1
|
Kikuchi H, Nakayama M, Kuribayashi F, Mimuro H, Imajoh-Ohmi S, Nishitoh H, Nakayama T. Histone acetyltransferase PCAF is involved in transactivation of Bcl-6 and Pax5 genes in immature B cells. Biochem Biophys Res Commun 2015; 467:509-13. [PMID: 26456646 DOI: 10.1016/j.bbrc.2015.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 10/02/2015] [Indexed: 01/15/2023]
Abstract
Histone acetyltransferase p300/CBP-associated factor (PCAF) belonging to GCN5 family regulates various epigenetic events for transcriptional regulation through alterations in the chromatin structure. During normal development of B cells, gene expressions of numerous transcription factors are strictly regulated by epigenetic mechanisms including histone acetylation and deacetylation to complete their development pathways. Here, by analyzing PCAF-deficient DT40 mutants, ΔPCAF, we report that PCAF takes part in transcriptional activation of B cell lymphoma-6 (Bcl-6) and Paired box gene 5 (Pax5), which are essential transcription factors for normal development of B cells. PCAF-deficiency caused drastic decrease in mRNA levels of Bcl-6 and Pax5, and remarkable increase in that of B lymphocyte-induced maturation protein-1 (Blimp-1). In addition, chromatin immunoprecipitation assay showed that PCAF-deficiency caused remarkable decrease in acetylation levels of both H3K9 and H3K14 residues within chromatin surrounding the 5'-flanking regions of Bcl-6 and Pax5 genes in vivo, suggesting that their gene expressions may be regulated by PCAF. These results revealed that PCAF is involved in transactivation of Bcl-6 and Pax5 genes, resulting in down-regulation of Blimp-1 gene expression, and plays a key role in epigenetic regulation of B cell development.
Collapse
Affiliation(s)
- Hidehiko Kikuchi
- Section of Biochemistry and Molecular Biology, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200, Kihara, Kiyotake, Miyazaki 889-1692, Japan; Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Masami Nakayama
- Section of Biochemistry and Molecular Biology, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200, Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Futoshi Kuribayashi
- Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Biochemistry, Kawasaki Medical School, 577, Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Hitomi Mimuro
- Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Shinobu Imajoh-Ohmi
- Laboratory Center for Proteomics Research, Graduate School of Frontier Sciences, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hideki Nishitoh
- Section of Biochemistry and Molecular Biology, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200, Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Tatsuo Nakayama
- Section of Biochemistry and Molecular Biology, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200, Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|