1
|
Zhang S, Zhang B, Liu Y, Li L. Adipokines in atopic dermatitis: the link between obesity and atopic dermatitis. Lipids Health Dis 2024; 23:26. [PMID: 38263019 PMCID: PMC10804547 DOI: 10.1186/s12944-024-02009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic skin condition with intense pruritus, eczema, and dry skin. The recurrent intense pruritus and numerous complications in patients with AD can profoundly affect their quality of life. Obesity is one of its comorbidities that has been confirmed to be the hazard factor of AD and also worsen its severity. Nevertheless, the specific mechanisms that explain the connection between obesity and AD remain incompletely recognized. Recent studies have built hopes on various adipokines to explain this connection. Adipokines, which are disturbed by an obese state, may lead to immune system imbalances in people with AD and promote the development of the disease. This review focuses on the abnormal expression patterns of adipokines in patients with AD and their potential regulatory molecular mechanisms associated with AD. The connection between AD and obesity is elucidated through the involvement of adipokines. This conduces to the in-depth exploration of AD pathogenesis and provides a new perspective to develop therapeutic targets.
Collapse
Affiliation(s)
- Shiyun Zhang
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China, No. 1 Shuaifuyuan, 100730
| | - Bingjie Zhang
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China, No. 1 Shuaifuyuan, 100730
| | - Yuehua Liu
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China, No. 1 Shuaifuyuan, 100730
| | - Li Li
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China, No. 1 Shuaifuyuan, 100730.
| |
Collapse
|
2
|
Advancements in the characterization of tissue resident memory T cells in skin disease. Clin Immunol 2022; 245:109183. [DOI: 10.1016/j.clim.2022.109183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
|
3
|
Zhang L, Chang N, Liu J, Liu Z, Wu Y, Sui L, Chen W. Reprogramming lipid metabolism as potential strategy for hematological malignancy therapy. Front Oncol 2022; 12:987499. [PMID: 36106108 PMCID: PMC9465383 DOI: 10.3389/fonc.2022.987499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Hematological malignancies are one of the most lethal illnesses that seriously threaten human life and health. Lipids are important constituents of various biological membranes and substances for energy storage and cell signaling. Furthermore, lipids are critical in the normal physiological activities of cells. In the process of the lethal transformation of hematological malignancies, lipid metabolism reprogramming meets the material and energy requirements of rapidly proliferating and dividing tumor cells. A large number of studies have shown that dysregulated lipid metabolism, commonly occurs in hematological malignancies, mediating the proliferation, growth, migration, invasion, apoptosis, drug resistance and immune escape of tumor cells. Targeting the lipid metabolism pathway of hematological malignancies has become an effective therapeutic approach. This article reviews the oncogenic mechanisms of lipid metabolism reprogramming in hematological malignancies, including fatty acid, cholesterol and phospholipid metabolism, thereby offering an insight into targeting lipid metabolism in the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Leqiang Zhang
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Ning Chang
- Peking University Cancer Hospital, Beijing, China
| | - Jia Liu
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Zhuojun Liu
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Yajin Wu
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Linlin Sui
- Core Lab Glycobiol & Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- *Correspondence: Linlin Sui, ; Wei Chen,
| | - Wei Chen
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- *Correspondence: Linlin Sui, ; Wei Chen,
| |
Collapse
|
4
|
Basak S, Mallick R, Banerjee A, Pathak S, Duttaroy AK. Cytoplasmic fatty acid-binding proteins in metabolic diseases and cancers. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 132:143-174. [PMID: 36088074 DOI: 10.1016/bs.apcsb.2022.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytoplasmic fatty acid-binding proteins (FABPs) are multipurpose proteins that can modulate lipid fluxes, trafficking, signaling, and metabolism. FABPs regulate metabolic and inflammatory pathways, its inhibition can improve type 2 diabetes mellitus and atherosclerosis. In addition, FABPs are involved in obesity, metabolic disease, cardiac dysfunction, and cancers. FABPs are promising tissue biomarkers in solid tumors for diagnostic and/or prognostic targets for novel therapeutic strategies. The signaling responsive elements of FABPs and determinants of FABP-mediated functions may be exploited in preventing or treating these diseases.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
5
|
Rindler K, Jonak C, Alkon N, Thaler FM, Kurz H, Shaw LE, Stingl G, Weninger W, Halbritter F, Bauer WM, Farlik M, Brunner PM. Single-cell RNA sequencing reveals markers of disease progression in primary cutaneous T-cell lymphoma. Mol Cancer 2021; 20:124. [PMID: 34583709 PMCID: PMC8477535 DOI: 10.1186/s12943-021-01419-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/28/2021] [Indexed: 12/13/2022] Open
Abstract
Background In early-stage mycosis fungoides (MF), the most common primary cutaneous T-cell lymphoma, limited skin involvement with patches and plaques is associated with a favorable prognosis. Nevertheless, approximately 20–30% of cases progress to tumors or erythroderma, resulting in poor outcome. At present, factors contributing to this switch from indolent to aggressive disease are only insufficiently understood. Methods In patients with advanced-stage MF, we compared patches with longstanding history to newly developed plaques and tumors by using single-cell RNA sequencing, and compared results with early-stage MF as well as nonlesional MF and healthy control skin. Results Despite considerable inter-individual variability, lesion progression was uniformly associated with downregulation of the tissue residency markers CXCR4 and CD69, the heat shock protein HSPA1A, the tumor suppressors and immunoregulatory mediators ZFP36 and TXNIP, and the interleukin 7 receptor (IL7R) within the malignant clone, but not in benign T cells. This phenomenon was not only found in conventional TCR-αβ MF, but also in a case of TCR-γδ MF, suggesting a common mechanism across MF subtypes. Conversely, malignant cells in clinically unaffected skin from MF patients showed upregulation of these markers. Conclusions Our data reveal a specific panel of biomarkers that might be used for monitoring MF disease progression. Altered expression of these genes may underlie the switch in clinical phenotype observed in advanced-stage MF. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01419-2.
Collapse
Affiliation(s)
- Katharina Rindler
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Natalia Alkon
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Felix M Thaler
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Harald Kurz
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Lisa E Shaw
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Georg Stingl
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Florian Halbritter
- St. Anna Children's Cancer Research Institute (CCRI), Zimmermannplatz 10, 1090, Vienna, Austria
| | - Wolfgang M Bauer
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Patrick M Brunner
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|