1
|
Kalmankar NV, Pavalam M, Indrakumar S, Srinivasan N, Sowdhamini R. DSDBASE 2.0: updated version of DiSulphide dataBASE, a database on disulphide bonds in proteins. Database (Oxford) 2022; 2022:6540159. [PMID: 35230424 PMCID: PMC9216586 DOI: 10.1093/database/baac005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/21/2022] [Accepted: 02/11/2022] [Indexed: 12/05/2022]
Abstract
Disulphide bonds are stabilizing crosslinks in proteins and serve to enhance their thermal stability. In proteins that are small and rich in disulphide bonds, they could be the major determining factor for the choice of conformational state since their constraints on appropriate backbone conformation can be substantial. Such crosslinks and their positional conservation could itself enable protein family and functional association. Despite the importance of the field, there is no comprehensive database on disulphide crosslinks that is available to the public. Herein we provide information on disulphides in DSDBASE2.0, an updated and significantly expanded database that is freely available, fully annotated and manually curated database on native and modelled disulphides. The web interface also provides several useful computational tools that have been specifically developed for proteins containing disulphide crosslinks. The modelling of disulphide crosslinks is performed using stereochemical criteria, coded within our Modelling of Disulphides in Proteins (MODIP) algorithm. The inclusion of modelled disulphides potentially enhances the loop database substantially, thereby permitting the recognition of compatible polypeptide segments that could serve as templates for immediate modelling. The DSDBASE2.0 database has been updated to include 153,944 PDB entries, 216,096 native and 20,153,850 modelled disulphide bond segments from PDB January 2021 release. The current database also provides a resource to user-friendly search for multiple disulphide bond containing loops, along with annotation of their function using GO and subcellular localization of the query. Furthermore, it is possible to obtain the three-dimensional models of disulphide-rich small proteins using an independent algorithm, RANMOD, that generates and examines random, but allowed backbone conformations of the polypeptide. DSDBASE2.0 still remains the largest open-access repository that organizes all disulphide bonds of proteins on a single platform. The database can be accessed from http://caps.ncbs.res.in/dsdbase2.
Collapse
Affiliation(s)
- Neha V Kalmankar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (TIFR), GKVK Campus, Bellary Road, Bengaluru, Karnataka 560065, India
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), #74/2, Jarakabande Kaval, Post Attur, Via Yelahanka, Bengaluru, Karnataka 560064, India
| | - Murugavel Pavalam
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (TIFR), GKVK Campus, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Sowmya Indrakumar
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | | | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (TIFR), GKVK Campus, Bellary Road, Bengaluru, Karnataka 560065, India
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, GN Ramachandran Road, Electronics City Phase 1, Bengaluru, Karnataka 560100, India
| |
Collapse
|
2
|
Chino M, Leone L, Maglio O, Lombardi A. Designing Covalently Linked Heterodimeric Four-Helix Bundles. Methods Enzymol 2016; 580:471-99. [PMID: 27586346 DOI: 10.1016/bs.mie.2016.05.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
De novo design has proven a powerful methodology for understanding protein folding and function, and for mimicking or even bettering the properties of natural proteins. Extensive progress has been made in the design of helical bundles, simple structural motifs that can be nowadays designed with a high degree of precision. Among helical bundles, the four-helix bundle is widespread in nature, and is involved in numerous and fundamental processes. Representative examples are the carboxylate bridged diiron proteins, which perform a variety of different functions, ranging from reversible dioxygen binding to catalysis of dioxygen-dependent reactions, including epoxidation, desaturation, monohydroxylation, and radical formation. The "Due Ferri" (two-irons; DF) family of proteins is the result of a de novo design approach, aimed to reproduce in minimal four-helix bundle models the properties of the more complex natural diiron proteins, and to address how the amino acid sequence modulates their functions. The results so far obtained point out that asymmetric metal environments are essential to reprogram functions, and to achieve the specificity and selectivity of the natural enzymes. Here, we describe a design method that allows constructing asymmetric four-helix bundles through the covalent heterodimerization of two different α-helical harpins. In particular, starting from the homodimeric DF3 structure, we developed a protocol for covalently linking the two α2 monomers by using the Cu(I) catalyzed azide-alkyne cycloaddition. The protocol was then generalized, in order to include the construction of several linkers, in different protein positions. Our method is fast, low cost, and in principle can be applied to any couple of peptides/proteins we desire to link.
Collapse
Affiliation(s)
- M Chino
- University of Napoli Federico II, Napoli, Italy
| | - L Leone
- University of Napoli Federico II, Napoli, Italy
| | - O Maglio
- University of Napoli Federico II, Napoli, Italy; Institute of Biostructures and Bioimages-IBB, CNR, Napoli, Italy
| | - A Lombardi
- University of Napoli Federico II, Napoli, Italy.
| |
Collapse
|
3
|
Engineering de novo disulfide bond in bacterial α-type carbonic anhydrase for thermostable carbon sequestration. Sci Rep 2016; 6:29322. [PMID: 27385052 PMCID: PMC4935852 DOI: 10.1038/srep29322] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/16/2016] [Indexed: 11/29/2022] Open
Abstract
Exploiting carbonic anhydrase (CA), an enzyme that rapidly catalyzes carbon dioxide hydration, is an attractive biomimetic route for carbon sequestration due to its environmental compatibility and potential economic viability. However, the industrial applications of CA are strongly hampered by the unstable nature of enzymes. In this work, we introduced in silico designed, de novo disulfide bond in a bacterial α-type CA to enhance thermostability. Three variants were selected and expressed in Escherichia coli with an additional disulfide bridge. One of the variants showed great enhancement in terms of both kinetic and thermodynamic stabilities. This improvement could be attributed to the loss of conformational entropy of the unfolded state, showing increased rigidity. The variant showed an upward-shifted optimal temperature and appeared to be thermoactivated, which compensated for the lowered activity at 25 °C. Collectively, the variant constructed by the rapid and effective de novo disulfide engineering can be used as an efficient biocatalyst for carbon sequestration under high temperature conditions.
Collapse
|
4
|
Alterio V, Langella E, De Simone G, Monti SM. Cadmium-containing carbonic anhydrase CDCA1 in marine diatom Thalassiosira weissflogii. Mar Drugs 2015; 13:1688-97. [PMID: 25815892 PMCID: PMC4413181 DOI: 10.3390/md13041688] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/12/2015] [Accepted: 03/17/2015] [Indexed: 01/03/2023] Open
Abstract
The Carbon Concentration Mechanism (CCM) allows phytoplakton species to accumulate the dissolved inorganic carbon (DIC) necessary for an efficient photosynthesis even under carbon dioxide limitation. In this mechanism of primary importance for diatoms, a key role is played by carbonic anhydrase (CA) enzymes which catalyze the reversible hydration of CO2, thus taking part in the acquisition of inorganic carbon for photosynthesis. A novel CA, named CDCA1, has been recently discovered in the marine diatom Thalassiosira weissflogii. CDCA1 is a cambialistic enzyme since it naturally uses Cd2+ as catalytic metal ion, but if necessary can spontaneously exchange Cd2+ to Zn2+. Here, the biochemical and structural features of CDCA1 enzyme will be presented together with its putative biotechnological applications for the detection of metal ions in seawaters.
Collapse
Affiliation(s)
- Vincenzo Alterio
- Institute of Biostructures and Bioimaging-National Research Council (CNR), Via Mezzocannone 16, I-80134 Naples, Italy.
| | - Emma Langella
- Institute of Biostructures and Bioimaging-National Research Council (CNR), Via Mezzocannone 16, I-80134 Naples, Italy.
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimaging-National Research Council (CNR), Via Mezzocannone 16, I-80134 Naples, Italy.
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging-National Research Council (CNR), Via Mezzocannone 16, I-80134 Naples, Italy.
| |
Collapse
|
5
|
Salam NK, Adzhigirey M, Sherman W, Pearlman DA. Structure-based approach to the prediction of disulfide bonds in proteins. Protein Eng Des Sel 2014; 27:365-74. [PMID: 24817698 DOI: 10.1093/protein/gzu017] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Protein engineering remains an area of growing importance in pharmaceutical and biotechnology research. Stabilization of a folded protein conformation is a frequent goal in projects that deal with affinity optimization, enzyme design, protein construct design, and reducing the size of functional proteins. Indeed, it can be desirable to assess and improve protein stability in order to avoid liabilities such as aggregation, degradation, and immunogenic response that may arise during development. One way to stabilize a protein is through the introduction of disulfide bonds. Here, we describe a method to predict pairs of protein residues that can be mutated to form a disulfide bond. We combine a physics-based approach that incorporates implicit solvent molecular mechanics with a knowledge-based approach. We first assign relative weights to the terms that comprise our scoring function using a genetic algorithm applied to a set of 75 wild-type structures that each contains a disulfide bond. The method is then tested on a separate set of 13 engineered proteins comprising 15 artificial stabilizing disulfides introduced via site-directed mutagenesis. We find that the native disulfide in the wild-type proteins is scored well, on average (within the top 6% of the reasonable pairs of residues that could form a disulfide bond) while 6 out of the 15 artificial stabilizing disulfides scored within the top 13% of ranked predictions. Overall, this suggests that the physics-based approach presented here can be useful for triaging possible pairs of mutations for disulfide bond formation to improve protein stability.
Collapse
Affiliation(s)
- Noeris K Salam
- Schrödinger, 120 West 45th Street, 17th Floor, New York, NY 10036, USA
| | - Matvey Adzhigirey
- Schrödinger, 120 West 45th Street, 17th Floor, New York, NY 10036, USA
| | - Woody Sherman
- Schrödinger, 120 West 45th Street, 17th Floor, New York, NY 10036, USA
| | - David A Pearlman
- Schrödinger, 120 West 45th Street, 17th Floor, New York, NY 10036, USA
| |
Collapse
|
6
|
Craig DB, Dombkowski AA. Disulfide by Design 2.0: a web-based tool for disulfide engineering in proteins. BMC Bioinformatics 2013; 14:346. [PMID: 24289175 PMCID: PMC3898251 DOI: 10.1186/1471-2105-14-346] [Citation(s) in RCA: 334] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 11/24/2013] [Indexed: 01/14/2023] Open
Abstract
Background Disulfide engineering is an important biotechnological tool that has advanced a wide range of research. The introduction of novel disulfide bonds into proteins has been used extensively to improve protein stability, modify functional characteristics, and to assist in the study of protein dynamics. Successful use of this technology is greatly enhanced by software that can predict pairs of residues that will likely form a disulfide bond if mutated to cysteines. Results We had previously developed and distributed software for this purpose: Disulfide by Design (DbD). The original DbD program has been widely used; however, it has a number of limitations including a Windows platform dependency. Here, we introduce Disulfide by Design 2.0 (DbD2), a web-based, platform-independent application that significantly extends functionality, visualization, and analysis capabilities beyond the original program. Among the enhancements to the software is the ability to analyze the B-factor of protein regions involved in predicted disulfide bonds. Importantly, this feature facilitates the identification of potential disulfides that are not only likely to form but are also expected to provide improved thermal stability to the protein. Conclusions DbD2 provides platform-independent access and significantly extends the original functionality of DbD. A web server hosting DbD2 is provided at http://cptweb.cpt.wayne.edu/DbD2/.
Collapse
Affiliation(s)
| | - Alan A Dombkowski
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| |
Collapse
|
7
|
Coote P, Arthanari H, Yu TY, Natarajan A, Wagner G, Khaneja N. Pulse design for broadband correlation NMR spectroscopy by multi-rotating frames. JOURNAL OF BIOMOLECULAR NMR 2013; 55:291-302. [PMID: 23420125 PMCID: PMC4344189 DOI: 10.1007/s10858-013-9714-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/01/2013] [Indexed: 05/17/2023]
Abstract
We present a method for designing radio-frequency (RF) pulses for broadband or multi-band isotropic mixing at low power, suitable for protein NMR spectroscopy. These mixing pulses are designed analytically, rather than by numerical optimization, by repeatedly constructing new rotating frames of reference. We show how pulse parameters can be chosen frame-by-frame to systematically reduce the effective chemical shift bandwidth, but maintain most of the effective J-coupling strength. The effective Hartmann-Hahn mixing condition is then satisfied in a multi-rotating frame of reference. This design method yields multi-band and broadband mixing pulses at low RF power. In particular, the ratio of RF power to mixing bandwidth for these pulses is lower than for existing mixing pulses, such as DIPSI and FLOPSY. Carbon-carbon TOCSY experiments at low RF power support our theoretical analysis.
Collapse
Affiliation(s)
- Paul Coote
- School of Engineering and Applied Sciences, Harvard University, Cambridge MA 02318, USA
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA 02215, USA
| | - Tsyr-Yan Yu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA 02215, USA
| | - Amarnath Natarajan
- Eppley Institute for Cancer Research, University of Nebraska Medical, Center, Omaha NE 68198, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston MA 02215, USA
| | - Navin Khaneja
- School of Engineering and Applied Sciences, Harvard University, Cambridge MA 02318, USA
| |
Collapse
|
8
|
Mack ET, Snyder PW, Perez-Castillejos R, Bilgiçer B, Moustakas DT, Butte MJ, Whitesides GM. Dependence of avidity on linker length for a bivalent ligand-bivalent receptor model system. J Am Chem Soc 2012; 134:333-45. [PMID: 22088143 PMCID: PMC3272676 DOI: 10.1021/ja2073033] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper describes a synthetic dimer of carbonic anhydrase, and a series of bivalent sulfonamide ligands with different lengths (25 to 69 Å between the ends of the fully extended ligands), as a model system to use in examining the binding of bivalent antibodies to antigens. Assays based on analytical ultracentrifugation and fluorescence binding indicate that this system forms cyclic, noncovalent complexes with a stoichiometry of one bivalent ligand to one dimer. This dimer binds the series of bivalent ligands with low picomolar avidities (K(d)(avidity) = 3-40 pM). A structurally analogous monovalent ligand binds to one active site of the dimer with K(d)(mono) = 16 nM. The bivalent association is thus significantly stronger (K(d)(mono)/K(d)(avidity) ranging from ~500 to 5000 unitless) than the monovalent association. We infer from these results, and by comparison of these results to previous studies, that bivalency in antibodies can lead to associations much tighter than monovalent associations (although the observed bivalent association is much weaker than predicted from the simplest level of theory: predicted K(d)(avidity) of ~0.002 pM and K(d)(mono)/K(d)(avidity) ~ 8 × 10(6) unitless).
Collapse
Affiliation(s)
- Eric T. Mack
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138
| | - Phillip W. Snyder
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138
| | - Raquel Perez-Castillejos
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138
| | - Başar Bilgiçer
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138
| | - Demetri T. Moustakas
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138
| | - Manish J. Butte
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138
| | - George M. Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138
| |
Collapse
|
9
|
Mecinović J, Snyder PW, Mirica KA, Bai S, Mack ET, Kwant RL, Moustakas DT, Heroux A, Whitesides GM. Fluoroalkyl and alkyl chains have similar hydrophobicities in binding to the "hydrophobic wall" of carbonic anhydrase. J Am Chem Soc 2011; 133:14017-26. [PMID: 21790183 PMCID: PMC3171206 DOI: 10.1021/ja2045293] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The hydrophobic effect, the free-energetically favorable association of nonpolar solutes in water, makes a dominant contribution to binding of many systems of ligands and proteins. The objective of this study was to examine the hydrophobic effect in biomolecular recognition using two chemically different but structurally similar hydrophobic groups, aliphatic hydrocarbons and aliphatic fluorocarbons, and to determine whether the hydrophobicity of the two groups could be distinguished by thermodynamic and biostructural analysis. This paper uses isothermal titration calorimetry (ITC) to examine the thermodynamics of binding of benzenesulfonamides substituted in the para position with alkyl and fluoroalkyl chains (H(2)NSO(2)C(6)H(4)-CONHCH(2)(CX(2))(n)CX(3), n = 0-4, X = H, F) to human carbonic anhydrase II (HCA II). Both alkyl and fluoroalkyl substituents contribute favorably to the enthalpy and the entropy of binding; these contributions increase as the length of chain of the hydrophobic substituent increases. Crystallography of the protein-ligand complexes indicates that the benzenesulfonamide groups of all ligands examined bind with similar geometry, that the tail groups associate with the hydrophobic wall of HCA II (which is made up of the side chains of residues Phe131, Val135, Pro202, and Leu204), and that the structure of the protein is indistinguishable for all but one of the complexes (the longest member of the fluoroalkyl series). Analysis of the thermodynamics of binding as a function of structure is compatible with the hypothesis that hydrophobic binding of both alkyl and fluoroalkyl chains to hydrophobic surface of carbonic anhydrase is due primarily to the release of nonoptimally hydrogen-bonded water molecules that hydrate the binding cavity (including the hydrophobic wall) of HCA II and to the release of water molecules that surround the hydrophobic chain of the ligands. This study defines the balance of enthalpic and entropic contributions to the hydrophobic effect in this representative system of protein and ligand: hydrophobic interactions, here, seem to comprise approximately equal contributions from enthalpy (plausibly from strengthening networks of hydrogen bonds among molecules of water) and entropy (from release of water from configurationally restricted positions).
Collapse
Affiliation(s)
- Jasmin Mecinović
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138
| | - Phillip W. Snyder
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138
| | - Katherine A. Mirica
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138
| | - Serena Bai
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138
| | - Eric T. Mack
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138
| | - Richard L. Kwant
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138
| | - Demetri T. Moustakas
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138
| | - Annie Heroux
- National Synchrotron Light Source, Brookhaven National Laboratory, 725 Brookhaven Avenue, Upton, NY 11973-5000
| | - George M. Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138
- Wyss Institute for Biologically Inspired Engineering, 725 Brookhaven Avenue, Upton, NY 11973-5000
| |
Collapse
|
10
|
Shaw BF, Arthanari H, Narovlyansky M, Durazo A, Frueh DP, Pollastri MP, Lee A, Bilgicer B, Gygi SP, Wagner G, Whitesides GM. Neutralizing positive charges at the surface of a protein lowers its rate of amide hydrogen exchange without altering its structure or increasing its thermostability. J Am Chem Soc 2010; 132:17411-25. [PMID: 21090618 DOI: 10.1021/ja9067035] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper combines two techniques--mass spectrometry and protein charge ladders--to examine the relationship between the surface charge and hydrophobicity of a representative globular protein (bovine carbonic anhydrase II; BCA II) and its rate of amide hydrogen-deuterium (H/D) exchange. Mass spectrometric analysis indicated that the sequential acetylation of surface lysine-ε-NH3(+) groups--a type of modification that increases the net negative charge and hydrophobicity of the surface of BCA II without affecting its secondary or tertiary structure--resulted in a linear decrease in the aggregate rate of amide H/D exchange at pD 7.4, 15 °C. According to analysis with MS, the acetylation of each additional lysine generated between 1.4 and 0.9 additional hydrogens that are protected from H/D exchange during the 2 h exchange experiment at 15 °C, pD 7.4. NMR spectroscopy demonstrated that none of the hydrogen atoms which became protected upon acetylation were located on the side chain of the acetylated lysine residues (i.e., lys-ε-NHCOCH3) but were instead located on amide NHCO moieties in the backbone. The decrease in rate of exchange associated with acetylation paralleled a decrease in thermostability: the most slowly exchanging rungs of the charge ladder were the least thermostable (as measured by differential scanning calorimetry). This observation--that faster rates of exchange are associated with slower rates of denaturation--is contrary to the usual assumptions in protein chemistry. The fact that the rates of H/D exchange were similar for perbutyrated BCA II (e.g., [lys-ε-NHCO(CH2)2CH3]18) and peracetylated BCA II (e.g., [lys-ε-NHCOCH3]18) suggests that the electrostatic charge is more important than the hydrophobicity of surface groups in determining the rate of H/D exchange. These electrostatic effects on the kinetics of H/D exchange could complicate (or aid) the interpretation of experiments in which H/D exchange methods are used to probe the structural effects of non-isoelectric perturbations to proteins (i.e., phosphorylation, acetylation, or the binding of the protein to an oligonucleotide or to another charged ligand or protein).
Collapse
Affiliation(s)
- Bryan F Shaw
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hagihara Y, Mine S, Uegaki K. Stabilization of an Immunoglobulin Fold Domain by an Engineered Disulfide Bond at the Buried Hydrophobic Region. J Biol Chem 2007; 282:36489-95. [DOI: 10.1074/jbc.m707078200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
12
|
Krishnamurthy VM, Semetey V, Bracher PJ, Shen N, Whitesides GM. Dependence of effective molarity on linker length for an intramolecular protein-ligand system. J Am Chem Soc 2007; 129:1312-20. [PMID: 17263415 PMCID: PMC2535942 DOI: 10.1021/ja066780e] [Citation(s) in RCA: 230] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper reports dissociation constants and "effective molarities" (M(eff)) for the intramolecular binding of a ligand covalently attached to the surface of a protein by oligo(ethylene glycol) (EG(n)) linkers of different lengths (n = 0, 2, 5, 10, and 20) and compares these experimental values with theoretical estimates from polymer theory. As expected, the value of M(eff) is lowest when the linker is too short (n = 0) to allow the ligand to bind noncovalently at the active site of the protein without strain, is highest when the linker is the optimal length (n = 2) to allow such binding to occur, and decreases monotonically as the length increases past this optimal value (but only by a factor of approximately 8 from n = 2 to n = 20). These experimental results are not compatible with a model in which the single bonds of the linker are completely restricted when the ligand has bound noncovalently to the active site of the protein, but they are quantitatively compatible with a model that treats the linker as a random-coil polymer. Calorimetry revealed that enthalpic interactions between the linker and the protein are not important in determining the thermodynamics of the system. Taken together, these results suggest that the manifestation of the linker in the thermodynamics of binding is exclusively entropic. The values of M(eff) are, theoretically, intrinsic properties of the EG(n) linkers and can be used to predict the avidities of multivalent ligands with these linkers for multivalent proteins. The weak dependence of M(eff) on linker length suggests that multivalent ligands containing flexible linkers that are longer than the spacing between the binding sites of a multivalent protein will be effective in binding, and that the use of flexible linkers with lengths somewhat greater than the optimal distance between binding sites is a justifiable strategy for the design of multivalent ligands.
Collapse
Affiliation(s)
- Vijay M. Krishnamurthy
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street, Cambridge, MA 02138
| | - Vincent Semetey
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street, Cambridge, MA 02138
| | - Paul J. Bracher
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street, Cambridge, MA 02138
| | - Nan Shen
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street, Cambridge, MA 02138
| | - George M. Whitesides
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street, Cambridge, MA 02138
| |
Collapse
|
13
|
Abstract
The key issue for disulfide bond engineering is to select the most appropriate location in the protein. By surveying the structure of experimentally engineered disulfide bonds, we found about half of them that have geometry incompatible with any native disulfide bond geometry. To improve the current prediction methods that tend to apply either ideal geometrical or energetical criteria to single three-dimensional structures, we have combined a novel computational protocol with the usage of multiple protein structures to take into account protein backbone flexibility. The multiple structures can be selected from either independently determined crystal structures for identical proteins, models of nuclear magnetic resonance experiments, or crystal structures of homology-related proteins. We have validated our approach by comparing the predictions with known disulfide bonds. The accuracy of prediction for native disulfide bonds reaches 99.6%. In a more stringent test on the reported engineered disulfide bonds, we have obtained a success rate of 93%. Our protocol also determines the oxido-reduction state of a predicted disulfide bond and the corresponding mutational cost. From the energy ranking, the user can easily choose top predicted sites for mutagenesis experiments. Our method provides information about local stability of the engineered disulfide bond surroundings.
Collapse
|
14
|
Pettitt CS, McGuffin LJ, Jones DT. Improving sequence-based fold recognition by using 3D model quality assessment. Bioinformatics 2005; 21:3509-15. [PMID: 15955780 DOI: 10.1093/bioinformatics/bti540] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION The ability of a simple method (MODCHECK) to determine the sequence-structure compatibility of a set of structural models generated by fold recognition is tested in a thorough benchmark analysis. Four Model Quality Assessment Programs (MQAPs) were tested on 188 targets from the latest LiveBench-9 automated structure evaluation experiment. We systematically test and evaluate whether the MQAP methods can successfully detect native-like models. RESULTS We show that compared with the other three methods tested MODCHECK is the most reliable method for consistently performing the best top model selection and for ranking the models. In addition, we show that the choice of model similarity score used to assess a model's similarity to the experimental structure can influence the overall performance of these tools. Although these MQAP methods fail to improve the model selection performance for methods that already incorporate protein three dimension (3D) structural information, an improvement is observed for methods that are purely sequence-based, including the best profile-profile methods. This suggests that even the best sequence-based fold recognition methods can still be improved by taking into account the 3D structural information. CONTACT d.jones@cs.ucl.ac.uk
Collapse
Affiliation(s)
- Chris S Pettitt
- Bioinformatics Unit, Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
15
|
Bolon DN, Grant RA, Baker TA, Sauer RT. Nucleotide-dependent substrate handoff from the SspB adaptor to the AAA+ ClpXP protease. Mol Cell 2004; 16:343-50. [PMID: 15525508 DOI: 10.1016/j.molcel.2004.10.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 08/11/2004] [Accepted: 08/18/2004] [Indexed: 11/19/2022]
Abstract
The SspB adaptor enhances ClpXP degradation by binding the ssrA degradation tag of substrates and the AAA+ ClpX unfoldase. To probe the mechanism of substrate delivery, we engineered a disulfide bond between the ssrA tag and SspB and demonstrated otherwise normal interactions by solving the crystal structure. Although the covalent link prevents adaptor.substrate dissociation, ClpXP degraded GFP-ssrA that was disulfide bonded to the adaptor. Thus, crosslinked substrate must be handed directly from SspB to ClpX. The ssrA tag in the covalent adaptor complex interacted with ClpX.ATPgammaS but not ClpX.ADP, suggesting that handoff occurs in the ATP bound enzyme. By contrast, SspB alone bound ClpX in both nucleotide states. Similar handoff mechanisms will undoubtedly be used by many AAA+ adaptors and enzymes, allowing assembly of delivery complexes in either nucleotide state, engagement of the recognition tag in the ATP state, and application of an unfolding force to the attached protein following hydrolysis.
Collapse
Affiliation(s)
- Daniel N Bolon
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | | | | | | |
Collapse
|
16
|
Abstract
Since the discovery of enzymes as biological catalysts, study of their enormous catalytic power and exquisite specificity has been central to biochemistry. Nevertheless, there is no universally accepted comprehensive description. Rather, numerous proposals have been presented over the past half century. The difficulty in developing a comprehensive description for the catalytic power of enzymes derives from the highly cooperative nature of their energetics, which renders impossible a simple division of mechanistic features and an absolute partitioning of catalytic contributions into independent and energetically additive components. Site-directed mutagenesis has emerged as an enormously powerful approach to probe enzymatic catalysis, illuminating many basic features of enzyme function and behavior. The emphasis of site-directed mutagenesis on the role of individual residues has also, inadvertently, limited experimental and conceptual attention to the fundamentally cooperative nature of enzyme function and energetics. The first part of this review highlights the structural and functional interconnectivity central to enzymatic catalysis. In the second part we ask: What are the features of enzymes that distinguish them from simple chemical catalysts? The answers are presented in conceptual models that, while simplified, help illustrate the vast amount known about how enzymes achieve catalysis. In the last section, we highlight the molecular and energetic questions that remain for future investigation and describe experimental approaches that will be necessary to answer these questions. The promise of advancing and integrating cutting edge conceptual, experimental, and computational tools brings mechanistic enzymology to a new era, one poised for novel fundamental insights into biological catalysis.
Collapse
Affiliation(s)
- Daniel A Kraut
- Department of Biochemistry, Stanford University, B400 Beckman Center, 279 Campus Drive, Stanford, California 94305-5307, USA.
| | | | | |
Collapse
|
17
|
Dani VS, Ramakrishnan C, Varadarajan R. MODIP revisited: re-evaluation and refinement of an automated procedure for modeling of disulfide bonds in proteins. Protein Eng Des Sel 2003; 16:187-93. [PMID: 12702798 DOI: 10.1093/proeng/gzg024] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There have been several attempts to stabilize proteins through the introduction of engineered disulfide bonds. For reasons that are currently unclear, these have met with mixed success. Hence identification of locations where introduction of a disulfide cross-link will lead to protein stabilization is still a challenging task. A computational procedure, MODIP, was introduced more than a decade ago to select sites in protein structures that have the correct geometry for disulfide formation when replaced by Cys. In this study, we re-evaluated the stereochemical criteria used by MODIP for the selection and gradation of sites for modeling disulfides. We introduced steric criteria to check for energetically unfavorable non-bonded contacts with the modeled disulfide, since these can considerably offset the stabilizing effect of the cross-link. The performance of the refined procedure was checked for its ability to correctly predict naturally occurring disulfide bonds in proteins. A set of proteins in which disulfide bonds were introduced experimentally were analyzed with respect to MODIP predictions, stability and other parameters such as accessibility, residue depth, B-factors of the mutated sites, change in volume upon mutation and loop length enclosed by the disulfide. The analysis suggests that in addition to proper stereochemistry, stabilizing disulfides occur in regions of low depth, relatively high mobility, have a loop length greater than 25 and where the disulfide typically occupies a volume less than or equal to that of the original residues.
Collapse
Affiliation(s)
- Vardhan S Dani
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| | | | | |
Collapse
|
18
|
Russo A, Antignani A, Giancola C, D'Alessio G. Engineering the refolding pathway and the quaternary structure of seminal ribonuclease by newly introduced disulfide bridges. J Biol Chem 2002; 277:48643-9. [PMID: 12377788 DOI: 10.1074/jbc.m207141200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Seminal RNase (BS-RNase), a ribonuclease from bovine seminal vesicles, is a homodimeric enzyme with a strong cytotoxic activity selective for tumor cells. It displays the unusual structural feature of existing in solution as an equilibrium mixture of two quaternary isoforms. The major one is characterized by the swap between subunits of their N-terminal ends, whereas the minor isoform shows no swap. The tendency of the two isolated isoforms to interconvert into each other has so far made it difficult to attribute the functional properties of BS-RNase to either isoform. Herein, molecular modeling and site-directed mutagenesis were used to engineer the refolding pathway of BS-RNase and obtain a stable variant of its non-swapping isoform. The protein was engineered with two extra disulfide bridges linking the N-terminal helix of each subunit to the main body of the same subunit. Purified as an active enzyme, the BS-RNase variant was found to be very resistant to thermal denaturation. Its functional characterization revealed that the lack of swapping has a negative effect on the cytotoxic activity of BS-RNase.
Collapse
Affiliation(s)
- Aniello Russo
- Department of Life Sciences, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | | | | | | |
Collapse
|
19
|
Ratnaparkhi GS, Varadarajan R. Osmolytes Stabilize Ribonuclease S by Stabilizing Its Fragments S Protein and S Peptide to Compact Folding-competent States. J Biol Chem 2001; 276:28789-98. [PMID: 11373282 DOI: 10.1074/jbc.m101906200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Osmolytes stabilize proteins to thermal and chemical denaturation. We have studied the effects of the osmolytes sarcosine, betaine, trimethylamine-N-oxide, and taurine on the structure and stability of the protein.peptide complex RNase S using x-ray crystallography and titration calorimetry, respectively. The largest degree of stabilization is achieved with 6 m sarcosine, which increases the denaturation temperatures of RNase S and S pro by 24.6 and 17.4 degrees C, respectively, at pH 5 and protects both proteins against tryptic cleavage. Four crystal structures of RNase S in the presence of different osmolytes do not offer any evidence for osmolyte binding to the folded state of the protein or any perturbation in the water structure surrounding the protein. The degree of stabilization in 6 m sarcosine increases with temperature, ranging from -0.52 kcal mol(-1) at 20 degrees C to -5.4 kcal mol(-1) at 60 degrees C. The data support the thesis that osmolytes that stabilize proteins, do so by perturbing unfolded states, which change conformation to a compact, folding competent state in the presence of osmolyte. The increased stabilization thus results from a decrease in conformational entropy of the unfolded state.
Collapse
Affiliation(s)
- G S Ratnaparkhi
- National Center for Biological Sciences, Bangalore 560 065, India
| | | |
Collapse
|