1
|
Huizing M, Malicdan MCV, Wang JA, Pri-Chen H, Hess RA, Fischer R, O'Brien KJ, Merideth MA, Gahl WA, Gochuico BR. Hermansky-Pudlak syndrome: Mutation update. Hum Mutat 2020; 41:543-580. [PMID: 31898847 DOI: 10.1002/humu.23968] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/06/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022]
Abstract
Hermansky-Pudlak syndrome (HPS) is a group of 10 autosomal recessive multisystem disorders, each defined by the deficiency of a specific gene. HPS-associated genes encode components of four ubiquitously expressed protein complexes: Adaptor protein-3 (AP-3) and biogenesis of lysosome-related organelles complex-1 (BLOC-1) through -3. All individuals with HPS exhibit albinism and a bleeding diathesis; additional features occur depending on the defective protein complex. Pulmonary fibrosis is associated with AP-3 and BLOC-3 deficiency, immunodeficiency with AP-3 defects, and gastrointestinal symptoms are more prevalent and severe in BLOC-3 deficiency. Therefore, identification of the HPS subtype is valuable for prognosis, clinical management, and treatment options. The prevalence of HPS is estimated at 1-9 per 1,000,000. Here we summarize 264 reported and novel variants in 10 HPS genes and estimate that ~333 Puerto Rican HPS subjects and ~385 with other ethnicities are reported to date. We provide pathogenicity predictions for missense and splice site variants and list variants with high minor allele frequencies. Current cellular and clinical aspects of HPS are also summarized. This review can serve as a manifest for molecular diagnostics and genetic counseling aspects of HPS.
Collapse
Affiliation(s)
- Marjan Huizing
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - May C V Malicdan
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Jennifer A Wang
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Hadass Pri-Chen
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland.,Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Richard A Hess
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Roxanne Fischer
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Kevin J O'Brien
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Melissa A Merideth
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - William A Gahl
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Bernadette R Gochuico
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
2
|
Loredana Asztalos M, Schafernak KT, Gray J, Berry A, Paller AS, Mancini AJ. Hermansky-Pudlak syndrome: Report of two patients with updated genetic classification and management recommendations. Pediatr Dermatol 2017; 34:638-646. [PMID: 29044644 DOI: 10.1111/pde.13266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder caused by mutations in one of nine genes involved in the packaging and formation of specialized lysosomes, including melanosomes and platelet-dense granules. The cardinal features are pigmentary dilution, bleeding diathesis, and accumulation of ceroid-like material in reticuloendothelial cells. Pulmonary fibrosis induced by tissue damage is seen in the most severe forms, and one subtype is characterized by immunodeficiency. We describe two patients with HPS type 1 and review the updated gene-based classification, clinical features, and recommendations for evaluation and follow-up.
Collapse
Affiliation(s)
- Manuela Loredana Asztalos
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pediatrics, Pathology and Laboratory Medicine , Northwestern University, Chicago, IL, USA.,Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kristian T Schafernak
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pediatrics, Pathology and Laboratory Medicine , Northwestern University, Chicago, IL, USA.,Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jayla Gray
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pediatrics, Pathology and Laboratory Medicine , Northwestern University, Chicago, IL, USA.,Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Adam Berry
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pediatrics, Pathology and Laboratory Medicine , Northwestern University, Chicago, IL, USA.,Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Amy S Paller
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pediatrics, Pathology and Laboratory Medicine , Northwestern University, Chicago, IL, USA.,Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Anthony J Mancini
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pediatrics, Pathology and Laboratory Medicine , Northwestern University, Chicago, IL, USA.,Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
3
|
Dennis MK, Delevoye C, Acosta-Ruiz A, Hurbain I, Romao M, Hesketh GG, Goff PS, Sviderskaya EV, Bennett DC, Luzio JP, Galli T, Owen DJ, Raposo G, Marks MS. BLOC-1 and BLOC-3 regulate VAMP7 cycling to and from melanosomes via distinct tubular transport carriers. J Cell Biol 2017; 214:293-308. [PMID: 27482051 PMCID: PMC4970331 DOI: 10.1083/jcb.201605090] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/11/2016] [Indexed: 12/22/2022] Open
Abstract
Endomembrane organelle maturation requires cargo delivery via fusion with membrane transport intermediates and recycling of fusion factors to their sites of origin. Melanosomes and other lysosome-related organelles obtain cargoes from early endosomes, but the fusion machinery involved and its recycling pathway are unknown. Here, we show that the v-SNARE VAMP7 mediates fusion of melanosomes with tubular transport carriers that also carry the cargo protein TYRP1 and that require BLOC-1 for their formation. Using live-cell imaging, we identify a pathway for VAMP7 recycling from melanosomes that employs distinct tubular carriers. The recycling carriers also harbor the VAMP7-binding scaffold protein VARP and the tissue-restricted Rab GTPase RAB38. Recycling carrier formation is dependent on the RAB38 exchange factor BLOC-3. Our data suggest that VAMP7 mediates fusion of BLOC-1-dependent transport carriers with melanosomes, illuminate SNARE recycling from melanosomes as a critical BLOC-3-dependent step, and likely explain the distinct hypopigmentation phenotypes associated with BLOC-1 and BLOC-3 deficiency in Hermansky-Pudlak syndrome variants.
Collapse
Affiliation(s)
- Megan K Dennis
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104 Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Cédric Delevoye
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France Structure and Membrane Compartments, Institut Curie, 75005 Paris, France Cell and Tissue Imaging Facility (PICT-IBiSA), 75005 Paris, France
| | - Amanda Acosta-Ruiz
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104 Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ilse Hurbain
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France Structure and Membrane Compartments, Institut Curie, 75005 Paris, France Cell and Tissue Imaging Facility (PICT-IBiSA), 75005 Paris, France
| | - Maryse Romao
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France Structure and Membrane Compartments, Institut Curie, 75005 Paris, France Cell and Tissue Imaging Facility (PICT-IBiSA), 75005 Paris, France
| | - Geoffrey G Hesketh
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 OXY, England, UK
| | - Philip S Goff
- Cell Biology and Genetics Research Centre, St. George's, University of London, London SW17 0RE, England, UK
| | - Elena V Sviderskaya
- Cell Biology and Genetics Research Centre, St. George's, University of London, London SW17 0RE, England, UK
| | - Dorothy C Bennett
- Cell Biology and Genetics Research Centre, St. George's, University of London, London SW17 0RE, England, UK
| | - J Paul Luzio
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 OXY, England, UK
| | - Thierry Galli
- University Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, CNRS UMR 7592, Membrane Traffic in Health and Disease, INSERM ERL U950, 75013 Paris, France
| | - David J Owen
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 OXY, England, UK
| | - Graça Raposo
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France Structure and Membrane Compartments, Institut Curie, 75005 Paris, France Cell and Tissue Imaging Facility (PICT-IBiSA), 75005 Paris, France
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104 Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|