1
|
Nair S, Jiang Y, Marchal IS, Chernobelsky E, Huang HW, Suh S, Pan R, Kong XP, Ryoo HD, Sigurdsson EM. Anti-tau single domain antibodies clear pathological tau and attenuate its toxicity and related functional defects. Cell Death Dis 2024; 15:543. [PMID: 39079958 PMCID: PMC11289317 DOI: 10.1038/s41419-024-06927-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
Tauopathies are a group of neurodegenerative diseases characterized by the presence of tau inclusions. We have developed over fifty anti-tau single-domain antibodies (sdAbs) derived from phage display libraries of a llama immunized with recombinant and pathological tau immunogens. We examined the therapeutic potential of four of these sdAbs in a Drosophila tauopathy model following their transgenic expression either in all neurons or neuronal subtypes. Three of these sdAbs showed therapeutic potential in various assays, effectively clearing pathological tau and attenuating or preventing tau-induced phenotypes that typically manifest as defects in neuronal axonal transport, neurodegeneration, functional impairments, and shortened lifespan. Of these three, one sdAb was superior in every assay, which may at least in part be attributed to its tau-binding epitope. These findings support its development as a gene therapy for tauopathies.
Collapse
Affiliation(s)
- Sudershana Nair
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Yixiang Jiang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Isabella S Marchal
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Elizabeth Chernobelsky
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Huai-Wei Huang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Sarah Suh
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Pretti E, Shell MS. Mapping the configurational landscape and aggregation phase behavior of the tau protein fragment PHF6. Proc Natl Acad Sci U S A 2023; 120:e2309995120. [PMID: 37983502 PMCID: PMC10691331 DOI: 10.1073/pnas.2309995120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023] Open
Abstract
The PHF6 (Val-Gln-Ile-Val-Tyr-Lys) motif, found in all isoforms of the microtubule-associated protein tau, forms an integral part of ordered cores of amyloid fibrils formed in tauopathies and is thought to play a fundamental role in tau aggregation. Because PHF6 as an isolated hexapeptide assembles into ordered fibrils on its own, it is investigated as a minimal model for insight into the initial stages of aggregation of larger tau fragments. Even for this small peptide, however, the large length and time scales associated with fibrillization pose challenges for simulation studies of its dynamic assembly, equilibrium configurational landscape, and phase behavior. Here, we develop an accurate, bottom-up coarse-grained model of PHF6 for large-scale simulations of its aggregation, which we use to uncover molecular interactions and thermodynamic driving forces governing its assembly. The model, not trained on any explicit information about fibrillar structure, predicts coexistence of formed fibrils with monomers in solution, and we calculate a putative equilibrium phase diagram in concentration-temperature space. We also characterize the configurational and free energetic landscape of PHF6 oligomers. Importantly, we demonstrate with a model of heparin that this widely studied cofactor enhances the aggregation propensity of PHF6 by ordering monomers during nucleation and remaining associated with growing fibrils, consistent with experimentally characterized heparin-tau interactions. Overall, this effort provides detailed molecular insight into PHF6 aggregation thermodynamics and pathways and, furthermore, demonstrates the potential of modern multiscale modeling techniques to produce predictive models of amyloidogenic peptides simultaneously capturing sequence-specific effects and emergent aggregate structures.
Collapse
Affiliation(s)
- Evan Pretti
- Department of Chemical Engineering, University of California, Santa Barbara, CA93106-5080
| | - M. Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, CA93106-5080
| |
Collapse
|
3
|
Limorenko G, Lashuel HA. To target Tau pathologies, we must embrace and reconstruct their complexities. Neurobiol Dis 2021; 161:105536. [PMID: 34718129 DOI: 10.1016/j.nbd.2021.105536] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022] Open
Abstract
The accumulation of hyperphosphorylated fibrillar Tau aggregates in the brain is one of the defining hallmarks of Tauopathy diseases, including Alzheimer's disease. However, the primary events or molecules responsible for initiation of the pathological Tau aggregation and spreading remain unknown. The discovery of heparin as an effective inducer of Tau aggregation in vitro was instrumental to enabling different lines of research into the role of Tau aggregation in the pathogenesis of Tauopathies. However, recent proteomics and cryogenic electron microscopy (cryo-EM) studies have revealed that heparin-induced Tau fibrils generated in vitro do not reproduce the biochemical and ultrastructural properties of disease-associated brain-derived Tau fibrils. These observations demand that we reassess our current approaches for investigating the mechanisms underpinning Tau aggregation and pathology formation. Our review article presents an up-to-date survey and analyses of 1) the evolution of our understanding of the interactions between Tau and heparin, 2) the various structural and mechanistic models of the heparin-induced Tau aggregation, 3) the similarities and differences between brain-derived and heparin-induced Tau fibrils; and 4) emerging concepts on the biochemical and structural determinants underpinning Tau pathological heterogeneity in Tauopathies. Our analyses identify specific knowledge gaps and call for 1) embracing the complexities of Tau pathologies; 2) reassessment of current approaches to investigate, model and reproduce pathological Tau aggregation as it occurs in the brain; 3) more research towards a better understanding of the naturally-occurring cofactor molecules that are associated with Tau brain pathology initiation and propagation; and 4) developing improved approaches for in vitro production of the Tau aggregates and fibrils that recapitulate and/or amplify the biochemical and structural complexity and diversity of pathological Tau in Tauopathies. This will result in better and more relevant tools, assays, and mechanistic models, which could significantly improve translational research and the development of drugs and antibodies that have higher chances for success in the clinic.
Collapse
Affiliation(s)
- Galina Limorenko
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Federal de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Federal de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
4
|
Demock M, Kornguth S. A Mechanism for the Development of Chronic Traumatic Encephalopathy From Persistent Traumatic Brain Injury. J Exp Neurosci 2019; 13:1179069519849935. [PMID: 31205424 PMCID: PMC6537483 DOI: 10.1177/1179069519849935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/22/2019] [Indexed: 12/24/2022] Open
Abstract
A mechanism that describes the progression of traumatic brain injury (TBI) to end-stage chronic traumatic encephalopathy (CTE) is offered in this article. This mechanism is based upon the observed increase in the concentration of both tau protein and of human leukocyte antigen (HLA) class I proteins; the HLA increase is expressed on the cell membrane of neural cells. These events follow the inflammatory responses caused by the repetitive TBI. Associated inflammatory changes include macrophage entry into the brain parenchyma from increased permeability of the blood-brain barrier (BBB) and microglial activation at the base of the sulci. The release of interferon gamma from the microglia and macrophages induces the marked increased expression of HLA class I proteins by the neural cells and subsequent redistribution of the tau proteins to the glial and neuronal surface. In those individuals with highly expressed HLA class I C, the high level of HLA binds tau protein electrostatically. The ionic region of HLA class I C (amino acid positions 50-90) binds to the oppositely charged ionic region of tau (amino acid positions 93-133). These interactions thereby shift the cellular localization of the tau and orient the tau spatially so that the cross-linking sites of tau (275-280 and 306-311) are aligned. This alignment facilitates the cross-linking of tau to form the intracellular and extracellular microfibrils of tau, the primary physiological characteristic of tauopathy. Following endocytosis of the membrane HLA/tau complex, these microfibrils accumulate and produce a tau-storage-like disease. Therefore, tauopathy is the secondary collateral process of brain injury, resulting from the substantial increase in tau and HLA expression on neural cells. This proposed mechanism suggests several potential targets for mitigating the clinical progression of TBI to CTE.
Collapse
Affiliation(s)
- Melissa Demock
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Steven Kornguth
- Departments of Neurology and Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA.,Departments of Neurology and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
5
|
Minimalistic in vitro systems for investigating tau pathology. J Neurosci Methods 2018; 319:69-76. [PMID: 30278185 DOI: 10.1016/j.jneumeth.2018.09.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 01/30/2023]
Abstract
Neurofibrillary tangles, formed of hyperphosphorylated, misfolded tau accumulations, are a pathological hallmark of neurodegenerative diseases such as Alzheimer's disease (AD) and frontotemporal dementia. The neuroanatomical localisation of tau pathology in AD brains of different disease stages suggests that tau tangle pathology is spreading throughout the brain along connected neuronal circuits. Pathogenic tau can act as a prion-like seed, inducing the misfolding of native tau and leading to disease propagation throughout the brain. However, it is not yet fully understood how tau spreads between individual neurons or brain regions. Here, we review the models for investigating tau propagation in vitro, and summarise the findings from key studies into the mechanisms of tau pathology propagation in disease.
Collapse
|
6
|
Avila J, Jiménez JS, Sayas CL, Bolós M, Zabala JC, Rivas G, Hernández F. Tau Structures. Front Aging Neurosci 2016; 8:262. [PMID: 27877124 PMCID: PMC5099159 DOI: 10.3389/fnagi.2016.00262] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/21/2016] [Indexed: 12/25/2022] Open
Abstract
Tau is a microtubule-associated protein that plays an important role in axonal stabilization, neuronal development, and neuronal polarity. In this review, we focus on the primary, secondary, tertiary, and quaternary tau structures. We describe the structure of tau from its specific residues until its conformation in dimers, oligomers, and larger polymers in physiological and pathological situations.
Collapse
Affiliation(s)
- Jesus Avila
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-UAM)Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades NeurodegenerativasMadrid, Spain
| | - Juan S Jiménez
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid Madrid, Spain
| | - Carmen L Sayas
- Centre for Biomedical Research of the Canary Islands, Institute for Biomedical Technologies, University of La Laguna Tenerife, Spain
| | - Marta Bolós
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-UAM)Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades NeurodegenerativasMadrid, Spain
| | - Juan C Zabala
- Departamento de Biología Molecular, Facultad de Medicina, IDIVAL-Universidad de Cantabria Santander, Spain
| | - Germán Rivas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Felix Hernández
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-UAM)Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades NeurodegenerativasMadrid, Spain
| |
Collapse
|
7
|
Kanaan NM, Himmelstein DS, Ward SM, Combs B, Binder LI. Tau Protein. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
8
|
The green tea polyphenol (-)-epigallocatechin gallate prevents the aggregation of tau protein into toxic oligomers at substoichiometric ratios. FEBS Lett 2014; 589:77-83. [PMID: 25436420 DOI: 10.1016/j.febslet.2014.11.026] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 12/16/2022]
Abstract
The accumulation of amyloid-beta (Aβ) and tau aggregates is a pathological hallmark of Alzheimer's disease. Both polypeptides form fibrillar deposits, but several lines of evidence indicate that Aβ and tau form toxic oligomeric aggregation intermediates. Depleting such structures could thus be a powerful therapeutic strategy. We generated a fragment of tau (His-K18ΔK280) that forms stable, toxic, oligomeric tau aggregates in vitro. We show that (-)-epigallocatechin gallate (EGCG), a green tea polyphenol that was previously found to reduce Aβ aggregation, inhibits the aggregation of tau K18ΔK280 into toxic oligomers at ten- to hundred-fold substoichiometric concentrations, thereby rescuing toxicity in neuronal model cells.
Collapse
|
9
|
Inoue M, Kaida S, Nakano S, Annoni C, Nakata E, Konno T, Morii T. Phosphorylation regulates fibrillation of an aggregation core peptide in the second repeat of microtubule-binding domain of human tau. Bioorg Med Chem 2014; 22:6471-80. [DOI: 10.1016/j.bmc.2014.09.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/12/2014] [Accepted: 09/12/2014] [Indexed: 12/26/2022]
|
10
|
Mandelkow EM, Mandelkow E. Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2013; 2:a006247. [PMID: 22762014 DOI: 10.1101/cshperspect.a006247] [Citation(s) in RCA: 549] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Tau represents the subunit protein of one of the major hallmarks of Alzheimer disease (AD), the neurofibrillary tangles, and is therefore of major interest as an indicator of disease mechanisms. Many of the unusual properties of Tau can be explained by its nature as a natively unfolded protein. Examples are the large number of structural conformations and biochemical modifications (phosphorylation, proteolysis, glycosylation, and others), the multitude of interaction partners (mainly microtubules, but also other cytoskeletal proteins, kinases, and phosphatases, motor proteins, chaperones, and membrane proteins). The pathological aggregation of Tau is counterintuitive, given its high solubility, but can be rationalized by short hydrophobic motifs forming β structures. The aggregation of Tau is toxic in cell and animal models, but can be reversed by suppressing expression or by aggregation inhibitors. This review summarizes some of the structural, biochemical, and cell biological properties of Tau and Tau fibers. Further aspects of Tau as a diagnostic marker and therapeutic target, its involvement in other Tau-based diseases, and its histopathology are covered by other chapters in this volume.
Collapse
Affiliation(s)
- Eva-Maria Mandelkow
- Max-Planck Unit for Structural Molecular Biology, c/o DESY, 22607 Hamburg, Germany; DZNE, German Center for Neurodegenerative Diseases, and CAESAR Research Center, 53175 Bonn, Germany.
| | | |
Collapse
|
11
|
Combs B, Gamblin TC. FTDP-17 tau mutations induce distinct effects on aggregation and microtubule interactions. Biochemistry 2012; 51:8597-607. [PMID: 23043292 DOI: 10.1021/bi3010818] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
FTDP-17 mutations in the tau gene lead to early onset frontotemporal dementias characterized by the pathological aggregation of the microtubule-associated protein tau. Tau aggregation is closely correlated with the progression and severity of localized atrophy of certain regions in the brain. These mutations are primarily located in or near the microtubule-binding repeat regions of tau and can have vastly different effects on the protein. Some mutations have been linked to effects such as increased levels of aggregation, hyperphosphorylation, defects in mRNA splicing, and weakened interaction with microtubules. Given the differential effects of the mutations, it may not be surprising that the pathology associated with FTDP-17 can vary widely as well. Despite this variety, several of the mutations are commonly used interchangeably as aggregation inducers for in vitro and in vivo models of tauopathies. We generated recombinant forms of 12 FTDP-17 mutations chosen for their predicted effects on the charge, hydrophobicity, and secondary structure of the protein. We then examined the effects that the mutations had on the properties of in vitro aggregation of the protein and its ability to stabilize microtubule assembly. The group of mutations induced very different effects on the total amount of aggregation, the kinetics of aggregation, and filament morphology. Several of the mutations inhibited the microtubule stabilization ability of tau, while others had very little effect compared to wild-type tau. These results indicate that the mechanisms of disease progression may differ among FTDP-17 mutations and that the effects of the varying mutations may not be equal in all model systems.
Collapse
Affiliation(s)
- Benjamin Combs
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | | |
Collapse
|
12
|
Daebel V, Chinnathambi S, Biernat J, Schwalbe M, Habenstein B, Loquet A, Akoury E, Tepper K, Müller H, Baldus M, Griesinger C, Zweckstetter M, Mandelkow E, Vijayan V, Lange A. β-Sheet Core of Tau Paired Helical Filaments Revealed by Solid-State NMR. J Am Chem Soc 2012; 134:13982-9. [DOI: 10.1021/ja305470p] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Venita Daebel
- NMR-based
Structural Biology, Max Planck Institute for Biophysical Chemistry, Am
Fassberg 11, 37077 Göttingen, Germany
| | - Subashchandrabose Chinnathambi
- DZNE, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee
2, 53175 Bonn, Germany
- CAESAR Research Center, Ludwig-Erhard-Allee 2, 53175
Bonn, Germany
| | - Jacek Biernat
- DZNE, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee
2, 53175 Bonn, Germany
- CAESAR Research Center, Ludwig-Erhard-Allee 2, 53175
Bonn, Germany
| | - Martin Schwalbe
- NMR-based
Structural Biology, Max Planck Institute for Biophysical Chemistry, Am
Fassberg 11, 37077 Göttingen, Germany
| | - Birgit Habenstein
- NMR-based
Structural Biology, Max Planck Institute for Biophysical Chemistry, Am
Fassberg 11, 37077 Göttingen, Germany
| | - Antoine Loquet
- NMR-based
Structural Biology, Max Planck Institute for Biophysical Chemistry, Am
Fassberg 11, 37077 Göttingen, Germany
| | - Elias Akoury
- NMR-based
Structural Biology, Max Planck Institute for Biophysical Chemistry, Am
Fassberg 11, 37077 Göttingen, Germany
| | - Katharina Tepper
- DZNE, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee
2, 53175 Bonn, Germany
- CAESAR Research Center, Ludwig-Erhard-Allee 2, 53175
Bonn, Germany
| | - Henrik Müller
- NMR-based
Structural Biology, Max Planck Institute for Biophysical Chemistry, Am
Fassberg 11, 37077 Göttingen, Germany
| | - Marc Baldus
- NMR-based
Structural Biology, Max Planck Institute for Biophysical Chemistry, Am
Fassberg 11, 37077 Göttingen, Germany
| | - Christian Griesinger
- NMR-based
Structural Biology, Max Planck Institute for Biophysical Chemistry, Am
Fassberg 11, 37077 Göttingen, Germany
| | - Markus Zweckstetter
- NMR-based
Structural Biology, Max Planck Institute for Biophysical Chemistry, Am
Fassberg 11, 37077 Göttingen, Germany
- DZNE, German Center for Neurodegenerative Diseases, Grisebachstraße
5, 37077 Göttingen, Germany
| | - Eckhard Mandelkow
- DZNE, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee
2, 53175 Bonn, Germany
- CAESAR Research Center, Ludwig-Erhard-Allee 2, 53175
Bonn, Germany
| | - Vinesh Vijayan
- NMR-based
Structural Biology, Max Planck Institute for Biophysical Chemistry, Am
Fassberg 11, 37077 Göttingen, Germany
| | - Adam Lange
- NMR-based
Structural Biology, Max Planck Institute for Biophysical Chemistry, Am
Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
13
|
Patterson KR, Ward SM, Combs B, Voss K, Kanaan NM, Morfini G, Brady ST, Gamblin TC, Binder LI. Heat shock protein 70 prevents both tau aggregation and the inhibitory effects of preexisting tau aggregates on fast axonal transport. Biochemistry 2011; 50:10300-10. [PMID: 22039833 DOI: 10.1021/bi2009147] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aggregation and accumulation of the microtubule-associated protein tau are associated with cognitive decline and neuronal degeneration in Alzheimer's disease and other tauopathies. Thus, preventing the transition of tau from a soluble state to insoluble aggregates and/or reversing the toxicity of existing aggregates would represent a reasonable therapeutic strategy for treating these neurodegenerative diseases. Here we demonstrate that molecular chaperones of the heat shock protein 70 (Hsp70) family are potent inhibitors of tau aggregation in vitro, preventing the formation of both mature fibrils and oligomeric intermediates. Remarkably, addition of Hsp70 to a mixture of oligomeric and fibrillar tau aggregates prevents the toxic effect of these tau species on fast axonal transport, a critical process for neuronal function. When incubated with preformed tau aggregates, Hsp70 preferentially associated with oligomeric over fibrillar tau, suggesting that prefibrillar oligomeric tau aggregates play a prominent role in tau toxicity. Taken together, our data provide a novel molecular basis for the protective effect of Hsp70 in tauopathies.
Collapse
Affiliation(s)
- Kristina R Patterson
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ultrastructural alterations of Alzheimer's disease paired helical filaments by grape seed-derived polyphenols. Neurobiol Aging 2010; 33:1427-39. [PMID: 21196065 DOI: 10.1016/j.neurobiolaging.2010.11.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/20/2010] [Accepted: 11/02/2010] [Indexed: 11/21/2022]
Abstract
Abnormal folding of the microtubule-associated protein tau leads to aggregation of tau into paired helical filaments (PHFs) and neurofibrillary tangles, the major hallmark of Alzheimer's disease (AD). We have recently shown that grape seed polyphenol extract (GSPE) reduces tau pathology in the TMHT mouse model of tauopathy (Wang et al., 2010). In the present studies we assessed the impact of GSPE exposure on the ultrastructure of PHFs isolated from Alzheimer's disease brain. Transmission electron microscopy revealed that GSPE induced profound dose- and time-dependent alterations in the morphology of PHFs with partial disintegration of filaments. Filaments showed ∼2-fold enlargement in width and displayed numerous protrusions and splayed ends consistent with unfolding of tau and diminished structural stability. In addition, GSPE induced a reduction in immunogold labeling with antibodies against the C-terminal half (12E8, PHF-1) and the middle region of tau (AT8, Tau5, pSer214 tau, and AT180) but not the C-terminal end (Tau46). In comparison, labeling of N-terminus (Alz50) was enhanced. It is unlikely that alterations in immunogold labeling were due to biochemical alterations, e.g., protein phosphatase or proteolytic activities potentially stimulated by GSPE, because western blotting studies have shown the preservation of full length polypeptides of tau and their phospho-epitopes in GSPE-treated samples. The GSPE mechanism may include a noncovalent interaction of polyphenols with proline residues in the proline-rich domain of tau, with Pin1 sites at P213 and P232 most seriously affected as judged by suppression of labeling. Collectively, our results suggest that GSPE has a significant potential for therapeutic development by neutralizing phospho-epitopes and disrupting fibrillary conformation leading to disintegration of PHFs.
Collapse
|
15
|
Pasinetti GM, Ho L. Role of grape seed polyphenols in Alzheimer's disease neuropathology. NUTRITION AND DIETARY SUPPLEMENTS 2010; 2010:97-103. [PMID: 23730149 DOI: 10.2147/nds.s6898] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative condition characterized by a progressive decline in cognitive function. AD affects approximately five million people in the US, creating a devastating financial burden on health care costs and an emotional burden on caregivers. To date, there is no cure for AD, so researchers are continually exploring novel avenues for the prevention and treatment of this condition. In this article, we present some findings from our laboratory and those of others on the potential benefits of a grape seed polyphenolic extract (GSPE) for the prevention and treatment of AD, including its chemical composition, bioactivity, bioavailability, safety, and tolerability, and the mechanisms by which it interferes with AD pathogenesis. Findings presented in this review article support the development of GSPE as a preventative and/or therapeutic agent in AD.
Collapse
Affiliation(s)
- Giulio Maria Pasinetti
- Department of Neurology, Mount Sinai School of Medicine, New York ; Geriatric Research, education and Clinical Center, James J Peters veteran Affairs Medical Center, Bronx, New York, USA
| | | |
Collapse
|
16
|
Abstract
As proteins aggregate to form amyloid fibers, their secondary structure changes from its native form to cross-beta-sheet. Whether this conformational change is essential for fiber formation remains unknown. Evidence from atomic force microscopy and transmission electron microscopy suggests that aggregation occurs in two stages. Initially, protein monomers aggregate into colloidal spheres; however, they stop growing after reaching a uniform diameter. The spheres then join together to form linear chains which evolve into mature fibers. In this paper, we apply, for the first time, the DLVO theory, formulated by Derjaguin, Landau, Verwey and Overbeek for the quantitative analysis of colloidal interactions, to elucidate the two stages of fiber formation. We find that, as like-charged protein molecules aggregate, the total charge of the colloidal sphere increases until it repels additional monomers from coming close enough to bind, limiting the size of the colloidal particle. Energy analysis and X-ray diffraction data suggest that aggregation of multiple protein monomers onto the growing colloid drives their misfolding into hairpin loops. These loops stack together to form a U-shaped trough which initially adopts a cross-alpha-sheet structure with a strong dipole moment. Driven by charge-dipole interactions, the colloidal spheres aggregate into a linear chain. The peptide strands are oriented perpendicular to the direction of the dipole of each sphere and, therefore, are also perpendicular to the axis of the linear chain as it forms and evolves into the mature fiber. The cross alpha-sheet then evolves into the thermodynamically more stable cross beta-sheet.
Collapse
Affiliation(s)
- Shaohua Xu
- Department of Biological Sciences and Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA.
| |
Collapse
|
17
|
Sarkar M, Kuret J, Lee G. Two motifs within the tau microtubule-binding domain mediate its association with the hsc70 molecular chaperone. J Neurosci Res 2009; 86:2763-73. [PMID: 18500754 DOI: 10.1002/jnr.21721] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Tau, a microtubule-associated protein with multiple phosphorylation sites, forms aggregates that correlate with neurodegeneration in Alzheimer's disease and several other neurodegenerative diseases, termed tauopathies. Hsc70 is a highly expressed constitutive chaperone that can drive conformational change in proteins, prevent the aggregation of its substrates, recognize misfolded substrates, and facilitate their degradation. Here, we show that hsc70 binds to the microtubule-binding domain of tau in vitro and in vivo, without an absolute requirement for tau phosphorylation. Binding requires a carboxy-terminal region of hsc70 comprising its peptide-binding and variable domains. We have identified two hsc70 binding sites on tau and hydrophobic amino acids crucial for hsc70 binding. Interestingly, these hsc70 binding sites correspond to the beta-structure elements that have been previously reported to facilitate tau aggregation. Thus, it is possible that hsc70 binding might directly inhibit tau-tau interactions that precede tau oligomerization and aggregation. Our results provide an important stimulus for research into how the hsc70-tau interaction might affect tau fate in normal cells and in disease.
Collapse
Affiliation(s)
- Mitul Sarkar
- Program in Neuroscience and Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
18
|
Peterson DW, Zhou H, Dahlquist FW, Lew J. A soluble oligomer of tau associated with fiber formation analyzed by NMR. Biochemistry 2008; 47:7393-404. [PMID: 18558718 DOI: 10.1021/bi702466a] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is characterized by the intracellular accumulation of the neurofibrillary tangles comprised mainly of the microtubule-associated protein, tau. A critical aspect of understanding tangle formation is to understand the transition of soluble monomeric tau into mature fibrils by characterizing the structure of intermediates along the aggregation pathway. We have carried out multidimensional NMR studies on a C-terminal fragment of human tau (tau (187)) to gain structural insight into the aggregation process. To specifically monitor intermolecular interaction between tau molecules in solution, we combined (15)N- and (14)N-labeled tau, the latter of which was modified with a paramagnetic nitroxide spin label (MTSL). Paramagnetic relaxation enhancement (PRE) of (15)N-tau by interaction with MTSL- (14)N-tau allowed identification of low molecular weight oligomers of tau (187) that formed in response to heparin-induced aggregation. Two regions, VQIINK (280) and VQIVYK (311), were exclusively broadened by MTSL located at varied positions in the tau molecule. We propose that soluble oligomers of tau (187) are generated via intermolecular interactions at these motifs triggered by heparin addition. However, the associated line broadening at these motifs cannot be due to interaction between tau (187) and heparin directly. Instead, these specific interactions necessarily occur between tau molecules and are intermolecular in nature. Our data support the idea that VQIINK (280) and VQIVYK (311) are the major, if not sole, critical regions that directly mediate intermolecular contact between tau molecules during the early phases of aggregation.
Collapse
Affiliation(s)
- Dylan W Peterson
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | | | | | |
Collapse
|
19
|
Mizushima F, Minoura K, Tomoo K, Sumida M, Taniguchi T, Ishida T. Fluorescence-coupled CD conformational monitoring of filament formation of tau microtubule-binding repeat domain. Biochem Biophys Res Commun 2006; 343:712-8. [PMID: 16563344 DOI: 10.1016/j.bbrc.2006.02.185] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Accepted: 02/28/2006] [Indexed: 10/24/2022]
Abstract
To clarify the contribution of the three- or four-repeated peptide moiety in tau microtubule-binding domain (MBD) to paired helical filament (PHF) formation, conformational transition accompanied by heparin-induced filament formation was investigated stepwise for four repeat peptides (R1-R4), one three-repeated R1-R3-R4 peptide (3RMBD), and one four-repeated R1-R2-R3-R4 peptide (4RMBD) using a combination of thioflavin S fluorescence and circular dichroism (CD) measurements in a neutral buffer (pH 7.6). The comparison of the fluorescence profile of each repeat peptide with those of 3RMBD and 4RMBD showed the synergistic contribution of R1-R4 to PHF formation of MBD. The CD spectrum measured as a function of filament formation time indicates that: (i) two conformational transitions occur for the filament formations of R3 (from the random structure to the beta-sheet structure) and 3RMBD (from the random structure to the alpha-helix structure), (ii) the filament formations of R2 and 4RMBD proceed via the synchronized conformational transitions of the alpha-helix and random structures, and (iii) the filament formation of 4RMBD is dependent on the aggregation behavior of R2. These data are useful for elucidating the MBD conformational transition in tau PHF formation.
Collapse
Affiliation(s)
- Fumie Mizushima
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Inouye H, Sharma D, Goux WJ, Kirschner DA. Structure of core domain of fibril-forming PHF/Tau fragments. Biophys J 2006; 90:1774-89. [PMID: 16339876 PMCID: PMC1367326 DOI: 10.1529/biophysj.105.070136] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 11/14/2005] [Indexed: 12/21/2022] Open
Abstract
Short peptide sequences within the microtubule binding domain of the protein Tau are proposed to be core nucleation sites for formation of amyloid fibrils displaying the paired helical filament (PHF) morphology characteristic of neurofibrillary tangles. To study the structure of these proposed nucleation sites, we analyzed the x-ray diffraction patterns from the assemblies formed by a variety of PHF/tau-related peptide constructs containing the motifs VQIINK (PHF6*) in the second repeat and VQIVYK (PHF6) in the third repeat of tau. Peptides included: tripeptide acetyl-VYK-amide (AcVYK), tetrapeptide acetyl-IVYK-amide (AcPHF4), hexapeptide acetyl-VQIVYK-amide (AcPHF6), and acetyl-GKVQIINKLDLSNVQKDNIKHGSVQIVYKPVDLSKVT-amide (AcTR4). All diffraction patterns showed reflections at spacings of 4.7 A, 3.8 A, and approximately 8-10 A, which are characteristic of an orthogonal unit cell of beta-sheets having dimensions a=9.4 A, b=6.6 A, and c=approximately 8-10 A (where a, b, and c are the lattice constants in the H-bonding, chain, and intersheet directions). The sharp 4.7 A reflections indicate that the beta-crystallites are likely to be elongated along the H-bonding direction and in a cross-beta conformation. The assembly of the AcTR4 peptide, which contains both the PHF6 and PHF6* motifs, consisted of twisted sheets, as indicated by a unique fanning of the diffuse equatorial scattering and meridional accentuation of the (210) reflection at 3.8 A spacing. The diffraction data for AcVYK, AcPHF4, and AcPHF6 all were consistent with approximately 50 A-wide tubular assemblies having double-walls, where beta-strands constitute the walls. In this structure, the peptides are H-bonded together in the fiber direction, and the intersheet direction is radial. The positive-charged lysine residues face the aqueous medium, and tyrosine-tyrosine aromatic interactions stabilize the intersheet (double-wall) layers. This particular contact, which may be involved in PHF fibril formation, is proposed here as a possible aromatic target for anti-tauopathy drugs.
Collapse
Affiliation(s)
- Hideyo Inouye
- Boston College, Biology Department, Chestnut Hill, Massachusetts, USA
| | | | | | | |
Collapse
|
21
|
Ksiezak-Reding H, Wall JS. Characterization of paired helical filaments by scanning transmission electron microscopy. Microsc Res Tech 2005; 67:126-40. [PMID: 16104001 DOI: 10.1002/jemt.20188] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Paired helical filaments (PHFs) are abnormal twisted filaments composed of hyperphosphorylated tau protein. They are found in Alzheimer's disease and other neurodegenerative disorders designated as tauopathies. They are a major component of intracellular inclusions known as neurofibrillary tangles (NFTs). The objective of this review is to summarize various structural studies of PHFs in which using scanning transmission electron microscopy (STEM) has been particularly informative. STEM provides shape and mass per unit length measurements important for studying ultrastructural aspects of filaments. These include quantitative comparisons between dispersed and aggregated populations of PHFs as well as comparative studies of PHFs in Alzheimer's disease and other neurodegenerative disorders. Other approaches are also discussed if relevant or complementary to studies using STEM, e.g., application of a novel staining reagent, Nanovan. Our understanding of the PHF structure and the development of PHFs into NFTs is presented from a historical perspective. Others goals are to describe the biochemical and ultrastructural complexity of authentic PHFs, to assess similarities between authentic and synthetic PHFs, and to discuss recent advances in PHF modeling.
Collapse
Affiliation(s)
- Hanna Ksiezak-Reding
- Neuroinflammation Research Laboratories, Department of Psychiatry, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | |
Collapse
|
22
|
Gamblin TC. Potential structure/function relationships of predicted secondary structural elements of tau. Biochim Biophys Acta Mol Basis Dis 2005; 1739:140-9. [PMID: 15615633 DOI: 10.1016/j.bbadis.2004.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Accepted: 08/30/2004] [Indexed: 01/14/2023]
Abstract
The microtubule-associated protein tau is believed to be a natively unfolded molecule with virtually no secondary structure. However, this protein self-associates into filamentous forms in various neurodegenerative diseases. Since these filamentous forms show a remarkable degree of higher order due to their regular widths and periodicity, it is widely speculated that tau does contain secondary structures that come together to form tertiary and quaternary structures in the filamentous form. The purpose of this review is to use the primary sequence of tau along with predictive methods in an effort to identify potential secondary structural elements that could be involved in its normal and pathological functions. Although there are few predicted structural elements in the tau molecule, these analyses should lead to a better understanding of the structure/function relationships that regulate the behavior of tau.
Collapse
Affiliation(s)
- T Chris Gamblin
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave. Lawrence, KS 66045, USA.
| |
Collapse
|
23
|
von Bergen M, Barghorn S, Biernat J, Mandelkow EM, Mandelkow E. Tau aggregation is driven by a transition from random coil to beta sheet structure. Biochim Biophys Acta Mol Basis Dis 2004; 1739:158-66. [PMID: 15615635 DOI: 10.1016/j.bbadis.2004.09.010] [Citation(s) in RCA: 272] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 09/23/2004] [Accepted: 09/23/2004] [Indexed: 11/28/2022]
Abstract
The abnormal aggregation of the microtubule associated protein tau into paired helical filaments (PHFs) is one the hallmarks of Alzheimer's disease. The soluble protein is one of the longest natively unfolded proteins, lacking significant amounts of secondary structure over a sequence of 441 amino acids in the longest isoform. Furthermore, the unfolded character is consistent with some notable features of the protein like stability towards heat and acid treatment. It is still unclear how these characteristics support the physiological function of binding to and stabilization of microtubules. We review here some recent studies on how an unfolded protein such as tau can adopt beta-structure, which then leads to the highly ordered morphology of the PHFs. The core sequence for both microtubule binding and PHF formation is the microtubule binding domain containing three or four repeats. This region alone is sufficient for PHF formation and mostly unfolded in the soluble state. A search for sequence motifs within this region crucial for PHF building revealed two hexapeptides in the second and the third repeat. Some of the genetically linked cases of FTDP-17 show missense mutations in or adjacent to these hexapeptide motifs. Proteins containing the P301L and the DeltaK280 mutations exhibit accelerated aggregation. The importance of the two hexapeptides stems from their capacity to undergo a conformational change from a random coil to a beta sheet structure. The increase of beta sheet structure is a typical feature of an amyloidogenic protein and is the basis of other characteristics like a decreased sensitivity towards proteolytic degradation and Congo red binding. PHFs aggregated in vitro and in vivo contain beta-sheet structure, as judged by circular dichroism (CD) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction.
Collapse
Affiliation(s)
- Martin von Bergen
- Max-Planck-Unit for Structural Molecular Biology, Notkestrasse 85, D-22607 Hamburg, Germany
| | | | | | | | | |
Collapse
|
24
|
Papanikolopoulou K, Schoehn G, Forge V, Forsyth VT, Riekel C, Hernandez JF, Ruigrok RWH, Mitraki A. Amyloid fibril formation from sequences of a natural beta-structured fibrous protein, the adenovirus fiber. J Biol Chem 2004; 280:2481-90. [PMID: 15513921 DOI: 10.1074/jbc.m406282200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Amyloid fibrils are fibrous beta-structures that derive from abnormal folding and assembly of peptides and proteins. Despite a wealth of structural studies on amyloids, the nature of the amyloid structure remains elusive; possible connections to natural, beta-structured fibrous motifs have been suggested. In this work we focus on understanding amyloid structure and formation from sequences of a natural, beta-structured fibrous protein. We show that short peptides (25 to 6 amino acids) corresponding to repetitive sequences from the adenovirus fiber shaft have an intrinsic capacity to form amyloid fibrils as judged by electron microscopy, Congo Red binding, infrared spectroscopy, and x-ray fiber diffraction. In the presence of the globular C-terminal domain of the protein that acts as a trimerization motif, the shaft sequences adopt a triple-stranded, beta-fibrous motif. We discuss the possible structure and arrangement of these sequences within the amyloid fibril, as compared with the one adopted within the native structure. A 6-amino acid peptide, corresponding to the last beta-strand of the shaft, was found to be sufficient to form amyloid fibrils. Structural analysis of these amyloid fibrils suggests that perpendicular stacking of beta-strand repeat units is an underlying common feature of amyloid formation.
Collapse
Affiliation(s)
- Katerina Papanikolopoulou
- Institut de Biologie Structurale, UMR 5075, CEA-CNRS-UJF, 41 Rue Jules Horowitz, 38027 Grenoble, European Molecular Biology Laboratory, 6 Rue Jules Horowitz, 38042 Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Margittai M, Langen R. Template-assisted filament growth by parallel stacking of tau. Proc Natl Acad Sci U S A 2004; 101:10278-83. [PMID: 15240881 PMCID: PMC478563 DOI: 10.1073/pnas.0401911101] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tau filaments are found in >20 neurodegenerative diseases. Yet, because of their enormous molecular weights and poor tendency to form highly ordered 3D crystal lattices, they have evaded high-resolution structure determination. Here, we studied 25 derivatized tau mutants by using electron paramagnetic resonance and fluorescence spectroscopy to report structural details of tau filaments. Based on strong spin exchange and pyrene excimer formation of core residues, we find that individual tau proteins form single molecule layers along the fiber axis that perfectly stack on top of each other by in-register, parallel alignment of beta-strands. We suggest a model of filament growth wherein the existing filament serves as a template for the incoming, unfolded tau molecule, resulting in a new structured layer with maximized hydrogen-bonded contact surface and side-chain stacking.
Collapse
Affiliation(s)
- Martin Margittai
- Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089-2821, USA
| | | |
Collapse
|
26
|
Goux WJ, Kopplin L, Nguyen AD, Leak K, Rutkofsky M, Shanmuganandam VD, Sharma D, Inouye H, Kirschner DA. The Formation of Straight and Twisted Filaments from Short Tau Peptides. J Biol Chem 2004; 279:26868-75. [PMID: 15100221 DOI: 10.1074/jbc.m402379200] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We studied fibril formation in a family of peptides based on PHF6 (VQIVYK), a short peptide segment found in the microtubule binding region of tau protein. N-Acetylated peptides AcVYK-amide (AcVYK), AcIVYK-amide (AcPHF4), AcQIVYK-amide (AcPHF5), and AcV-QIVYK-amide (AcPHF6) rapidly formed straight filaments in the presence of 0.15 m NaCl, each composed of two laterally aligned protofilaments approximately 5 nm in width. X-ray fiber diffraction showed the omnipresent sharp 4.7-A reflection indicating that the scattering objects are likely elongated along the hydrogen-bonding direction in a cross-beta conformation, and Fourier transform IR suggested the peptide chains were in a parallel (AcVYK, AcPHF6) or antiparallel (AcPHF4, AcPHF5) beta-sheet configuration. The dipeptide N-acetyl-YK-amide (AcYK) formed globular structures approximately 200 nm to 1 microm in diameter. The polymerization rate, as measured by thioflavin S binding, increased with the length of the peptide going from AcYK --> AcPHF6, and peptides that aggregated most rapidly displayed CD spectra consistent with beta-sheet structure. There was a 3-fold decrease in rate when Val was substituted for Ile or Gln, nearly a 10-fold decrease when Ala was substituted for Tyr, and an increase in polymerization rate when Glu was substituted for Lys. Twisted filaments, composed of four laterally aligned protofilaments (9-19 nm width, approximately 90 nm half-periodicity), were formed by mixing AcPHF6 with AcVYK. Taken together these results suggest that the core of PHF6 is localized at VYK, and the interaction between small amphiphilic segments of tau may initiate nucleation and lead to filaments displaying paired helical filament morphology.
Collapse
Affiliation(s)
- Warren J Goux
- Department of Chemistry, the University of Texas at Dallas, Richardson, Texas 75083-0688, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Berriman J, Serpell LC, Oberg KA, Fink AL, Goedert M, Crowther RA. Tau filaments from human brain and from in vitro assembly of recombinant protein show cross-beta structure. Proc Natl Acad Sci U S A 2003; 100:9034-8. [PMID: 12853572 PMCID: PMC166433 DOI: 10.1073/pnas.1530287100] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Abnormal filaments consisting of hyperphosphorylated microtubule-associated protein tau form in the brains of patients with Alzheimer's disease, Down's syndrome, and various dementing tauopathies. In Alzheimer's disease and Down's syndrome, the filaments have two characteristic morphologies referred to as paired helical and straight filaments, whereas in tauopathies, there is a wider range of morphologies. There has been controversy in the literature concerning the internal molecular fine structure of these filaments, with arguments for and against the cross-beta structure demonstrated in many other amyloid fibers. The difficulty is to produce from brain pure preparations of filaments for analysis. One approach to avoid the need for a pure preparation is to use selected area electron diffraction from small groups of filaments of defined morphology. Alternatively, it is possible to assemble filaments in vitro from expressed tau protein to produce a homogeneous specimen suitable for analysis by electron diffraction, x-ray diffraction, and Fourier transform infrared spectroscopy. Using both these approaches, we show here that native filaments from brain and filaments assembled in vitro from expressed tau protein have a clear cross-beta structure.
Collapse
Affiliation(s)
- John Berriman
- Laboratory of Molecular Biology, Medical Research Council, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | | | | | | | |
Collapse
|
28
|
von Bergen M, Barghorn S, Li L, Marx A, Biernat J, Mandelkow EM, Mandelkow E. Mutations of tau protein in frontotemporal dementia promote aggregation of paired helical filaments by enhancing local beta-structure. J Biol Chem 2001; 276:48165-74. [PMID: 11606569 DOI: 10.1074/jbc.m105196200] [Citation(s) in RCA: 421] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The microtubule-associated protein tau is a natively unfolded protein in solution, yet it is able to polymerize into the ordered paired helical filaments (PHF) of Alzheimer's disease. In the splice isoforms lacking exon 10, this process is facilitated by the formation of beta-structure around the hexapeptide motif PHF6 ((306)VQIVYK(311)) encoded by exon 11. We have investigated the structural requirements for PHF polymerization in the context of adult tau isoforms containing four repeats (including exon 10). In addition to the PHF6 motif there exists a related PHF6* motif ((275)VQIINK(280)) in the repeat encoded by the alternatively spliced exon 10. We show that this PHF6* motif also promotes aggregation by the formation of beta-structure and that there is a cross-talk between the two hexapeptide motifs during PHF aggregation. We also show that two of the tau mutations found in hereditary frontotemporal dementias, DeltaK280 and P301L, have a much stronger tendency for PHF aggregation which correlates with their high propensity for beta-structure around the hexapeptide motifs.
Collapse
Affiliation(s)
- M von Bergen
- Max-Planck-Unit for Structural Molecular Biology, Notkestrasse 85, 22607 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|