1
|
Gao J, Zhang Z, Yan JY, Ge YX, Gao Y. Inflammation and coagulation abnormalities via the activation of the HMGB1‑RAGE/NF‑κB and F2/Rho pathways in lung injury induced by acute hypoxia. Int J Mol Med 2023; 52:67. [PMID: 37350396 PMCID: PMC10555482 DOI: 10.3892/ijmm.2023.5270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/15/2023] [Indexed: 06/24/2023] Open
Abstract
High‑altitude acute hypoxia is commonly associated with respiratory cardiovascular diseases. The inability to adapt to acute hypoxia may lead to cardiovascular dysfunction, lung injury and even death. Therefore, understanding the molecular basis of the adaptation to high‑altitude acute hypoxia may reveal novel therapeutic approaches with which to counteract the detrimental consequences of hypoxia. In the present study, a high‑altitude environment was simulated in a rat model in order to investigate the role of the high mobility group protein‑1 (HMGB1)/receptor for advanced glycation end products (RAGE)/NF‑κB and F2/Rho signaling pathways in lung injury induced by acute hypoxia. It was found that acute hypoxia caused inflammation through the HMGB1/RAGE/NF‑κB pathway and coagulation dysfunction through the F2/Rho pathway, both of which may be key processes in acute hypoxia‑induced lung injury. The present study provides new insight into the molecular basis of lung injury induced by acute hypoxia. The simultaneous activation of the HMGB1/RAGE/NF‑κB and F2/Rho signaling pathways plays a critical role in hypoxia‑induced inflammatory responses and coagulation abnormalities, and provides a theoretical basis for the development of potential therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Jia-Yi Yan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Yun-Xuan Ge
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| |
Collapse
|
2
|
Evaluation of Anticoagulant and inflammatory effects of Tanacetum parthenium (L.) in a randomized controlled clinical trial. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
3
|
The Role of Chemokines in Cardiovascular Diseases and the Therapeutic Effect of Curcumin on CXCL8 and CCL2 as Pathological Chemokines in Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1328:155-170. [PMID: 34981477 DOI: 10.1007/978-3-030-73234-9_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Curcumin, as a vegetative flavonoid, has a protective and therapeutic role in various adverse states such as oxidative stress and inflammation. Remedial properties of this component have been reported in the different chronic diseases including cancers (myeloma, pancreatic, breast, colorectal), vitiligo, psoriasis, neuropathic pains, inflammatory disorders (osteoarthritis, uveitis, ulcerative colitis, Alzheimer), cardiovascular conditions, and diabetes.Cardiovascular disorders include atherosclerosis and various manifestations of atherosclerosis such as stroke, and myocardial infarction (MI) is the leading cause of mortality globally. Studies have shown varying expressions of inflammatory and non-inflammatory chemokines and chemokine receptors in cardiovascular disease, which have been highlighted first in this review. The alteration in chemokines secretion and chemokine receptors has an essential role in the pathophysiology of cardiovascular disease. Chemokines as cytokines with low molecular weight (8-12 kDa) mediate white blood cell (WBC) chemotactic reactions, vascular cell migration, and proliferation that induce endothelial dysfunction, atherogenesis, and cardiac hypertrophy.Several studies reported that curcumin could be advantageous in the attenuation of cardiovascular diseases via anti-inflammatory effects and redress of chemokine secretion and chemokine receptors. We present these studies with a focus on two chemokines: CXCL8 (IL-8) and CCL2 (chemoattractant protein 1 or MCP-1). Future research will further elucidate the precise potential of curcumin on chemokines in the adjustment of cardiovascular system activity or curcumin chemokine-based therapies.
Collapse
|
4
|
Quan W, Liu HX, Zhang W, Lou WJ, Gong YZ, Yuan C, Shao Q, Wang N, Guo C, Liu F. Cardioprotective effect of rosmarinic acid against myocardial ischaemia/reperfusion injury via suppression of the NF-κB inflammatory signalling pathway and ROS production in mice. PHARMACEUTICAL BIOLOGY 2021; 59:222-231. [PMID: 33600735 PMCID: PMC7894452 DOI: 10.1080/13880209.2021.1878236] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 05/04/2023]
Abstract
CONTEXT Rosmarinic acid (RosA), a natural poly-phenolic compound isolated from a variety of Labiatae herbs, has been reported to have a range of biological effects. OBJECTIVE To investigate the cardioprotective effects of RosA against myocardial ischaemia/reperfusion (I/R) injury. MATERIALS AND METHODS Male C57BL/6J mice were given RosA (100 mg/kg) via intragastric administration. After 1 week of administration, the mice were subjected to 30 min/24 h myocardial I/R injury. The mice were randomly subdivided into 4 groups: Vehicle, RosA, Vehicle + I/R, and RosA + I/R. Infarct size (IS), cardiac function (including EF, FS), histopathology, serum enzyme activities, ROS changes, cis aconitase (ACO) activity, and specific mRNA and protein levels were assessed in vivo. HL-1 cells were pre-treated with or without RosA (50 μM), followed by stimulation with 9 h/6 h of oxygen and glucose deprivation/re-oxygenation (OGD/R). The cells were randomly subdivided into 4 groups: Vehicle, RosA, Vehicle + OGD/R, and RosA + OGD/R. Lactate dehydrogenase (LDH) levels, ACO activity, ROS changes and protein levels were measured in vitro. RESULTS Treatment with RosA reduced the following indicators in vivo (p < 0.05): (1) IS (14.5%); (2) EF (-23.4%) and FS (-18.4%); (3) the myocardial injury enzymes CK-MB (20.8 ng/mL) and cTnI (7.7 ng/mL); (4) DHE-ROS: (94.1%); (5) ACO activity (-2.1 mU/mg protein); (6) ogdh mRNA level (122.9%); and (7) OGDH protein level (69.9%). Moreover, treatment with RosA attenuated the following indicators in vitro (p < 0.05): (1) LDH level (191 U/L); (2) DHE-ROS: (165.2%); (3) ACO activity (-3.2 mU/mg protein); (4) ogdh mRNA level (70.0%); and (5) OGDH (110.1%), p-IκB-a (56.8%), and p-NF-κB (57.7%) protein levels. CONCLUSIONS RosA has the potential to treat myocardial I/R injury with potential application in the clinic.
Collapse
Affiliation(s)
- Wei Quan
- Xi’an Mental Health Center, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Hui-xian Liu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Wei Zhang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Wei-juan Lou
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yang-ze Gong
- Xi’an Mental Health Center, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Chong Yuan
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qing Shao
- Xi’an Mental Health Center, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Na Wang
- Xi’an Mental Health Center, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Chao Guo
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Fei Liu
- Xi’an Mental Health Center, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
5
|
Du S, Li Z, Xie X, Xu C, Shen X, Wang N, Shen Y. IL-17 stimulates the expression of CCL2 in cardiac myocytes via Act1/TRAF6/p38MAPK-dependent AP-1 activation. Scand J Immunol 2019; 91:e12840. [PMID: 31630418 DOI: 10.1111/sji.12840] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/19/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022]
Abstract
IL-17 participates in the development of many autoimmune diseases by promoting the expression of some chemokines. Chemokine C-C motif ligand 2 (CCL2) is an important factor at the infiltration of mononuclear cells in the myocardial tissue of viral myocarditis (VMC). It was found that IL-17 could aggravate myocardial injury by upregulating CCL2. But the underlying mechanism involved in CCL2 secretion induced by IL-17 in cardiac myocytes remains unclear. This study investigated the role of transcription factor AP-1 in IL-17 induced CCL2 expression. The results showed that IL-17 mediated the activation of Act1, TRAF6, p38MAPK and c-Jun/AP-1 not Wnt or PI3K signalling pathway to upregulate CCL2 expression in cardiac myocytes. After blocking Act1/TRAF6/p38MAPK cascade and interfering AP-1 with Curcumin or c-Jun siRNA, CCL2 expression induced by IL-17 was significantly attenuated at both mRNA and protein levels. Furthermore, the phosphorylation of c-Jun was suppressed when cardiac myocytes were treated with Act1 siRNA, TRAF6 siRNA, SB203580 (p38MAPK inhibitor) or SP600125 (JNK inhibitor) in cardiac myocytes. In conclusion, IL-17 could stimulate the expression of CCL2 in cardiac myocytes via Act1/TRAF6/p38MAPK-dependent AP-1 activation, which may provide a new target for the diagnosis and treatment of VMC.
Collapse
Affiliation(s)
- Shiyou Du
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhuolun Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
| | - Xin Xie
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Congfeng Xu
- Shanghai Institute of Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinhe Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Nan Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Hu X, He Z, Jiang P, Wang K, Guo J, Zhao C, Cao Y, Zhang N, Fu Y. Neutralization of Interleukin-17A Attenuates Lipopolysaccharide-Induced Mastitis by Inhibiting Neutrophil Infiltration and the Inflammatory Response. J Interferon Cytokine Res 2019; 39:577-584. [PMID: 31313943 DOI: 10.1089/jir.2019.0069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mastitis has been recognized as a common and major disease of cows with a strong impact on dairy farming. Interleukin-17A (IL-17A) has been shown to mediate crucial crosstalk between the immune system and various epithelial tissues, initiating a series of defensive mechanisms against bacterial and fungal infections. This crosstalk is especially involved in neutrophil infiltration. To evaluate the role of IL-17A in immune defense in the mammary gland in mice, we tested the effects of depleting IL-17A on changes in pathology, neutrophil infiltration, and pro-inflammatory cytokine levels in the mammary gland stimulated by lipopolysaccharide (LPS). Further, the effects of IL-17A on the activation of the nuclear factor-κB (NF-κB) signaling pathway during mastitis induced by LPS were also studied. The results showed that the production of IL-17A was significantly elevated during mastitis induced by LPS. IL-17A blockade via an intraperitoneal antibody injection protected against LPS-induced mastitis, as indicated by decreased neutrophil infiltration, myeloperoxidase activity, pro-inflammatory cytokines levels, and NF-κB signaling pathway molecule phosphorylation in response to LPS. In conclusion, an elevated IL-17 level plays a crucial role during mastitis, and anti-IL-17A antibody blockade protects against LPS-induced mammary gland inflammation induced through the NF-κB signaling pathway, which provides a new potential treatment target for mastitis.
Collapse
Affiliation(s)
- Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Zhaoqi He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Peng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Kecheng Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Jian Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| |
Collapse
|
7
|
Blockade of L-type Ca 2+ channel attenuates doxorubicin-induced cardiomyopathy via suppression of CaMKII-NF-κB pathway. Sci Rep 2019; 9:9850. [PMID: 31285514 PMCID: PMC6614470 DOI: 10.1038/s41598-019-46367-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/27/2019] [Indexed: 12/30/2022] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) and nuclear factor-kappa B (NF-κB) play crucial roles in pathogenesis of doxorubicin (DOX)-induced cardiomyopathy. Their activities are regulated by intracellular Ca2+. We hypothesized that blockade of L-type Ca2+ channel (LTCC) could attenuate DOX-induced cardiomyopathy by regulating CaMKII and NF-κB. DOX activated CaMKII and NF-κB through their phosphorylation and increased cleaved caspase 3 in cardiomyocytes. Pharmacological blockade or gene knockdown of LTCC by nifedipine or small interfering RNA, respectively, suppressed DOX-induced phosphorylation of CaMKII and NF-κB and apoptosis in cardiomyocytes, accompanied by decreasing intracellular Ca2+ concentration. Autocamtide 2-related inhibitory peptide (AIP), a selective CaMKII inhibitor, inhibited DOX-induced phosphorylation of NF-κB and cardiomyocyte apoptosis. Inhibition of NF-κB activity by ammonium pyrrolidinedithiocarbamate (PDTC) suppressed DOX-induced cardiomyocyte apoptosis. DOX-treatment (18 mg/kg via intravenous 3 injections over 1 week) increased phosphorylation of CaMKII and NF-κB in mouse hearts. Nifedipine (10 mg/kg/day) significantly suppressed DOX-induced phosphorylation of CaMKII and NF-κB and cardiomyocyte injury and apoptosis in mouse hearts. Moreover, it attenuated DOX-induced left ventricular dysfunction and dilatation. Our findings suggest that blockade of LTCC attenuates DOX-induced cardiomyocyte apoptosis via suppressing intracellular Ca2+ elevation and activation of CaMKII-NF-κB pathway. LTCC blockers might be potential therapeutic agents against DOX-induced cardiomyopathy.
Collapse
|
8
|
Lavoz C, Matus YS, Orejudo M, Carpio JD, Droguett A, Egido J, Mezzano S, Ruiz-Ortega M. Interleukin-17A blockade reduces albuminuria and kidney injury in an accelerated model of diabetic nephropathy. Kidney Int 2019; 95:1418-1432. [PMID: 30982673 DOI: 10.1016/j.kint.2018.12.031] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 12/01/2018] [Accepted: 12/28/2018] [Indexed: 12/17/2022]
Abstract
Diabetic nephropathy (DN) is one of the most common complications of diabetes, and currently the first end-stage renal disease worldwide. New strategies to treat DN using agents that target inflammatory pathways have attracted special interest. Recent pieces of evidences suggest a promising effect of IL-17A, the Th17 effector cytokine. Among experimental DN models, mouse strain BTBR ob/ob (leptin deficiency mutation) develops histological features similar to human DN, which means an opportunity to study mechanisms and novel therapies aimed at DN regression. We found that BTBR ob/ob mice presented renal activation of the factors controlling Th17 differentiation. The presence of IL-17A-expressing cells, mainly CD4+ and γδ lymphocytes, was associated with upregulation of proinflammatory factors, macrophage infiltration and the beginning of renal damage. To study IL-17A involvement in experimental DN pathogenesis, treatment with an IL-17A neutralizing antibody was carried out starting when the renal damage had already appeared. IL-17A blockade ameliorated renal dysfunction and disease progression in BTBR ob/ob mice. These beneficial effects correlated to podocyte number restoration and inhibition of NF-κB/proinflammatory factors linked to a decrease in renal inflammatory-cell infiltration. These data demonstrate that IL-17A takes part in diabetes-mediated renal damage and could be a promising therapeutic target to improve DN.
Collapse
Affiliation(s)
- Carolina Lavoz
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile.
| | | | - Macarena Orejudo
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
| | - J Daniel Carpio
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile
| | - Alejandra Droguett
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
| | - Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
| |
Collapse
|
9
|
Wang X, Yu Y, Li M, Yu Y, Liu G, Xie Y, Liu Y, Yang X, Zou Y, Ge J, Chen R. Sphingosine 1-phosphate alleviates Coxsackievirus B3-induced myocarditis by increasing invariant natural killer T cells. Exp Mol Pathol 2017; 103:210-217. [DOI: 10.1016/j.yexmp.2017.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 09/05/2017] [Accepted: 09/30/2017] [Indexed: 01/14/2023]
|