sel 2005; 18:369-77. [PMID: 16012175 DOI: 10.1093/protein/gzi043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lactate dehydrogenase from Bacillus stearothermophilus is specific for NAD+. There have been several attempts to alter the cofactor specificity of this enzyme, but these have yielded enzymes with relatively low activities that still largely prefer NAD+. A modified consensus approach was used to create a library of phylogenetically preferred amino acids situated near the cofactor binding site, and variants were screened for their ability to utilize NMN+. A triple mutant (Mut31) was discovered that proved to be more catalytically efficient than wild-type. Mut31 was also better at utilizing NAD+ than the wild-type enzyme and was weakly active with NADP+ and NMN+. An analysis of single amino acid substitutions suggested that all three mutations worked in a concerted fashion to yield robust cofactor utilization. When two previously identified amino acid substitutions were introduced into the Mut31 background, the resultant quintuply substituted enzyme not only utilized NADP+ far better than the wild-type enzyme, it actually inverted its preference for NAD+ and NADP+.
Collapse
Affiliation(s)
- Humberto Flores
- Instituto de Biotecnología/UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62271, México
| | | |
Collapse
|
34
|
Campos LA, Garcia-Mira MM, Godoy-Ruiz R, Sanchez-Ruiz JM, Sancho J. Do Proteins Always Benefit from a Stability Increase? Relevant and Residual Stabilisation in a Three-state Protein by Charge Optimisation. J Mol Biol 2004; 344:223-37. [PMID: 15504413 DOI: 10.1016/j.jmb.2004.09.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 08/31/2004] [Accepted: 09/20/2004] [Indexed: 11/28/2022]
Abstract
The vast majority of our knowledge on protein stability arises from the study of simple two-state models. However, proteins displaying equilibrium intermediates under certain conditions abound and it is unclear whether the energetics of native/intermediate equilibria is well represented in current knowledge. We consider here that the overall conformational stability of three-state proteins is made of a "relevant" term and a "residual" one, corresponding to the free energy differences of the native to intermediate (N-to-I) and intermediate to denatured (I-to-D) equilibria, respectively. The N-to-I free energy difference is considered to be the relevant stability because protein-unfolding intermediates are likely devoid of biological activity. We use surface charge optimisation to first increase the overall (N-to-D) stability of a model three-state protein (apoflavodoxin) and then investigate whether the stabilisation obtained is realised into relevant or into residual stability. Most of the mutations designed from electrostatic calculations or from simple sequence conservation analysis produce large increases in the overall stability of the protein. However, in most cases, this simply leads to similarly large increases of the residual stability. Two mutations, nevertheless, show a different trend and increase the relevant stability of the protein substantially. When all the mutations are mapped onto the structure of the apoflavodoxin thermal-unfolding intermediate (obtained independently by equilibrium phi-analysis and NMR) they cluster perfectly so that the mutations increasing the relevant stability appear in the small unstructured region of the intermediate and the others in the native-like region. This illustrates the need for specific investigation of N-to-I equilibria and the structure of protein intermediates, and indicates that it is possible to rationally stabilise a protein against partial unfolding once the structure of the intermediate conformation is known, even if at low resolution.
Collapse
Affiliation(s)
- Luis A Campos
- Biocomputation and Complex Systems Physics Institute, University of Zaragoza, 50009 Zaragoza, Spain
| | | | | | | | | |
Collapse
|
35
|
Abstract
Consensus design is a valuable protein-engineering method that is based on statistical information derived from sequence alignments of homologous proteins. Recently, consensus design was adapted to repeat proteins. We discuss the potential of this novel repeat-based approach for the design of consensus repeat proteins and repeat protein libraries and summarize recent results from such experiments.
Collapse
Affiliation(s)
- Patrik Forrer
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
36
|
Shimamura T, Koike-Takeshita A, Yokoyama K, Masui R, Murai N, Yoshida M, Taguchi H, Iwata S. Crystal Structure of the Native Chaperonin Complex from Thermus thermophilus Revealed Unexpected Asymmetry at the cis-Cavity. Structure 2004; 12:1471-80. [PMID: 15296740 DOI: 10.1016/j.str.2004.05.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 05/05/2004] [Accepted: 05/18/2004] [Indexed: 11/23/2022]
Abstract
The chaperonins GroEL and GroES are essential mediators of protein folding. GroEL binds nonnative protein, ATP, and GroES, generating a ternary complex in which protein folding occurs within the cavity capped by GroES (cis-cavity). We determined the crystal structure of the native GroEL-GroES-ADP homolog from Thermus thermophilus, with substrate proteins in the cis-cavity, at 2.8 A resolution. Twenty-four in vivo substrate proteins within the cis-cavity were identified from the crystals. The structure around the cis-cavity, which encapsulates substrate proteins, shows significant differences from that observed for the substrate-free Escherichia coli GroEL-GroES complex. The apical domain around the cis-cavity of the Thermus GroEL-GroES complex exhibits a large deviation from the 7-fold symmetry. As a result, the GroEL-GroES interface differs considerably from the previously reported E. coli GroEL-GroES complex, including a previously unknown contact between GroEL and GroES.
Collapse
Affiliation(s)
- Tatsuro Shimamura
- Department of Biological Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Demarest SJ, Rogers J, Hansen G. Optimization of the Antibody CH3 Domain by Residue Frequency Analysis of IgG Sequences. J Mol Biol 2004; 335:41-8. [PMID: 14659738 DOI: 10.1016/j.jmb.2003.10.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In an attempt to enhance the overall assembly, yield and half-life of recombinant antibody proteins, we have cloned and expressed several IgG1 C(H)3 domains and examined their folding/refolding characteristics. We utilized a cytoplasmic bacterial expression system with a thioredoxin reductase knock-out strain of BL21(DE3) to produce bovine, murine and human C(H)3. Under identical conditions, expression of bovine C(H)3 resulted consistently in the highest yields of properly folded/oxidized protein. Circular dichroism and fluorescence experiments demonstrate that oxidized bovine and murine C(H)3 have surprisingly similar structures and stabilities, considering the marginal sequence conservation between the two molecules. Residue frequency analysis using a limited data set of 36 unique Fc sequences originating from 19 different mammalian species targeted five specific sites for optimization within bovine C(H)3. Combination of three of these mutants increased the thermal stability of the molecule to 86 degrees C. Comparison of this approach to similar studies using larger sequence databases and/or different selection criteria suggests sequence database design can increase the success rate for identifying residue sites worth optimizing. This optimized C(H)3 domain can be used as a particularly stable platform for functional design and can be grafted into full-length antibody sequences to enhance their thermodynamic parameters and shelf-life.
Collapse
Affiliation(s)
- Stephen J Demarest
- Torrey Mesa Research Institute, 3115 Merryfield Row, San Diego, CA 92130, USA.
| | | | | |
Collapse
|
38
|
Steipe B. Consensus-Based Engineering of Protein Stability: From Intrabodies to Thermostable Enzymes. Methods Enzymol 2004; 388:176-86. [PMID: 15289071 DOI: 10.1016/s0076-6879(04)88016-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Boris Steipe
- University of Toronto, Program in Proteomics and Bioinformatics, Department of Biochemistry, Ontario, Canada
| |
Collapse
|
39
|
Cammett TJ, Luo L, Peng ZY. Design and characterization of a hyperstable p16INK4a that restores Cdk4 binding activity when combined with oncogenic mutations. J Mol Biol 2003; 327:285-97. [PMID: 12614625 DOI: 10.1016/s0022-2836(03)00043-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cyclin-dependent kinase inhibitor p16(INK4a) is the founding member of the INK4 family of tumor suppressors capable of arresting mammalian cell division. Missense mutations in the p16(INK4a) gene (INK4a/CDKN2A/MTS1) are strongly linked to several types of human cancer. These mutations are evenly distributed throughout this small, ankyrin repeat protein and the majority of them disrupt the native secondary and/or tertiary structure, leading to protein unfolding, aggregation and loss of function. We report here the use of multiple stabilizing substitutions to increase the stability of p16(INK4a) and furthermore, to restore Cdk4 binding activity of several defective, cancer-related mutant proteins. Stabilizing substitutions were predicted using four different techniques. The three most effective substitutions were combined to create a hyperstable p16(INK4a) variant that is 1.4 kcal/mol more stable than wild-type. This engineered construct is monomeric in solution with wild-type-like secondary and tertiary structure and cyclin-dependent kinase 4 binding activity. Interestingly, these hyperstable substitutions, when combined with oncogenic mutations R24P, P81L or V126D, can significantly restore Cdk4 binding activity, despite the divergent features of each destabilizing mutation. Extensive biophysical studies indicate that the hyperstable substitutions enhance the binding activity of mutant p16 through several different mechanisms, including an increased amount of secondary structure and thermostability, reduction in exposed hydrophobic surface(s) and/or a reduced tendency to aggregate. This apparent global suppressor effect suggests that increasing the thermodynamic stability of p16 can be used as a general strategy to restore the biological activity to defective mutants of this important tumor suppressor protein.
Collapse
Affiliation(s)
- Tobin J Cammett
- Department of Biochemistry, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | |
Collapse
|
40
|
Singh S, Ahuja N, Chauhan V, Rajasekaran E, Mohsin Waheed S, Bhat R, Bhatnagar R. Gln277 and Phe554 residues are involved in thermal inactivation of protective antigen of Bacillus anthracis. Biochem Biophys Res Commun 2002; 296:1058-62. [PMID: 12207879 DOI: 10.1016/s0006-291x(02)02049-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Protective antigen (PA) is the main component of all the vaccines against anthrax. The currently available vaccines have traces of other proteins that contribute to its reactogenicity. Thus, purified PA is recommended for human vaccination. PA loses its biological activity within 48h at 37 degrees C and its thermolability has been a cause of concern as accidental exposure to higher temperatures during transportation or storage could decrease its efficacy. In the present study, we have used protein engineering approach to increase the thermostability of PA by mutating amino acid residues on the surface as well as the interior of the protein. After screening several mutants, the mutants Gln277Ala and Phe554Ala have been found to be more thermostable than the wild-type PA. Gln277Ala retains approximately 45% and Phe554Ala retains approximately 90% activity, even after incubation at 37 degrees C for 48h while in the same period wild-type PA loses its biological activity completely. It is the first report of increasing thermostability of PA using site-directed mutagenesis. Generation of such mutants could pave the way for better anthrax vaccines with longer shelf life.
Collapse
Affiliation(s)
- Samer Singh
- Centre for Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, 110067, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Predicting protein sequences that fold into specific native three-dimensional structures is a problem of great potential complexity. Although the complete solution is ultimately rooted in understanding the physical chemistry underlying the complex interactions between amino acid residues that determine protein stability, recent work shows that empirical information about these first principles is embedded in the statistics of protein sequence and structure databases. This review focuses on the use of 'knowledge-based' potentials derived from these databases in designing proteins. In addition, the data suggest how the study of these empirical potentials might impact our fundamental understanding of the energetic principles of protein structure.
Collapse
Affiliation(s)
- William P Russ
- Howard Hughes Medical Institute and Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas 75390-9050, USA
| | | |
Collapse
|
42
|
Piatesi A, Hilvert D. Optimized production of the Diels-Alderase antibody 1E9 as a chimeric Fab. CAN J CHEM 2002. [DOI: 10.1139/v02-057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Monoclonal antibody 1E9, which catalyzes the [4+2] cycloaddition between tetrachlorothiophene dioxide and N-ethylmaleimide, has been re-engineered for production as a chimeric humanmurine Fab fragment in Escherichia coli. Stabilizing point mutations in the variable regions of the antibody were identified by replacing residues that rarely occur at individual positions in aligned immunoglobulin sequences with their consensus counterparts. By combining favorable substitutions, double (MetH87ThrGlyL63Ser) and triple (MetH87ThrGlyL63SerPheL95Pro) mutants were created, which can be produced in good yield (4 and 17 mg L1cell culture, respectively). The triple mutant exhibits a modest fourfold drop in the apparent kcatvalue for the cycloaddition reaction, but the kinetic properties of the double mutant are indistinguishable from those of the parent murine IgG. The availability of recombinant versions of this catalytic antibody will facilitate efforts to determine the origins of its selectivity and catalytic efficiency through mutagenesis.Key words: catalytic antibody, Fab fragment, bacterial production.
Collapse
|
43
|
Lehmann M, Loch C, Middendorf A, Studer D, Lassen SF, Pasamontes L, van Loon APGM, Wyss M. The consensus concept for thermostability engineering of proteins: further proof of concept. Protein Eng Des Sel 2002; 15:403-11. [PMID: 12034860 DOI: 10.1093/protein/15.5.403] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Previously, we calculated a consensus amino acid sequence from 13 homologous fungal phytases. A synthetic gene was constructed and recombinantly expressed. Surprisingly, consensus phytase-1 was 15-26 degrees C more thermostable than all parent phytases used in its design [Lehmann et al. (2000)Protein Eng., 13, 49-57]. In the present study, inclusion of six further phytase sequences in the amino acid sequence alignment resulted in the replacement of 38 amino acid residues in either one or both of the new consensus phytases-10 and -11. Since consensus phytase-10, again, was 7.4 degrees C more thermostable than consensus phytase-1, the thermostability effects of most of the 38 amino acid substitutions were tested by site-directed mutagenesis. Both stabilizing and destabilizing mutations were identified, but all affected the stability of the enzyme by <3 degrees C. The combination of all stabilizing amino acid exchanges in a multiple mutant of consensus phytase-1 increased the unfolding temperature from 78.0 to 88.5 degrees C. Likewise, back-mutation of four destabilizing amino acids and introduction of an additional stabilizing amino acid in consensus phytase-10 further increased the unfolding temperature from 85.4 to 90.4 degrees C. The thermostabilization achieved is the result of a combination of slight improvements from multiple amino acid exchanges rather than being the effect of a single or of just a few dominating mutations that have been introduced by chance. The present findings support the general validity of the consensus concept for thermostability engineering of proteins.
Collapse
Affiliation(s)
- Martin Lehmann
- Roche Vitamins AG, Department VFB, Building 203/112a, CH-4070 Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Lehmann M, Wyss M. Engineering proteins for thermostability: the use of sequence alignments versus rational design and directed evolution. Curr Opin Biotechnol 2001; 12:371-5. [PMID: 11551465 DOI: 10.1016/s0958-1669(00)00229-9] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
With the advent of directed evolution techniques, protein engineering has received a fresh impetus. Engineering proteins for thermostability is a particularly exciting and challenging field, as it is crucial for broadening the industrial use of recombinant proteins. In addition to directed evolution, a variety of partially successful rational concepts for engineering thermostability have been developed in the past. Recent results suggest that amino acid sequence comparisons of mesophilic proteins alone can be used efficiently to engineer thermostable proteins. The potential benefits of the underlying, semirational 'consensus concept' are compared with those of rational design and directed evolution approaches.
Collapse
Affiliation(s)
- M Lehmann
- F Hoffmann-La Roche Ltd., Vitamins and Fine Chemicals Division, Department VFB, Building 203, CH-4070 Basel, Switzerland.
| | | |
Collapse
|
45
|
Abstract
Following the complete genome sequencing of an increasing number of organisms, structural biology is engaging in a systematic approach of high-throughput structure determination called structural genomics to create a complete inventory of protein folds/structures that will help predict functions for all proteins. First results show that structural genomics will be highly effective in finding functional annotations for proteins of unknown function.
Collapse
Affiliation(s)
- P R Mittl
- Institute of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | |
Collapse
|
46
|
Jiang X, Kowalski J, Kelly JW. Increasing protein stability using a rational approach combining sequence homology and structural alignment: Stabilizing the WW domain. Protein Sci 2001; 10:1454-65. [PMID: 11420447 PMCID: PMC2374112 DOI: 10.1110/ps.640101] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
This study shows that a combination of sequence homology and structural information can be used to increase the stability of the WW domain by 2.5 kcal mol(-1) and increase the T(m) by 28 degrees C. Previous homology-based protein design efforts typically investigate positions with low sequence identity, whereas this study focuses on semi-conserved core residues and proximal residues, exploring their role(s) in mediating stabilizing interactions on the basis of structural considerations. The A20R and L30Y mutations allow increased hydrophobic interactions because of complimentary surfaces and an electrostatic interaction with a third residue adjacent to the ligand-binding hydrophobic cluster, increasing stability significantly beyond what additivity would predict for the single mutations. The D34T mutation situated in a pi-turn possibly disengages Asn31, allowing it to make up to three hydrogen bonds with the backbone in strand 1 and loop 2. The synergistic mutations A20R/L30Y in combination with the remotely located mutation D34T add together to create a hYap WW domain that is significantly more stable than any of the protein structures on which the design was based (Pin and FBP28 WW domains).
Collapse
Affiliation(s)
- X Jiang
- Department of Chemistry and the Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
47
|
Hua Q, Dementieva IS, Walsh MA, Hallenga K, Weiss MA, Joachimiak A. A thermophilic mini-chaperonin contains a conserved polypeptide-binding surface: combined crystallographic and NMR studies of the GroEL apical domain with implications for substrate interactions. J Mol Biol 2001; 306:513-25. [PMID: 11178910 DOI: 10.1006/jmbi.2000.4405] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A homologue of the Escherichia coli GroEL apical domain was obtained from thermophilic eubacterium Thermus thermophilus. The domains share 70 % sequence identity (101 out of 145 residues). The thermal stability of the T. thermophilus apical domain (Tm>100 degrees C as evaluated by circular dichroism) is at least 35 degrees C greater than that of the E. coli apical domain (Tm=65 degrees C). The crystal structure of a selenomethione-substituted apical domain from T. thermophilus was determined to a resolution of 1.78 A using multiwavelength-anomalous-diffraction phasing. The structure is similar to that of the E. coli apical domain (root-mean-square deviation 0.45 A based on main-chain atoms). The thermophilic structure contains seven additional salt bridges of which four contain charge-stabilized hydrogen bonds. Only one of the additional salt bridges would face the "Anfinsen cage" in GroEL. High temperatures were exploited to map sites of interactions between the apical domain and molten globules. NMR footprints of apical domain-protein complexes were obtained at elevated temperature using 15N-1H correlation spectra of 15N-labeled apical domain. Footprints employing two polypeptides unrelated in sequence or structure (an insulin monomer and the SRY high-mobility-group box, each partially unfolded at 50 degrees C) are essentially the same and consistent with the peptide-binding surface previously defined in E. coli GroEL and its apical domain-peptide complexes. An additional part of this surface comprising a short N-terminal alpha-helix is observed. The extended footprint rationalizes mutagenesis studies of intact GroEL in which point mutations affecting substrate binding were found outside the "classical" peptide-binding site. Our results demonstrate structural conservation of the apical domain among GroEL homologues and conservation of an extended non-polar surface recognizing diverse polypeptides.
Collapse
Affiliation(s)
- Q Hua
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Wang Q, Buckle AM, Fersht AR. From minichaperone to GroEL 1: information on GroEL-polypeptide interactions from crystal packing of minichaperones. J Mol Biol 2000; 304:873-81. [PMID: 11124033 DOI: 10.1006/jmbi.2000.4276] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We are reconstructing the mechanism of action of GroEL by a reductionist approach of isolating its minimal fragment that has residual activity (the "minichaperone" core) and then identifying how additional elements of structure confer further activity and function. We report here the 2.0 A resolution crystal structure of the minichaperone GroEL(193-345). The structure provides further clues on the nature of GroEL-polypeptide substrate interactions, because two molecules in the asymmetric unit interact by the binding of one molecule in the active site of its partner, thus mimicking a chaperone-polypeptide substrate complex. The results may explain some experimental observations, including the preference of GroEL for net positive charges (mediated by Glu238 and Glu257) and the key role of Tyr203 in mediating polypeptide binding. The larger binding site identified by these studies forms a continuous surface near the opening of the central cavity of GroEL that can accommodate a wide range of non-native protein conformations that differ in size and in structural and chemical properties.
Collapse
Affiliation(s)
- Q Wang
- MRC Centre, Cambridge Centre for Protein Engineering and Cambridge University Chemical Laboratory, Hills Road, Cambridge, CB2 2QH, UK
| | | | | |
Collapse
|
49
|
Chatellier J, Hill F, Foster NW, Goloubinoff P, Fersht AR. From minichaperone to GroEL 3: properties of an active single-ring mutant of GroEL. J Mol Biol 2000; 304:897-910. [PMID: 11124035 DOI: 10.1006/jmbi.2000.4278] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The next step in our reductional analysis of GroEL was to study the activity of an isolated single seven-membered ring of the 14-mer. A known single-ring mutant, GroEL(SR1), contains four point mutations that prevent the formation of double-rings. That heptameric complex is functionally inactive because it is unable to release GroES. We found that the mutation E191G, which is responsible for the temperature sensitive (ts) Escherichia coli allele groEL44 and is located in the hinge region between the intermediate and apical domains of GroEL, appears to function by weakening the binding of GroES, without destabilizing the overall structure of GroEL44 mutant. We introduced, therefore, the mutation E191G into GroEL(SR1) in order to generate a single-ring mutant that may have weaker binding of GroES and hence be active. The new single-ring mutant, GroEL(SR44), was indeed effective in refolding both heat and dithiothreitol-denatured mitochondrial malate dehydrogenase with great efficiency. Further, unlike all smaller constructs of GroEL, the expression of GroEL(SR44) in E. coli that contained no endogenous GroEL restored biological viability, but not as efficiently as does wild-type GroEL. We envisage the notional evolution of the structure and properties of GroEL. The minichaperone core acts as a primitive chaperone by providing a binding surface for denatured states that prevents their self-aggregation. The assembly of seven minichaperones into a ring then enhances substrate binding by introducing avidity. The acquisition of binding sites for ATP then allows the modulation of substrate binding by introducing the allosteric mechanism that causes cycling between strong and weak binding sites. This is accompanied by the acquisition by the heptamer of the binding of GroES, which functions as a lid to the central cavity and competes for peptide binding sites. Finally, dimerization of the heptamer enhances its biological activity.
Collapse
Affiliation(s)
- J Chatellier
- MRC Centre, Cambridge Centre for Protein Engineering and Cambridge University Chemical Laboratory, Hills Road, Cambridge, CB2 2QH, UK
| | | | | | | | | |
Collapse
|
50
|
Chatellier J, Hill F, Fersht AR. From minichaperone to GroEL 2: importance of avidity of the multisite ring structure. J Mol Biol 2000; 304:883-96. [PMID: 11124034 DOI: 10.1006/jmbi.2000.4277] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Structural studies on minichaperones and GroEL imply a continuous ring of binding sites around the neck of GroEL. To investigate the importance of this ring, we constructed an artificial heptameric assembly of minichaperones to mimic their arrangement in GroEL. The heptameric Gp31 co-chaperonin from bacteriophage T4, an analogue of GroES, was used as a scaffold to display the GroEL minichaperones. A fusion protein, MC(7), was generated by replacing a part of the highly mobile loop of Gp31 (residues 23-44) with the sequence of the minichaperone (residues 191-376 of GroEL). The purified recombinant protein assembled into a heptameric ring composed of seven 30.6 kDa subunits. Although single minichaperones (residues 193-335 to 191-376 of GroEL) have certain chaperone activities in vitro and in vivo, they cannot refold heat and dithiothreitol-denatured mitochondrial malate dehydrogenase (mtMDH), a reaction that normally requires GroEL, its co-chaperonin GroES and ATP. But, MC(7) refolded MDH in vitro. The expression of MC(7) complements in vivo two temperature-sensitive Escherichia coli alleles, groEL44 and groEL673, at 43 degrees C. Although MC(7) could not compensate for the complete absence of GroEL in vivo, it enhanced the colony-forming ability of cells containing limiting amounts of wild-type GroEL at 37 degrees C. MC(7 )also reduces aggregate formation and cell death in mammalian cell models of Huntington's disease. The assembly of seven minichaperone subunits on a heptameric ring significantly improves their activity, demonstrating the importance of avidity in GroEL function.
Collapse
Affiliation(s)
- J Chatellier
- Cambridge Centre for Protein Engineering and Cambridge University Chemical Laboratory, MRC Centre, Hills Road, Cambridge, CB2 2QH, UK
| | | | | |
Collapse
|