1
|
Serebryany E, Martin RW, Takahashi GR. The Functional Significance of High Cysteine Content in Eye Lens γ-Crystallins. Biomolecules 2024; 14:594. [PMID: 38786000 PMCID: PMC11118217 DOI: 10.3390/biom14050594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Cataract disease is strongly associated with progressively accumulating oxidative damage to the extremely long-lived crystallin proteins of the lens. Cysteine oxidation affects crystallin folding, interactions, and light-scattering aggregation especially strongly due to the formation of disulfide bridges. Minimizing crystallin aggregation is crucial for lifelong lens transparency, so one might expect the ubiquitous lens crystallin superfamilies (α and βγ) to contain little cysteine. Yet, the Cys content of γ-crystallins is well above the average for human proteins. We review literature relevant to this longstanding puzzle and take advantage of expanding genomic databases and improved machine learning tools for protein structure prediction to investigate it further. We observe remarkably low Cys conservation in the βγ-crystallin superfamily; however, in γ-crystallin, the spatial positioning of Cys residues is clearly fine-tuned by evolution. We propose that the requirements of long-term lens transparency and high lens optical power impose competing evolutionary pressures on lens βγ-crystallins, leading to distinct adaptations: high Cys content in γ-crystallins but low in βB-crystallins. Aquatic species need more powerful lenses than terrestrial ones, which explains the high methionine content of many fish γ- (and even β-) crystallins. Finally, we discuss synergies between sulfur-containing and aromatic residues in crystallins and suggest future experimental directions.
Collapse
Affiliation(s)
- Eugene Serebryany
- Department of Physiology & Biophysics, Stony Brook University, SUNY, Stony Brook, NY 11794, USA
- Laufer Center for Physical & Quantitative Biology, Stony Brook University, SUNY, Stony Brook, NY 11794, USA
| | - Rachel W. Martin
- Department of Chemistry, UCI Irvine, Irvine, CA 92697-2025, USA
- Department of Molecular Biology & Biochemistry, UCI Irvine, Irvine, CA 92697-3900, USA
| | - Gemma R. Takahashi
- Department of Molecular Biology & Biochemistry, UCI Irvine, Irvine, CA 92697-3900, USA
| |
Collapse
|
2
|
Sampaleanu L, Codding P, Lobsanov Y, Tsai M, Smith G, Horvatin C, Howell P. Structural studies of duck delta2 crystallin mutants provide insight into the role of Thr161 and the 280s loop in catalysis. Biochem J 2005; 384:437-47. [PMID: 15320872 PMCID: PMC1134128 DOI: 10.1042/bj20040656] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Delta crystallin, a taxon-specific crystallin present in avian eye lenses, is homologous to the urea cycle enzyme ASL (argininosuccinate lyase). Although there are two delta crystallin isoforms in duck lenses, ddeltac1 (duck delta1 crystallin) and ddeltac2 (duck delta2 crystallin), only ddeltac2 is catalytically active. Previous structural studies have suggested that residues Ser283 and His162 in the multi-subunit active site of ddeltac2/ASL are the putative catalytic acid/base, while the highly conserved, positively charged Lys289 is thought to help stabilize the carbanion intermediate. The strict conservation of a small hydroxy-containing residue (Thr or Ser) at position 161 adjacent to the putative catalytic base, as well as its proximity to the substrate in the S283A ddeltac2 enzyme-substrate complex, prompted us to investigate further the role this residue. Structures of the active T161S and inactive T161D ddeltac2 mutants, as well as T161D complexed with argininosuccinate, have been determined to 2.0 A resolution. The structures suggest that a hydroxy group is required at position 161 to help correctly position the side chain of Lys289 and the fumarate moiety of the substrate. Threonine is probably favoured over serine, because the interaction of its methyl group with Leu206 would restrict its conformational flexibility. Residues larger than Thr or Ser interfere with substrate binding, supporting previous suggestions that correct positioning of the substrate's fumarate moiety is essential for catalysis to occur. The presence of the 280s loop (i.e. a loop formed by residues 270-290) in the 'open' conformation suggests that loop closure, thought to be essential for sequestration of the substrate, may be triggered by the formation of the carbanion or aci-carboxylate intermediates, whose charge distribution more closely mimics that of the sulphate ion found in the active-site region of the inactive ddeltac1. The 280s loop in ddeltac1 is in the closed conformation.
Collapse
Affiliation(s)
- Liliana M. Sampaleanu
- *Structural Biology and Biochemistry, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
- †Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Penelope W. Codding
- ‡Chemistry Department, University of Victoria, Victoria, British Columbia, Canada V8W 3V6
| | - Yuri D. Lobsanov
- *Structural Biology and Biochemistry, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | - May Tsai
- *Structural Biology and Biochemistry, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
- †Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - G. David Smith
- *Structural Biology and Biochemistry, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | - Cathy Horvatin
- *Structural Biology and Biochemistry, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | - P. Lynne Howell
- *Structural Biology and Biochemistry, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
- †Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
- To whom correspondence should be addressed (email )
| |
Collapse
|
3
|
Lee HJ, Lu SW, Chang GG. Monomeric molten globule intermediate involved in the equilibrium unfolding of tetrameric duck δ2-crystallin. ACTA ACUST UNITED AC 2003; 270:3988-95. [PMID: 14511381 DOI: 10.1046/j.1432-1033.2003.03787.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Duck delta2-crystallin is a soluble tetrameric lens protein. In the presence of guanidinium hydrochloride (GdnHCl), it undergoes stepwise dissociation and unfolding. Gel-filtration chromatography and sedimentation velocity analysis has demonstrated the dissociation of the tetramer protein to a monomeric intermediate with a dissociation constant of 0.34 microM3. Dimers were also detected during the dissociation and refolding processes. The sharp enhancement of 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence at 1 M GdnHCl strongly suggested that the dissociated monomers were in a molten globule state under these conditions. The similar binding affinity (approximately 60 microM) of ANS to protein in the presence or absence of GdnHCl suggested the potential assembly of crystallins via hydrophobic interactions, which might also produce off-pathway aggregates in higher protein concentrations. The dynamic quenching constant corresponding to GdnHCl concentration followed a multistate unfolding model implying that the solvent accessibility of tryptophans was a sensitive probe for analyzing delta2-crystallin unfolding.
Collapse
Affiliation(s)
- Hwei-Jen Lee
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan.
| | | | | |
Collapse
|
4
|
Sampaleanu LM, Yu B, Howell PL. Mutational analysis of duck delta 2 crystallin and the structure of an inactive mutant with bound substrate provide insight into the enzymatic mechanism of argininosuccinate lyase. J Biol Chem 2002; 277:4166-75. [PMID: 11698398 DOI: 10.1074/jbc.m107465200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The major soluble avian eye lens protein, delta crystallin, is highly homologous to the housekeeping enzyme argininosuccinate lyase (ASL). ASL is part of the urea and arginine-citrulline cycles and catalyzes the reversible breakdown of argininosuccinate to arginine and fumarate. In duck lenses, there are two delta crystallin isoforms that are 94% identical in amino acid sequence. Only the delta2 isoform has maintained ASL activity and has been used to investigate the enzymatic mechanism of ASL. The role of the active site residues Ser-29, Asp-33, Asp-89, Asn-116, Thr-161, His-162, Arg-238, Thr-281, Ser-283, Asn-291, Asp-293, Glu-296, Lys-325, Asp-330, and Lys-331 have been investigated by site-directed mutagenesis, and the structure of the inactive duck delta2 crystallin (ddeltac2) mutant S283A with bound argininosuccinate was determined at 1.96 A resolution. The S283A mutation does not interfere with substrate binding, because the 280's loop (residues 270-290) is in the open conformation and Ala-283 is more than 7 A from the substrate. The substrate is bound in a different conformation to that observed previously indicating a large degree of conformational flexibility in the fumarate moiety when the 280's loop is in the open conformation. The structure of the S283A ddeltac2 mutant and mutagenesis results reveal that a complex network of interactions of both protein residues and water molecules are involved in substrate binding and specificity. Small changes even to residues not involved directly in anchoring the argininosuccinate have a significant effect on catalysis. The results suggest that either His-162 or Thr-161 are responsible for proton abstraction and reinforce the putative role of Ser-283 as the catalytic acid, although we cannot eliminate the possibility that arginine is released in an uncharged form, with the solvent providing the required proton. A detailed enzymatic mechanism of ASL/ddeltac2 is presented.
Collapse
Affiliation(s)
- Liliana M Sampaleanu
- Structural Biology and Biochemistry Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|
5
|
Lee HJ, Chang GG. Guanidine hydrochloride induced reversible dissociation and denaturation of duck delta2-crystallin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3979-85. [PMID: 10866796 DOI: 10.1046/j.1432-1327.2000.01429.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The tetrameric delta2-crystallin from duck lens exhibits a reversible dissociation-denaturation process in solutions containing guanidine hydrochloride (GdnHCl). Sigmoidal or biphasic curves for the dissociation/denaturation processes, obtained using different methods of structural analysis, as a function of GdnHCl concentration were not coincidental with each other. delta2-crystallin in 0.91 M GdnHCl existed primarily as a monomer, which had no endogenous argininosuccinate lyase activity. After dilution of the GdnHCl-treated protein, the monomers reassociated into tetramers with concomitant recovery of enzyme activity. The sigmoidal recovery of enzyme activity demonstrates a cooperative hysteretic reactivation process. When the concentration of GdnHCl was higher than 1.2 M, various partially unfolded soluble forms of delta2-crystallin were produced from the dissociated monomers as shown by size-exclusion chromatography. The formation of a partially unfolded intermediate during the dissociation-denaturation process is proposed.
Collapse
Affiliation(s)
- H J Lee
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan.
| | | |
Collapse
|