1
|
Tam B, Sinha S, Wang SM. Combining Ramachandran plot and molecular dynamics simulation for structural-based variant classification: Using TP53 variants as model. Comput Struct Biotechnol J 2020; 18:4033-4039. [PMID: 33363700 PMCID: PMC7744649 DOI: 10.1016/j.csbj.2020.11.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
The wide application of new DNA sequencing technologies is generating vast quantities of genetic variation data at unprecedented speed. Developing methodologies to decode the pathogenicity of the variants is imperatively demanding. We hypothesized that as deleterious variants may function through disturbing structural stability of their affected proteins, information from structural change caused by genetic variants can be used to identify the variants with deleterious effects. In order to measure the structural change for proteins with large size, we designed a method named RP-MDS composed of Ramachandran plot (RP) and Molecular Dynamics Simulation (MDS). Ramachandran plot captures the variant-caused secondary structural change, whereas MDS provides a quantitative measure for the variant-caused globular structural change. We tested the method using variants in TP53 DNA binding domain of 219 residues as the model. In total, RP-MDS identified 23 of 38 (60.5%) TP53 known Pathogenic variants and 17 of 42 (41%) TP53 VUS that caused significant changes of P53 structure. Our study demonstrates that RP-MDS method provides a powerful protein structure-based tool to screen deleterious genetic variants affecting large-size proteins.
Collapse
Affiliation(s)
- Benjamin Tam
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau
| | - Siddharth Sinha
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau
| | - San Ming Wang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau
| |
Collapse
|
2
|
Bioinformatics analysis of four proteins of Leishmania donovani to guide epitopes vaccine design and drug targets selection. Acta Trop 2019; 191:50-59. [PMID: 30582920 DOI: 10.1016/j.actatropica.2018.12.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 01/20/2023]
Abstract
Visceral leishmaniasis (VL) is a serious and widespread parasitic disease caused by Leishmania donovani complex. The threat of this fatal disease continues due to the lack of ideal drugs or vaccines. In this study, we selected Amastin, CaNA2, Kmp-11 and PDI proteins of Leishmania donovani for study, which are VL vaccine candidates or possible drug targets. Eleven bioinformatics tools were used to analyze different aspects of these proteins, including amino acid composition, topology, signal peptide, secondary structure, surface properties, phosphorylation sites and kinases, protein binding sites, 3D homology modeling, B cell epitopes, MHC class Ⅰ and Ⅱ epitopes and protein-protein interactions. Finally, the functionally related amino acid sites and dominant epitopes of these proteins were founded. Some possible relationships between protein structure, phosphorylation sites, protein binding sites and epitopes were also discovered. High flexibility and random coils regions of protein have a tendency to be phosphorylated, bind proteins and present epitopes. Since some phosphorylation sites and their kinases are involved in Leishmania invasion and survival in host cells, they may be potential drug targets. Bioinformatics analysis helps us better understand protein function and find dominant epitopes to guide drug design and vaccine development.
Collapse
|
3
|
Torshin IY, Batyanovskii AV, Uroshlev LA, Esipova NG, Tumanyan VG. Noncanonical and Strongly Disallowed Conformations of the Backbone in Polypeptide Chains of Globular Proteins. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918020240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
4
|
Torshin IY, Uroshlev LA, Esipova NG, Tumanyan VG. Descriptive statistics of disallowed regions and various protein secondary structures in the context of studying twisted β-hairpins. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916010243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Crystallographic studies on protein misfolding: Domain swapping and amyloid formation in the SH3 domain. Arch Biochem Biophys 2016; 602:116-126. [PMID: 26924596 DOI: 10.1016/j.abb.2016.02.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 12/18/2022]
Abstract
Oligomerization by 3D domain swapping is found in a variety of proteins of diverse size, fold and function. In the early 1960s this phenomenon was postulated for the oligomers of ribonuclease A, but it was not until the 1990s that X-ray diffraction provided the first experimental evidence of this special manner of oligomerization. Nowadays, structural information has allowed the identification of these swapped oligomers in over one hundred proteins. Although the functional relevance of this phenomenon is not clear, this alternative folding of protomers into intertwined oligomers has been related to amyloid formation. Studies on proteins that develop 3D domain swapping might provide some clues on the early stages of amyloid formation. The SH3 domain is a small modular domain that has been used as a model to study the basis of protein folding. Among SH3 domains, the c-Src-SH3 domain emerges as a helpful model to study 3D domain swapping and amyloid formation.
Collapse
|
6
|
Castello F, Casares S, Ruedas-Rama MJ, Orte A. The First Step of Amyloidogenic Aggregation. J Phys Chem B 2015; 119:8260-7. [PMID: 26039157 DOI: 10.1021/acs.jpcb.5b01957] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structural and dynamic characterization of the on-pathway intermediates involved in the mechanism of amyloid fibril formation is one of the major remaining biomedical challenges of our time. In addition to mature fibrils, various oligomeric structures are implicated in both the rate-limiting step of the nucleation process and the neuronal toxicity of amyloid deposition. Single-molecule fluorescence spectroscopy (SMFS) is an excellent tool for extracting most of the relevant information on these molecular systems, especially advanced multiparameter approaches, such as pulsed interleaved excitation (PIE). In our investigations of an amyloidogenic SH3 domain of α-spectrin, we have found dynamic oligomerization, even prior to incubation. Our single-molecule PIE experiments revealed that these species are small, mostly dimeric, and exhibit a loose and dynamic molecular organization. Furthermore, these experiments have allowed us to obtain quantitative information regarding the oligomer stability. These pre-amyloidogenic oligomers may potentially serve as the first target for fibrillization-prevention strategies.
Collapse
Affiliation(s)
- Fabio Castello
- †Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071 Granada, Spain
| | - Salvador Casares
- ‡Department of Physical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva, 18071 Granada, Spain
| | - Maria J Ruedas-Rama
- †Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071 Granada, Spain
| | - Angel Orte
- †Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071 Granada, Spain
| |
Collapse
|
7
|
Uroshlev LA, Torshin IY, Batyanovskii AV, Esipova NG, Tumanyan VG. Disallowed conformations of a polypeptide chain as exemplified by the β-turn of the β-hairpin in the α-spectrin SH3 domain. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915010236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Carugo O, Djinović-Carugo K. Half a century of Ramachandran plots. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1333-41. [DOI: 10.1107/s090744491301158x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/27/2013] [Indexed: 11/11/2022]
|
9
|
Torshin IY, Esipova NG, Tumanyan VG. Alternatingly twisted β-hairpins and nonglycine residues in the disallowed II′ region of the Ramachandran plot. J Biomol Struct Dyn 2013; 32:198-208. [DOI: 10.1080/07391102.2012.759451] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Neudecker P, Robustelli P, Cavalli A, Walsh P, Lundström P, Zarrine-Afsar A, Sharpe S, Vendruscolo M, Kay LE. Structure of an intermediate state in protein folding and aggregation. Science 2012; 336:362-6. [PMID: 22517863 DOI: 10.1126/science.1214203] [Citation(s) in RCA: 305] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein-folding intermediates have been implicated in amyloid fibril formation involved in neurodegenerative disorders. However, the structural mechanisms by which intermediates initiate fibrillar aggregation have remained largely elusive. To gain insight, we used relaxation dispersion nuclear magnetic resonance spectroscopy to determine the structure of a low-populated, on-pathway folding intermediate of the A39V/N53P/V55L (A, Ala; V, Val; N, Asn; P, Pro; L, Leu) Fyn SH3 domain. The carboxyl terminus remains disordered in this intermediate, thereby exposing the aggregation-prone amino-terminal β strand. Accordingly, mutants lacking the carboxyl terminus and thus mimicking the intermediate fail to safeguard the folding route and spontaneously form fibrillar aggregates. The structure provides a detailed characterization of the non-native interactions stabilizing an aggregation-prone intermediate under native conditions and insight into how such an intermediate can derail folding and initiate fibrillation.
Collapse
Affiliation(s)
- Philipp Neudecker
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yuwen T, Post CB, Skrynnikov N. Domain cooperativity in multidomain proteins: what can we learn from molecular alignment in anisotropic media? JOURNAL OF BIOMOLECULAR NMR 2011; 51:131-50. [PMID: 21947922 PMCID: PMC4721247 DOI: 10.1007/s10858-011-9548-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 07/07/2011] [Indexed: 05/13/2023]
Abstract
Many proteins have modular design with multiple globular domains connected via flexible linkers. As a simple model of such system, we study a tandem construct consisting of two identical SH3 domains and a variable-length Gly/Ser linker. When the linker is short, this construct represents a dumbbell-shaped molecule with limited amount of domain-domain mobility. Due to its elongated shape, this molecule efficiently aligns in steric alignment media. As the length of the linker increases, the two domains become effectively uncoupled and begin to behave as independent entities. Consequently, their degree of alignment drops, approaching that found in the (near-spherical) isolated SH3 domains. To model the dependence of alignment parameters on the length of the interdomain linker, we have generated in silico a series of conformational ensembles representing SH3 tandems with different linker length. These ensembles were subsequently used as input for alignment prediction software PALES. The predicted alignment tensors were compared with the results of experimental measurements using a series of tandem-SH3 samples in PEG/hexanol alignment media. This comparison broadly confirmed the expected trends. At the same time, it has been found that the isolated SH3 domain aligns much stronger than expected. This finding can be attributed to complex morphology of the PEG/hexanol media and/or to weak site-specific interactions between the protein and the media. In the latter case, there are strong indications that electrostatic interactions may play a role. The fact that PEG/hexanol does not behave as a simple steric media should serve as a caution for studies that use PALES as a quantitative prediction tool (especially for disordered proteins). Further progress in this area depends on our ability to accurately model the anisotropic media and its site-specific interactions with protein molecules. Once this ability is improved, it should be possible to use the alignment parameters as a measure of domain-domain cooperativity, thus identifying the situations where two domains transiently interact with each other or become coupled through a partially structured linker.
Collapse
Affiliation(s)
- Tairan Yuwen
- Department of Chemistry, Purdue University, West Lafayette IN 47907, USA
| | - Carol Beth Post
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette IN 47907, USA
| | - Nikolai Skrynnikov
- Department of Chemistry, Purdue University, West Lafayette IN 47907, USA
| |
Collapse
|
12
|
Fraccalvieri D, Pandini A, Stella F, Bonati L. Conformational and functional analysis of molecular dynamics trajectories by self-organising maps. BMC Bioinformatics 2011; 12:158. [PMID: 21569575 PMCID: PMC3118354 DOI: 10.1186/1471-2105-12-158] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 05/14/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molecular dynamics (MD) simulations are powerful tools to investigate the conformational dynamics of proteins that is often a critical element of their function. Identification of functionally relevant conformations is generally done clustering the large ensemble of structures that are generated. Recently, Self-Organising Maps (SOMs) were reported performing more accurately and providing more consistent results than traditional clustering algorithms in various data mining problems. We present a novel strategy to analyse and compare conformational ensembles of protein domains using a two-level approach that combines SOMs and hierarchical clustering. RESULTS The conformational dynamics of the α-spectrin SH3 protein domain and six single mutants were analysed by MD simulations. The Cα's Cartesian coordinates of conformations sampled in the essential space were used as input data vectors for SOM training, then complete linkage clustering was performed on the SOM prototype vectors. A specific protocol to optimize a SOM for structural ensembles was proposed: the optimal SOM was selected by means of a Taguchi experimental design plan applied to different data sets, and the optimal sampling rate of the MD trajectory was selected. The proposed two-level approach was applied to single trajectories of the SH3 domain independently as well as to groups of them at the same time. The results demonstrated the potential of this approach in the analysis of large ensembles of molecular structures: the possibility of producing a topological mapping of the conformational space in a simple 2D visualisation, as well as of effectively highlighting differences in the conformational dynamics directly related to biological functions. CONCLUSIONS The use of a two-level approach combining SOMs and hierarchical clustering for conformational analysis of structural ensembles of proteins was proposed. It can easily be extended to other study cases and to conformational ensembles from other sources.
Collapse
Affiliation(s)
- Domenico Fraccalvieri
- Dipartimento di Scienze dell'Ambiente e del Territorio, Università degli Studi di Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | | | | | | |
Collapse
|
13
|
Cámara-Artigas A, Andújar-Sánchez M, Ortiz-Salmerón E, Cuadri C, Cobos ES, Martin-Garcia JM. High-resolution structure of an alpha-spectrin SH3-domain mutant with a redesigned hydrophobic core. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1023-7. [PMID: 20823517 PMCID: PMC2935218 DOI: 10.1107/s1744309110030095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Accepted: 07/28/2010] [Indexed: 11/10/2022]
Abstract
The alpha-spectrin SH3 domain (Spc-SH3) is a small modular domain which has been broadly used as a model protein in folding studies and these studies have sometimes been supported by structural information obtained from the coordinates of Spc-SH3 mutants. The structure of B5/D48G, a multiple mutant designed to improve the hydrophobic core and as a consequence the protein stability, has been solved at 1 A resolution. The crystals belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a=24.79, b=37.23, c=62.95 A. This mutant also bears a D48G substitution in the distal loop and this mutation has also been reported to increase the stability of the protein by itself. The structure of the B5/D48G mutant shows a highly packed hydrophobic core and a more ordered distal loop compared with previous Spc-SH3 structures.
Collapse
Affiliation(s)
- Ana Cámara-Artigas
- Departamento de Química-Física, Bioquímica y Química Inorgánica, Universidad de Almería, Carretera Sacramento, Almería 04120, Spain.
| | | | | | | | | | | |
Collapse
|
14
|
Chevelkov V, Xue Y, Linser R, Skrynnikov NR, Reif B. Comparison of solid-state dipolar couplings and solution relaxation data provides insight into protein backbone dynamics. J Am Chem Soc 2010; 132:5015-7. [PMID: 20297847 DOI: 10.1021/ja100645k] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Analyses of solution (15)N relaxation data and solid-state (1)H(N)-(15)N dipolar couplings from a small globular protein, alpha-spectrin SH3 domain, produce a surprisingly similar pattern of order parameters. This result suggests that there is little or no ns-mus dynamics throughout most of the sequence and, in particular, in the structured portion of the backbone. At the same time, evidence of ns-mus motions is found in the flexible loops and termini. These findings, corroborated by the MD simulations of alpha-spectrin SH3 in a hydrated crystalline environment and in solution, are consistent with the picture of protein dynamics that has recently emerged from the solution studies employing residual dipolar couplings.
Collapse
Affiliation(s)
- Veniamin Chevelkov
- Forschunginstitut fur Molekulare Pharmakologie (FMP), Robert-Rossle-Strasse 10, 13125 Berlin, Germany
| | | | | | | | | |
Collapse
|
15
|
Jakob RP, Zierer BK, Weininger U, Hofmann SD, Lorenz SH, Balbach J, Dobbek H, Schmid FX. Elimination of a cis-Proline-Containing Loop and Turn Optimization Stabilizes a Protein and Accelerates Its Folding. J Mol Biol 2010; 399:331-46. [DOI: 10.1016/j.jmb.2010.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 03/31/2010] [Accepted: 04/02/2010] [Indexed: 10/19/2022]
|
16
|
Espargaró A, Castillo V, de Groot NS, Ventura S. The in vivo and in vitro aggregation properties of globular proteins correlate with their conformational stability: the SH3 case. J Mol Biol 2008; 378:1116-31. [PMID: 18423663 DOI: 10.1016/j.jmb.2008.03.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 03/13/2008] [Accepted: 03/13/2008] [Indexed: 11/24/2022]
Abstract
Protein misfolding and deposition underlie an increasing number of debilitating human disorders and constitute a problem of major concern in biotechnology. In the last years, in vitro studies have provided valuable insights into the physicochemical principles underlying protein aggregation. Nevertheless, information about the determinants of protein deposition within the cell is scarce and only a few systematic studies comparing in vitro and in vivo data have been reported. Here, we have used the SH3 domain of alpha-spectrin as a model globular protein in an attempt to understand the relationship between protein aggregation in the test-tube and in the more complex cellular environment. The investigation of the aggregation in Escherichia coli of this domain and a large set of mutants, together with the analysis of their sequential and conformational properties allowed us to evaluate the contribution of different polypeptidic factors to the cellular deposition of globular proteins. The data presented here suggest that the rules that govern in vitro protein aggregation are also valid in in vivo contexts. They also provide relevant insights into intracellular protein deposition in both conformational diseases and recombinant protein production.
Collapse
Affiliation(s)
- Alba Espargaró
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | | | | | | |
Collapse
|
17
|
An error analysis for two-state protein-folding kinetic parameters and phi-values: progress toward precision by exploring pH dependencies on Leffler plots. Biophys J 2008; 94:4393-404. [PMID: 18223000 DOI: 10.1529/biophysj.107.113241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The interpretation of phi-values has led to an understanding of the folding transition state ensemble of a variety of proteins. Although the main guidelines and equations for calculating phi are well established, there remains some controversy about the quality of the numerical values obtained. By analyzing a complete set of results from kinetic experiments with the SH3 domain of alphaspectrin (Spc-SH3) and applying classical error methods and error-propagation formulas, we evaluated the uncertainties involved in two-state-folding kinetic experimental parameters and the corresponding calculated phi-values. We show that kinetic constants in water and m values can be properly estimated from a judicious weighting of fitting errors and describe some procedures to calculate the errors in Gibbs energies and phi-values from a traditional two-point Leffler analysis. Furthermore, on the basis of general assumptions made with the protein engineering method, we show how to generate multipoint Leffler plots via the analysis of pH dependencies of kinetic parameters. We calculated the definitive phi-values for a collection of single mutations previously designed to characterize the folding transition state of the alphaspectrin SH3 domain. The effectiveness of the pH-scanning procedure is also discussed in the context of error analysis. Judging from the magnitudes of the error bars obtained from two-point and multipoint Leffler plots, we conclude that the precision obtained for phi-values should be approximately 25%, a reasonable limit that takes into account the propagation of experimental errors.
Collapse
|
18
|
Trevino SR, Schaefer S, Scholtz JM, Pace CN. Increasing protein conformational stability by optimizing beta-turn sequence. J Mol Biol 2007; 373:211-8. [PMID: 17765922 PMCID: PMC2084202 DOI: 10.1016/j.jmb.2007.07.061] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 07/20/2007] [Accepted: 07/26/2007] [Indexed: 10/23/2022]
Abstract
Protein conformational stability is an important concern in many fields. Here, we describe a strategy for significantly increasing conformational stability by optimizing beta-turn sequence. Proline and glycine residues are statistically preferred at several beta-turn positions, presumably because their unique side-chains contribute favorably to conformational stability in certain beta-turn positions. However, beta-turn sequences often deviate from preferred proline or preferred glycine. Therefore, our strategy involves replacing non-proline and non-glycine beta-turn residues with preferred proline or preferred glycine residues. Here, we develop guidelines for selecting appropriate mutations, and present results for five mutations (S31P, S42G, S48P, T76P, and Q77G) that significantly increase the conformational stability of RNase Sa. The increases in stability ranged from 0.7 kcal/mol to 1.3 kcal/mol. The strategy was successful in overlapping or isolated beta-turns, at buried (up to 50%) or completely exposed sites, and at relatively flexible or inflexible sites. Considering the significant number of beta-turn residues in every globular protein and the frequent deviation of beta-turn sequences from preferred proline and preferred glycine residues, this simple, efficient strategy will be useful for increasing the conformational stability of proteins.
Collapse
Affiliation(s)
- Saul R. Trevino
- Molecular and Cellular Medicine Department, Texas A&M University System Health Science Center, College Station, Texas 77843
| | - Stephanie Schaefer
- Division of Math and Natural Science, Marian College of Fond du Lac, Fond du Lac, Wisconsin 54935
| | - J. Martin Scholtz
- Molecular and Cellular Medicine Department, Texas A&M University System Health Science Center, College Station, Texas 77843
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
- *To whom correspondence should be addressed: Molecular and Cellular Medicine Department, Texas A&M System Health Science Center, College Station, TX 77843-1114. Tel.: 979-845-0828 (JMS), 979-845-1788 (CNP); Fax: 979-847-9481; E-mail: ,
| | - C. Nick Pace
- Molecular and Cellular Medicine Department, Texas A&M University System Health Science Center, College Station, Texas 77843
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
- *To whom correspondence should be addressed: Molecular and Cellular Medicine Department, Texas A&M System Health Science Center, College Station, TX 77843-1114. Tel.: 979-845-0828 (JMS), 979-845-1788 (CNP); Fax: 979-847-9481; E-mail: ,
| |
Collapse
|
19
|
Casares S, López-Mayorga O, Vega MC, Cámara-Artigas A, Conejero-Lara F. Cooperative propagation of local stability changes from low-stability and high-stability regions in a SH3 domain. Proteins 2007; 67:531-47. [PMID: 17330285 DOI: 10.1002/prot.21284] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Site-directed mutagenesis has been used to produce local stability changes at two regions of the binding site surface of the alpha-spectrin SH3 domain (Spc-SH3) differing in their intrinsic stability. Mutations were made at residue 56, located at the solvent-exposed side of the short 3(10) helix, and at residue 21 in the tip of the flexible RT-loop. NMR chemical-shift analysis and X-ray crystallography indicated negligible changes produced by the mutations in the native structure limited to subtle rearrangements near the mutated residue and at flexible loops. Additionally, mutations do not alter importantly the SH3 binding site structure, although produce significant changes in its affinity for a proline-rich decapeptide. The changes in global stability measured by differential scanning calorimetry are consistent the local energy changes predicted by theoretical models, with the most significant effects observed for the Ala-Gly mutations. Propagation of the local stability changes throughout the domain structure has been studied at a per-residue level of resolution by NMR-detected amide hydrogen-deuterium exchange (HX). Stability propagation is remarkably efficient in this small domain, apparently due to its intrinsically low stability. Nevertheless, the HX-core of the domain is not fully cooperative, indicating the existence of co-operative subunits within the core, which is markedly polarized. An equilibrium phi-analysis of the changes in the apparent Gibbs energies of HX per residue produced by the mutations has allowed us to characterize structurally the conformational states leading to HX. Some of these states resemble notably the folding transition state of the Spc-SH3 domain, suggesting a great potential of this approach to explore the folding energy landscape of proteins. An energy perturbation propagates more effectively from a flexible region to the core than in the opposite direction, because the former affects a broader region of the energy landscape than the latter. This might be of importance in understanding the special thermodynamic signature of the SH3-peptide interaction and the relevance of the dual character of SH3 binding sites.
Collapse
Affiliation(s)
- Salvador Casares
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada 18071, Granada, Spain
| | | | | | | | | |
Collapse
|
20
|
Yokoyama H, Matsui E, Akiba T, Harata K, Matsui I. Molecular Structure of a Novel Membrane Protease Specific for a Stomatin Homolog from the Hyperthermophilic Archaeon Pyrococcus horikoshii. J Mol Biol 2006; 358:1152-64. [PMID: 16574150 DOI: 10.1016/j.jmb.2006.02.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 02/16/2006] [Accepted: 02/22/2006] [Indexed: 11/18/2022]
Abstract
Membrane-bound proteases are involved in various regulatory functions. Our previous study indicated that the N-terminal region of an open reading frame, PH1510 (residues 16-236, designated as 1510-N) from the hyperthermophilic archaeon Pyrococcus horikoshii, is a serine protease with a catalytic Ser-Lys dyad that specifically cleaves the C-terminal hydrophobic residues of a membrane protein, the stomatin-homolog PH1511. In humans, an absence of stomatin is associated with a form of hemolytic anemia known as hereditary stomatocytosis, but the function of stomatin is not fully understood. Here, we report the crystal structure of 1510-N in dimeric form. Each active site of 1510-N is rich in hydrophobic residues, which accounts for the substrate-specificity. The monomer of 1510-N shows structural similarity to one monomer of Escherichia coli ClpP, an ATP-dependent tetradecameric protease. But, their oligomeric forms are different. Major contributors to dimeric interaction in 1510-N are the alpha7 helix and beta9 strand, both of which are missing from ClpP. While the long handle region of ClpP contributes to the stacking of two heptameric rings, the corresponding L2 loop of 1510-N is disordered because the region has little interaction with other residues of the same molecule. The catalytic Ser97 of 1510-N is in almost the same location as the catalytic Ser97 of E.coli ClpP, whereas another residue, Lys138, presumably forming the catalytic dyad, is located in the disordered L2 region of 1510-N. These findings suggest that the binding of the substrate to the catalytic site of 1510-N induces conformational changes in a region that includes loop L2 so that Lys138 approaches the catalytic Ser97.
Collapse
Affiliation(s)
- Hideshi Yokoyama
- Biological Information Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- N Srinivasan
- Molecular Biophysics Unit; Indian Institute of Science; Bangalore 560 012; India
| |
Collapse
|
22
|
Morel B, Casares S, Conejero-Lara F. A single mutation induces amyloid aggregation in the alpha-spectrin SH3 domain: analysis of the early stages of fibril formation. J Mol Biol 2005; 356:453-68. [PMID: 16375922 DOI: 10.1016/j.jmb.2005.11.062] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 10/13/2005] [Accepted: 11/21/2005] [Indexed: 10/25/2022]
Abstract
The Src-homology region 3 domain of chicken alpha-spectrin (Spc-SH3) is a small two-state folding protein, which has never been described to form amyloid fibrils under any condition investigated so far. We show here that the mutation of asparagine 47 to alanine at the distal loop, which destabilises similarly the native and folding transition states of the domain, induces the formation of amyloid fibrils under mild acid conditions. Amyloid aggregation of the mutant is enhanced by the increase in temperature, protein concentration and NaCl concentration. The early stages of amyloid formation have been monitored as a function of time and temperature using a variety of biophysical methods. Differential scanning calorimetry experiments under conditions of amyloid formation have allowed the identification of different thermal transitions corresponding to conformational and aggregation processes as well as to the high-temperature disaggregation and unfolding of the amyloid fibrils. Aggregation is preceded by a rapid conformational change in the monomeric domain involving about 40% of the global unfolding enthalpy, considerable change in secondary structure, large loss of tertiary structure and exposure of hydrophobic patches to the solvent. The conformational change is followed by formation of a majority of oligomeric species with apparent hydrodynamic radius between 2.5 nm and 10nm, depending on temperature, together with the appearance and progressive growth of protofibrillar aggregates. After these early aggregation stages, long and curved fibrils of up to several micrometers start to develop by elongation of the protofibrils. The calorimetric data indicate that the specific enthalpy of fibril disaggregation and unfolding is relatively low, suggesting a low density of interactions within the fibril structure as compared to the native protein and a main entropy contribution to the stability of the amyloid fibrils.
Collapse
Affiliation(s)
- Bertrand Morel
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, Spain
| | | | | |
Collapse
|
23
|
Chevelkov V, Faelber K, Diehl A, Heinemann U, Oschkinat H, Reif B. Detection of dynamic water molecules in a microcrystalline sample of the SH3 domain of alpha-spectrin by MAS solid-state NMR. JOURNAL OF BIOMOLECULAR NMR 2005; 31:295-310. [PMID: 15928996 DOI: 10.1007/s10858-005-1718-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Accepted: 01/25/2005] [Indexed: 05/02/2023]
Abstract
Water molecules are a major determinant of protein stability and are important for understanding protein-protein interactions. We present two experiments which allow to measure first the effective T(2) decay rate of individual amide proton, and second the magnetization build-up rates for a selective transfer from H(2)O to H(N) using spin diffusion as a mixing element. The experiments are demonstrated for a uniformly (2)H, (15)N labeled sample of a microcrystalline SH3 domain in which exchangeable deuterons were back-substituted with protons. In order to evaluate the NMR experimental data, as X-ray structure of the protein was determined using the same crystallization protocol as for the solid-state NMR sample. The NMR experimental data are correlated with the dipolar couplings calculated from H(2)O-H(N) distances which were extracted from the X-ray structure of the protein. We find that the H(N) T(2) decay rates and H(2)O-H(N) build-up rates are sensitive to distance and dynamics of the detected water molecules with respect to the protein. We show that qualitative information about localization and dynamics of internal water molecules can be obtained in the solid-state by interpretation of the spin dynamics of a reporter amide proton.
Collapse
|
24
|
Abstract
To test the importance of loop stiffness in restricting the heterogeneity of transition state ensemble, we relaxed the distal loop of 10 unstable redesigned hydrophobic core mutants of alpha-spectrin SH3 domain. This was achieved by replacing Asp48 by Gly at the tip of the distal hairpin. Although the change was local in nature, the effect on stabilization was not uniform across the core mutants tested. There is an inverse rough correlation between the stabilization and the increase in buried hydrophobic volume, with respect to the wild type. Interestingly enough, proteins that although unstable are properly folded become molten globule-like after relaxation of the distal loop. These results highlight the importance of stiffness in restricting the conformational heterogeneity of a protein during the folding reaction. An interplay between unspecific hydrophobic interactions and constraint induced by polar interactions, or in this case local stiffness, is essential to achieve a well-ordered folded structure.
Collapse
Affiliation(s)
- Laura Spagnolo
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, Heidelberg D-69117, Germany
| | - Salvador Ventura
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, Heidelberg D-69117, Germany
| | - Luis Serrano
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, Heidelberg D-69117, Germany
| |
Collapse
|
25
|
Casares S, Sadqi M, López-Mayorga O, Martínez JC, Conejero-Lara F. Structural cooperativity in the SH3 domain studied by site-directed mutagenesis and amide hydrogen exchange. FEBS Lett 2003; 539:125-30. [PMID: 12650939 DOI: 10.1016/s0014-5793(03)00212-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have studied the effects produced by site-directed mutagenesis upon energetic and structural cooperativity in the Src homology region 3 domain of alpha-spectrin. The mutation of Asn47 to Gly or Ala in the distal loop brings about significant changes to the global stability of the domain in spite of not affecting its structure to any great extent. The binding affinity for a proline-rich peptide is also largely diminished in both mutant domains. We have compared the apparent Gibbs energies of the amide hydrogen-deuterium exchange (HX) between the wild-type and the Gly47 mutant. The observed changes in the Gibbs energy of HX indicate a remarkable energetic cooperativity in this small domain. Regions of the domain's core have a high cooperativity with the position of the mutation, indicating that their HX occurs mainly in states in which the distal loop is unstructured. More flexible regions, which undergo HX mainly by local motions, show a lower but still considerable cooperativity with the distal loop. We conclude that there is an important correlation between regional stability and cooperativity in this small domain.
Collapse
Affiliation(s)
- S Casares
- Departamento de Química Física e Instituto de Biotecnología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | | | | | | | | |
Collapse
|
26
|
Grant GA, Hu Z, Xu XL. Amino acid residue mutations uncouple cooperative effects in Escherichia coli D-3-phosphoglycerate dehydrogenase. J Biol Chem 2001; 276:17844-50. [PMID: 11278587 DOI: 10.1074/jbc.m009957200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
d-3-Phosphoglycerate dehydrogenase from Escherichia coli contains two Gly-Gly sequences that occur at junctions between domains. A previous study (Grant, G. A., Xu, X. L., and Hu, Z. (2000) Biochemistry 39, 7316-7319) determined that the Gly-Gly sequence at the junction between the regulatory and substrate binding domain functions as a hinge between the domains. Mutations in this area significantly decrease the ability of serine to inhibit activity but have little effect on the K(m) and k(cat). Conversely, the present study shows that mutations to the Gly-Gly sequence at the junction of the substrate and nucleotide binding domains, which form the active site cleft, have a significant effect on the k(cat) of the enzyme without substantially altering the enzyme's sensitivity to serine. In addition, mutation of Gly-294, but not Gly-295, has a profound effect on the cooperativity of serine inhibition. Interestingly, even though cooperativity of inhibition can be reduced significantly, there is little apparent effect on the cooperativity of serine binding itself. An additional mutant, G336V,G337V, also reduces the cooperativity of inhibition, but in this case serine binding also is reduced to the point at which it cannot be measured by equilibrium dialysis. The double mutant G294V,G336V demonstrates that strain imposed by mutation at one hinge can be relieved partially by mutation at the other hinge, demonstrating linkage between the two hinge regions. These data show that the two cooperative processes, serine binding and catalytic inhibition, can be uncoupled. Consideration of the allowable torsional angles for the side chains introduced by the mutations yields a range of values for these angles that the glycine residues likely occupy in the native enzyme. A comparison of these values with the torsional angles found for the inhibited enzyme from crystal coordinates provides potential beginning and ending orientations for the transition from active to inhibited enzyme, which will allow modeling of the dynamics of domain movement.
Collapse
Affiliation(s)
- G A Grant
- Department of Molecular Biology and Pharmacology and the Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|