1
|
Li N, Zhang ZR, Zhang YN, Liu J, Deng CL, Shi PY, Yuan ZM, Ye HQ, Zhang B. A replication-defective Japanese encephalitis virus (JEV) vaccine candidate with NS1 deletion confers dual protection against JEV and West Nile virus in mice. NPJ Vaccines 2020; 5:73. [PMID: 32802412 PMCID: PMC7406499 DOI: 10.1038/s41541-020-00220-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/14/2020] [Indexed: 11/09/2022] Open
Abstract
In our previous study, we have demonstrated in the context of WNV-ΔNS1 vaccine (a replication-defective West Nile virus (WNV) lacking NS1) that the NS1 trans-complementation system may offer a promising platform for the development of safe and efficient flavivirus vaccines only requiring one dose. Here, we produced high titer (107 IU/ml) replication-defective Japanese encephalitis virus (JEV) with NS1 deletion (JEV-ΔNS1) in the BHK-21 cell line stably expressing NS1 (BHKNS1) using the same strategy. JEV-ΔNS1 appeared safe with a remarkable genetic stability and high degrees of attenuation of in vivo neuroinvasiveness and neurovirulence. Meanwhile, it was demonstrated to be highly immunogenic in mice after a single dose, providing similar degrees of protection to SA14-14-2 vaccine (a most widely used live attenuated JEV vaccine), with healthy condition, undetectable viremia and gradually rising body weight. Importantly, we also found JEV-ΔNS1 induced robust cross-protective immune responses against the challenge of heterologous West Nile virus (WNV), another important member in the same JEV serocomplex, accounting for up to 80% survival rate following a single dose of immunization relative to mock-vaccinated mice. These results not only support the identification of the NS1-deleted flavivirus vaccines with a satisfied balance between safety and efficacy, but also demonstrate the potential of the JEV-ΔNS1 as an alternative vaccine candidate against both JEV and WNV challenge.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Zhe-Rui Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Ya-Nan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jing Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Cheng-Lin Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Zhi-Ming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Han-Qing Ye
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,Drug Discovery Center for Infectious Disease, Nankai University, 300350 Tianjin, China
| |
Collapse
|
2
|
Minato E, Kobayashi A, Aoshima K, Fukushi H, Kimura T. Susceptibility of rat immortalized neuronal cell line Rn33B expressing equine major histocompatibility class 1 to equine herpesvirus-1 infection is differentiation dependent. Microbiol Immunol 2020; 64:123-132. [PMID: 31758567 DOI: 10.1111/1348-0421.12761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/31/2019] [Accepted: 11/11/2019] [Indexed: 11/29/2022]
Abstract
Equine herpesvirus-1 (EHV-1), which causes encephalomyelitis in horses, shows endotheliotropism in the central nervous system of horses, and generally does not infect neurons. However, little is known about the mechanism underlying the resistance of neuron to EHV-1, due to the lack of convenient cell culture systems. In this study, we examined EHV-1 infection in immortalized Rn33B rat neuronal cells, which differentiate into neurons when cultured under nonpermissive conditions. Because murine cell lines are resistant to EHV-1 infections due to the lack of functional entry receptors for EHV-1, we used an Rn33B-derived cell line that stably expresses the equine MHC class 1 molecule, which acts as EHV-1 entry receptor (Rn33B-A68B2M cells). EHV-1 infected undifferentiated Rn33B-A68B2M cells more efficiently than differentiated cells, resulting in the production of progeny virus in the former but not in the latter. By contrast, both differentiated and undifferentiated cells infected with herpes simplex virus-1 produced infectious viral progeny. While EHV-1 infection induced stronger expression of IFN alpha gene in differentiated cells than in undifferentiated cells, downstream IFN responses, including phosphorylation of STAT1 (signal transducer and activator of transcription 1) and expression of IFN-stimulated genes, were not activated regardless of whether cells were differentiated or not. These results suggest that neuronal differentiation of RN33B-A68B2M cells reduced their susceptibility to EHV-1, which is not due to different IFN responses. This culture system may be useful as an in vitro model for studying neuron-specific resistance to EHV-1, by investigating viral and host factors responsible for the difference in susceptibility between differentiated and undifferentiated cells.
Collapse
Affiliation(s)
- Erina Minato
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Keisuke Aoshima
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hideto Fukushi
- Laboratory of Veterinary Microbiology, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
3
|
North American domestic pigs are susceptible to experimental infection with Japanese encephalitis virus. Sci Rep 2018; 8:7951. [PMID: 29784969 PMCID: PMC5962597 DOI: 10.1038/s41598-018-26208-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/03/2018] [Indexed: 11/22/2022] Open
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that is capable of causing encephalitic diseases in children. While humans can succumb to severe disease, the transmission cycle is maintained by viremic birds and pigs in endemic regions. Although JEV is regarded as a significant threat to the United States (U.S.), the susceptibility of domestic swine to JEV infection has not been evaluated. In this study, domestic pigs from North America were intravenously challenged with JEV to characterize the pathological outcomes. Systemic infection followed by the development of neutralizing antibodies were observed in all challenged animals. While most clinical signs were limited to nonspecific symptoms, virus dissemination and neuroinvasion was observed at the acute phase of infection. Detection of infectious viruses in nasal secretions suggest infected animals are likely to promote the vector-free transmission of JEV. Viral RNA present in tonsils at 28 days post infection demonstrates the likelihood of persistent infection. In summary, our findings indicate that domestic pigs can potentially become amplification hosts in the event of an introduction of JEV into the U.S. Vector-free transmission to immunologically naïve vertebrate hosts is also likely through nasal shedding of infectious viruses.
Collapse
|