1
|
Miller MC, Nesmelova IV, Daragan VA, Ippel H, Michalak M, Dregni A, Kaltner H, Kopitz J, Gabius HJ, Mayo KH. Pro4 prolyl peptide bond isomerization in human galectin-7 modulates the monomer-dimer equilibrum to affect function. Biochem J 2020; 477:3147-3165. [PMID: 32766716 PMCID: PMC7473712 DOI: 10.1042/bcj20200499] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023]
Abstract
Human galectin-7 (Gal-7; also termed p53-induced gene 1 product) is a multifunctional effector by productive pairing with distinct glycoconjugates and protein counter-receptors in the cytoplasm and nucleus, as well as on the cell surface. Its structural analysis by NMR spectroscopy detected doubling of a set of particular resonances, an indicator of Gal-7 existing in two conformational states in slow exchange on the chemical shift time scale. Structural positioning of this set of amino acids around the P4 residue and loss of this phenomenon in the bioactive P4L mutant indicated cis-trans isomerization at this site. Respective resonance assignments confirmed our proposal of two Gal-7 conformers. Mapping hydrogen bonds and considering van der Waals interactions in molecular dynamics simulations revealed a structural difference for the N-terminal peptide, with the trans-state being more exposed to solvent and more mobile than the cis-state. Affinity for lactose or glycan-inhibitable neuroblastoma cell surface contact formation was not affected, because both conformers associated with an overall increase in order parameters (S2). At low µM concentrations, homodimer dissociation is more favored for the cis-state of the protein than its trans-state. These findings give direction to mapping binding sites for protein counter-receptors of Gal-7, such as Bcl-2, JNK1, p53 or Smad3, and to run functional assays at low concentration to test the hypothesis that this isomerization process provides a (patho)physiologically important molecular switch for Gal-7.
Collapse
Affiliation(s)
- Michelle C. Miller
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455 U.S.A
| | - Irina V. Nesmelova
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455 U.S.A
| | - Vladimir A. Daragan
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455 U.S.A
| | - Hans Ippel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455 U.S.A
- Department of Biochemistry, CARIM, University of Maastricht, Maastricht, The Netherlands
| | - Malwina Michalak
- Department of Applied Tumor Biology, Institute of Pathology, Medical School of the Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Aurelio Dregni
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455 U.S.A
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximillians-University Munich, Munich, Germany
| | - Jürgen Kopitz
- Department of Applied Tumor Biology, Institute of Pathology, Medical School of the Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximillians-University Munich, Munich, Germany
| | - Kevin H. Mayo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455 U.S.A
| |
Collapse
|
2
|
Adrover M, Sanchis P, Vilanova B, Pauwels K, Martorell G, Pérez JJ. Conformational ensembles of neuromedin C reveal a progressive coil-helix transition within a binding-induced folding mechanism. RSC Adv 2015. [DOI: 10.1039/c5ra12753j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NMR has been used to elucidate the folding pathway of neuromedin C and to characterize the architecture of the NMC–SDS micelle complex. Its C-terminal region is more prone to acquire an α-helical fold than the N-terminus, and it also binds to micelles.
Collapse
Affiliation(s)
- Miquel Adrover
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS)
- Departament de Química
- Universitat de les Illes Balears (UIB)
- Palma de Mallorca
- Spain
| | - Pilar Sanchis
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS)
- Departament de Química
- Universitat de les Illes Balears (UIB)
- Palma de Mallorca
- Spain
| | - Bartolomé Vilanova
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS)
- Departament de Química
- Universitat de les Illes Balears (UIB)
- Palma de Mallorca
- Spain
| | - Kris Pauwels
- Structural Biology Brussels
- Vrije Universiteit Brussels (VUB)
- 1050 Brussels
- Belgium
- Structural Biology Research Centre
| | - Gabriel Martorell
- Serveis Científico-Tècnics
- Universitat de les Illes Balears (UIB)
- Palma de Mallorca
- Spain
| | - Juan Jesús Pérez
- Departament d'Enginyeria Química
- Universitat Politecnica de Catalunya (UPC)
- ETSEIB
- Barcelona
- Spain
| |
Collapse
|
3
|
WILLIAMS GSBLAIR, HOSSAIN AFTABM, SHANG SHIYING, KRANBUEHL DAVIDE, BAGDASSARIAN CAREYK. EVOLUTION OF A CATALYTICALLY EFFECTIVE MODEL ENZYME: THE IMPORTANCE OF TUNED CONFORMATIONAL FLUCTUATIONS. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633603000586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Possible causal connections between the dynamics of a thermally fluctuating model enzyme molecule and catalysis are explored. The model is motivated by observations from experiment and simulation that amino acid residues residing in different enzymatic domains may show markedly different degrees of conformational freedom. Consequently, we are interested in the catalytic efficacy of an enzyme as a function of long-range many-atom cooperative effects resulting from strong, moderate, and weak interactions between enzymatic residues. Here we show and quantify through molecular dynamics simulations how the number and distribution of these interactions affects an enzyme's conformational fluctuation dynamics and its effectiveness as a catalyst. For any given distribution of "stiff" and "loose" enzymatic domains, catalytic fitness is defined as the number of chemical events — specifically the number of times a catalytic residue and substrate surmount a chemical reaction barrier — during molecular dynamics simulation. Through mutation, recombination, and a selection procedure following the ideas of Darwinian evolution, a genetic algorithm drives a population of enzyme molecules to greater catalytic fitness by modifying the mix of stiff and loose interactions. Approximately 30,000 different enzyme molecules are generated by the genetic algorithm — each with a unique number and distribution of strong, moderate, and weak inter-residue interactions. While the catalytically least fit enzyme exhibits 16 chemical events, the fittest boasts 253. That point mutations far from the active-site chemistry in the fittest enzyme have a strong effect on the number of chemical events suggests that catalysis depends, in part, on long-range many-atom globally correlated dynamical fluctuations.
Collapse
Affiliation(s)
- G. S. BLAIR WILLIAMS
- Department of Chemistry, The College of William and Mary, P.O. Box 8795, Williamsburg, Virginia 23187-8795, USA
| | - AFTAB M. HOSSAIN
- Department of Chemistry, The College of William and Mary, P.O. Box 8795, Williamsburg, Virginia 23187-8795, USA
| | - SHIYING SHANG
- Department of Chemistry, The College of William and Mary, P.O. Box 8795, Williamsburg, Virginia 23187-8795, USA
| | - DAVID E. KRANBUEHL
- Department of Chemistry, The College of William and Mary, P.O. Box 8795, Williamsburg, Virginia 23187-8795, USA
| | - CAREY K. BAGDASSARIAN
- Department of Chemistry, The College of William and Mary, P.O. Box 8795, Williamsburg, Virginia 23187-8795, USA
| |
Collapse
|
4
|
Nesmelova IV, Ermakova E, Daragan VA, Pang M, Menéndez M, Lagartera L, Solís D, Baum LG, Mayo KH. Lactose binding to galectin-1 modulates structural dynamics, increases conformational entropy, and occurs with apparent negative cooperativity. J Mol Biol 2010; 397:1209-30. [PMID: 20184898 DOI: 10.1016/j.jmb.2010.02.033] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 01/04/2010] [Accepted: 02/18/2010] [Indexed: 11/30/2022]
Abstract
Galectins are a family of lectins with a conserved carbohydrate recognition domain that interacts with beta-galactosides. By binding cell surface glycoconjugates, galectin-1 (gal-1) is involved in cell adhesion and migration processes and is an important regulator of tumor angiogenesis. Here, we used heteronuclear NMR spectroscopy and molecular modeling to investigate lactose binding to gal-1 and to derive solution NMR structures of gal-1 in the lactose-bound and unbound states. Structure analysis shows that the beta-strands and loops around the lactose binding site, which are more open and dynamic in the unbound state, fold in around the bound lactose molecule, dampening internal motions at that site and increasing motions elsewhere throughout the protein to contribute entropically to the binding free energy. CD data support the view of an overall more open structure in the lactose-bound state. Analysis of heteronuclear single quantum coherence titration binding data indicates that lactose binds the two carbohydrate recognition domains of the gal-1 dimer with negative cooperativity, in that the first lactose molecule binds more strongly (K(1)=21+/-6 x 10(3) M(-1)) than the second (K(2)=4+/-2 x 10(3) M(-1)). Isothermal calorimetry data fit using a sequential binding model present a similar picture, yielding K(1)=20+/-10 x 10(3) M(-1) and K(2)=1.67+/-0.07 x 10(3) M(-1). Molecular dynamics simulations provide insight into structural dynamics of the half-loaded lactose state and, together with NMR data, suggest that lactose binding at one site transmits a signal through the beta-sandwich and loops to the second binding site. Overall, our results provide new insight into gal-1 structure-function relationships and to protein-carbohydrate interactions in general.
Collapse
Affiliation(s)
- Irina V Nesmelova
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Jarymowycz VA, Stone MJ. Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chem Rev 2007; 106:1624-71. [PMID: 16683748 DOI: 10.1021/cr040421p] [Citation(s) in RCA: 317] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Virginia A Jarymowycz
- Department of Chemistry and Interdisciplinary Biochemistry Program, Indiana University, Bloomington, Indiana 47405-0001, USA
| | | |
Collapse
|
6
|
Idiyatullin D, Daragan VA, Mayo KH. A simple method to measure 13CH2 heteronuclear dipolar cross-correlation spectral densities. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2004; 171:4-9. [PMID: 15504674 DOI: 10.1016/j.jmr.2004.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Revised: 05/11/2004] [Indexed: 05/24/2023]
Abstract
Here, we report a method to simultaneously determine CH2 cross-correlation spectral densities and T1 relaxation times in the laboratory and rotating frames. To accomplish this, we have employed an indirect approach that is based on measurement of differences in relaxation rates acquired with and without cross-correlation terms. The new method, which can be employed using multidimensional NMR and standard relaxation pulse sequences, is validated experimentally by investigation of a selectively 13C-enriched hexadecapeptide and the uniformly 13C-enriched immunoglobulin-binding domain of streptococcal protein G (GB1). Use of this approach makes determination of CH2 cross-correlation spectral densities in uniformly 13C-enriched proteins now routine and provides novel information concerning their internal motions.
Collapse
Affiliation(s)
- Djaudat Idiyatullin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Health Science Center, 321 Church Street, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
7
|
Nesmelova IV, Idiyatullin D, Mayo KH. Measuring protein self-diffusion in protein-protein mixtures using a pulsed gradient spin-echo technique with WATERGATE and isotope filtering. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2004; 166:129-133. [PMID: 14675828 DOI: 10.1016/j.jmr.2003.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Here we report a modified pulsed gradient spin-echo (PGSTE) pulse sequence to measure diffusion coefficients. This approach incorporates WATERGATE combined with isotopic filtering into a standard PGSTE experiment. Doing this eliminates much of the disadvantages from the combination of diffusion encoding and heteronuclear selection intervals and allows for facile modification of the diffusion pulse sequence with flexibility of the time period between RF pulses. The new diffusion pulse sequence is demonstrated using an 15N-labeled peptide and an 15N-labeled protein in a mixture with a protein of similar size.
Collapse
Affiliation(s)
- Irina V Nesmelova
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
8
|
Blair Williams GS, Hossain AM, Kranbuehl DE, Bagdassarian CK. Evolution of Rate-Promoting Oscillations in a Model Enzyme. J Phys Chem B 2003. [DOI: 10.1021/jp0306794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- G. S. Blair Williams
- Department of Chemistry, The College of William and Mary, PO Box 8795, Williamsburg, Virginia 23187-8795
| | - Aftab M. Hossain
- Department of Chemistry, The College of William and Mary, PO Box 8795, Williamsburg, Virginia 23187-8795
| | - David E. Kranbuehl
- Department of Chemistry, The College of William and Mary, PO Box 8795, Williamsburg, Virginia 23187-8795
| | - Carey K. Bagdassarian
- Department of Chemistry, The College of William and Mary, PO Box 8795, Williamsburg, Virginia 23187-8795
| |
Collapse
|
9
|
Idiyatullin D, Nesmelova I, Daragan VA, Mayo KH. Comparison of (13)C(alpha)H and (15)NH backbone dynamics in protein GB1. Protein Sci 2003; 12:914-22. [PMID: 12717014 PMCID: PMC2323862 DOI: 10.1110/ps.0228703] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study presents a site-resolved experimental view of backbone C(alpha)H and NH internal motions in the 56-residue immunoglobulin-binding domain of streptococcal protein G, GB1. Using (13)C(alpha)H and (15)NH NMR relaxation data [T(1), T(2), and NOE] acquired at three resonance frequencies ((1)H frequencies of 500, 600, and 800 MHz), spectral density functions were calculated as F(omega) = 2omegaJ(omega) to provide a model-independent way to visualize and analyze internal motional correlation time distributions for backbone groups in GB1. Line broadening in F(omega) curves indicates the presence of nanosecond time scale internal motions (0.8 to 5 nsec) for all C(alpha)H and NH groups. Deconvolution of F(omega) curves effectively separates overall tumbling and internal motional correlation time distributions to yield more accurate order parameters than determined by using standard model free approaches. Compared to NH groups, C(alpha)H internal motions are more broadly distributed on the nanosecond time scale, and larger C(alpha)H order parameters are related to correlated bond rotations for C(alpha)H fluctuations. Motional parameters for NH groups are more structurally correlated, with NH order parameters, for example, being larger for residues in more structured regions of beta-sheet and helix and generally smaller for residues in the loop and turns. This is most likely related to the observation that NH order parameters are correlated to hydrogen bonding. This study contributes to the general understanding of protein dynamics and exemplifies an alternative and easier way to analyze NMR relaxation data.
Collapse
Affiliation(s)
- Djaudat Idiyatullin
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
10
|
Idiyatullin D, Daragan VA, Mayo KH. Improved measurement of (15)N-[(1)H] NOEs in the presence of H(N)-water proton chemical exchange. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2001; 153:138-143. [PMID: 11700091 DOI: 10.1006/jmre.2001.2412] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A simple method is presented to accurately determine (15)N-[(1)H] NOEs in biomolecules in the presence of H(N)-water proton chemical exchange. Three measurements are required: one with nonselective proton saturation and two with different water saturation conditions to determine the equilibrium value of the (15)N signal. This approach is exemplified with data on two peptides, one helix-forming 17-mer and one compactly folded 56-mer. Results indicate that (15)N-[(1)H] NOEs determined using the standard approach with short recycle times (3 to 4 s) can be significantly in error when H(N)-water proton chemical exchange is relatively rapid, water proton relaxation is relatively slow, and (15)N-[(1)H] NOEs are away from the value of -1. This new method avoids such inaccuracies resulting from the use of short recycle times.
Collapse
Affiliation(s)
- D Idiyatullin
- Department of Biochemistry, Molecular Biology, & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
11
|
Idiyatullin D, Daragan VA, Mayo KH. A new approach to visualizing spectral density functions and deriving motional correlation time distributions: applications to an alpha-helix-forming peptide and to a well-folded protein. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2001; 152:132-148. [PMID: 11531372 DOI: 10.1006/jmre.2001.2372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A new approach to visualizing spectral densities and analyzing NMR relaxation data has been developed. By plotting the spectral density function, J(omega), as F(omega)=2 omega J(omega) on the log-log scale, the distribution of motional correlation times can be easily visualized. F(omega) is calculated from experimental data using a multi-Lorentzian expansion that is insensitive to the number of Lorentzians used and allows contributions from overall tumbling and internal motions to be separated without explicitly determining values for correlation times and their weighting coefficients. To demonstrate the approach, (15)N and (13)C NMR relaxation data have been analyzed for backbone NH and C(alpha)H groups in an alpha-helix-forming peptide 17mer and in a well-folded 138-residue protein, and the functions F(omega) have been calculated and deconvoluted for contributions from overall tumbling and internal motions. Overall tumbling correlation time distribution maxima yield essentially the same overall correlation times obtained using the Lipari-Szabo model and other standard NMR relaxation data analyses. Internal motional correlational times for NH and C(alpha)H bond motions fall in the range from 100 ps to about 1 ns. Slower overall molecular tumbling leads to better separation of internal motional correlation time distributions from those of overall tumbling. The usefulness of the approach rests in its ability to visualize spectral densities and to define and separate frequency distributions for molecular motions.
Collapse
Affiliation(s)
- D Idiyatullin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Health Science Center, 321 Church Street, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|