1
|
Yang J, Kisu T, Watanabe O, Kitai Y, Ohmiya S, Fan Y, Nishimura H. Analysis of neuraminidase activity of human parainfluenza viruses using enzyme-linked lectin assay and BTP3-Neu5Ac assay. Microbiol Immunol 2024; 68:371-380. [PMID: 39318127 DOI: 10.1111/1348-0421.13170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/26/2024]
Abstract
Human parainfluenza viruses (hPIVs) are causative agents of upper and lower respiratory tract infections and they have four serotypes. The virion surface displays hemagglutinin-neuraminidase (HN), having hemagglutinating (HA) and neuraminidase (NA) activities in a single molecule. The HA activity binds the virion to sialic acid on the viral receptor on host cells and the NA releases the progeny viruses from the cell surface. There are several methods for assaying viral NA activity, such as the thiobarbituric acid assay, 4-methylumbelliferyl-N-acetyl-α-d-neuraminic acid assay, NA-Star assay, and enzyme-linked lectin assay (ELLA). However, these are mainly used for influenza viruses and not for hPIVs. A fluorescent-based cytochemical NA assay using BTP3-Neu5Ac as the substrate was recently developed and used for orthomyxo- and paramyxoviruses, including types 1 and 3 hPIVs. In this study, we used the ELLA, and BTP-Neu5Ac assay for 14 field isolate strains of hPIVs including all four serotypes. The reaction in ELLA at pH 6.5 using peanut agglutinin (PNA) as a lectin was very low for all tested viruses except a type 3 virus strain with the maximum reaction at pH 6.5 and the acidic conditions did not enhance the reaction. ELLA with another lectin, Erythrina cristagalli agglutinin exhibited significant and stronger reactions than with PNA in some strains of types 1 and 3 viruses. The BTP3-Neu5Ac assay showed a fluorescent signal on cells infected with all the viruses except the hPIV1/Sendai/713/2018 strain in LLC-MK2 and/or MNT-1. The signal was detected in cell-free virus, as well, in all the viruses except the hPIV4a/Sendai/3935/2003 strain. The strength of the signal varied among viral strains but it was stronger in the reaction at pH 4.0 than pH 7.0 and strongest in type 2 hPIVs.
Collapse
Affiliation(s)
- Jie Yang
- Virus Research Center, Clinical Research Division, Sendai Medical Center, National Hospital Organization, Sendai, Japan
- Department of Virology, Tohoku University School of Medicine, Sendai, Japan
| | - Tomoko Kisu
- Virus Research Center, Clinical Research Division, Sendai Medical Center, National Hospital Organization, Sendai, Japan
| | - Oshi Watanabe
- Virus Research Center, Clinical Research Division, Sendai Medical Center, National Hospital Organization, Sendai, Japan
| | - Yuki Kitai
- Virus Research Center, Clinical Research Division, Sendai Medical Center, National Hospital Organization, Sendai, Japan
| | - Suguru Ohmiya
- Virus Research Center, Clinical Research Division, Sendai Medical Center, National Hospital Organization, Sendai, Japan
| | - Yuxuan Fan
- Virus Research Center, Clinical Research Division, Sendai Medical Center, National Hospital Organization, Sendai, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, National Hospital Organization, Sendai, Japan
| |
Collapse
|
2
|
Kitai Y, Watanabe O, Ohmiya S, Kisu T, Ota R, Kawakami K, Katoh H, Fukuzawa K, Takeda M, Nishimura H. Detailed analysis of low temperature inactivation of respiratory syncytial virus. Sci Rep 2024; 14:11823. [PMID: 38783052 PMCID: PMC11116427 DOI: 10.1038/s41598-024-62658-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Our previous findings indicated that many respiratory syncytial virus (RSV) isolates are unstable at 4 °C compared to 20 °C. Some of the strains completely lose infectivity after 24 h at 4 °C. This study analyzed the inactivation process at 4 °C using a representative strain, RSV/Sendai/851/13. After 24 h of storage at 4 °C, the virus was completely inactivated but retained its ability to attach to and to be taken into host cells. It suggested a reduced fusion ability between the viral and cellular membranes. During storage at 4 °C, the RSV fusion (F) protein underwent a conformational change and was no longer recognized by pre-fusion form-specific antibodies. When the RSV/Sendai/851/13 strain was passaged at 4 °C, a variant with an amino acid substitution, I148T, in the F protein fusion peptide was selected. Also, an amino acid change in G protein demonstrating stability at low temperatures was obtained. These results show that the inactivation of RSV at 4 °C is due to the loss of membrane fusion activity in the F protein, which cannot maintain its pre-fusion state at 4 °C.
Collapse
Affiliation(s)
- Yuki Kitai
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Miyagi, Japan.
| | - Oshi Watanabe
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Miyagi, Japan
| | - Suguru Ohmiya
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Miyagi, Japan
| | - Tomoko Kisu
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Miyagi, Japan
| | - Reiko Ota
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Miyagi, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroshi Katoh
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kaori Fukuzawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Makoto Takeda
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Miyagi, Japan.
| |
Collapse
|
3
|
Shirato K, Suwa R, Nao N, Kawase M, Sugimoto S, Kume Y, Chishiki M, Ono T, Okabe H, Norito S, Sato M, Sakuma H, Suzuki S, Hosoya M, Takeda M, Hashimoto K. Molecular Epidemiology of Human Metapneumovirus in East Japan before and after COVID-19, 2017-2022. Jpn J Infect Dis 2024; 77:137-143. [PMID: 38171847 DOI: 10.7883/yoken.jjid.2023.350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Human metapneumovirus (hMPV) is genetically classified into two major subgroups, A and B, based on attachment glycoprotein (G protein) gene sequences. The A2 subgroup is further separated into three subdivisions, A2a, A2b (A2b1), and A2c (A2b2). Subgroup A2c viruses carrying 180- or 111-nucleotide duplications in the G gene (A2c 180nt-dup or A2c 111nt-dup ) have been reported in Japan and Spain. The coronavirus disease 2019 (COVID-19) pandemic disrupted the epidemiological kinetics of other respiratory viruses, including hMPV. In this study, we analyzed the sequences of hMPV isolates in Tokyo and Fukushima obtained from 2017 to 2022, i.e., before and after the COVID-19 pandemic. Subgroup A hMPV strains were detected from 2017 to 2019, and most cases were A2c 111nt-dup, suggesting ongoing transmission of this clade, consistent with global transmission dynamics. Subgroup B viruses, but not subgroup A viruses, were detected in 2022 after the COVID-19 peak. Phylogenetic analysis showed that the subgroup B viruses were closely related to strains detected in Yokohama from 2013 to 2016, and strains detected in Fukushima in 2019, suggesting the reappearance of local endemic viruses in East Japan.
Collapse
Affiliation(s)
- Kazuya Shirato
- Department of Virology III, National Institute of Infectious Diseases, Japan
| | - Reiko Suwa
- Department of Virology III, National Institute of Infectious Diseases, Japan
| | - Naganori Nao
- Department of Virology III, National Institute of Infectious Diseases, Japan
- One Health Research Center, International Institute for Zoonosis Control, Hokkaido University, Japan
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Japan
| | - Miyuki Kawase
- Department of Virology III, National Institute of Infectious Diseases, Japan
| | - Satoko Sugimoto
- Department of Virology III, National Institute of Infectious Diseases, Japan
- Management Department of Biosafety, Laboratory Animals, and Pathogen Bank, National Institute of Infectious Diseases, Japan
| | - Yohei Kume
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Japan
| | - Mina Chishiki
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Japan
| | - Takashi Ono
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Japan
| | - Hisao Okabe
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Japan
| | - Sakurako Norito
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Japan
| | - Masatoki Sato
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Japan
| | | | | | - Mitsuaki Hosoya
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Japan
| | - Makoto Takeda
- Department of Virology III, National Institute of Infectious Diseases, Japan
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Japan
| | - Koichi Hashimoto
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Japan
| |
Collapse
|
4
|
Kitai Y, Sato K, Shirato K, Ohmiya S, Watanabe O, Kisu T, Ota R, Takeda M, Kawakami K, Nishimura H. Variation in Thermal Stability among Respiratory Syncytial Virus Clinical Isolates under Non-Freezing Conditions. Viruses 2022; 14:v14040679. [PMID: 35458409 PMCID: PMC9029476 DOI: 10.3390/v14040679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/10/2022] Open
Abstract
Virus isolates are not only useful for diagnosing infections, e.g., respiratory syncytial virus (RSV), but can also facilitate many aspects of practical viral studies such as analyses of antigenicity and the action mechanisms of antivirals, among others. We have been isolating RSV from clinical specimens from patients with respiratory symptoms every year since our first isolation of RSV in 1964, and isolation rates have varied considerably over the years. As collected clinical specimens are conventionally stored in a refrigerator from collection to inoculation into cells, we hypothesized that certain storage conditions or associated factors might account for these differences. Hence, we evaluated the thermal stability of a total of 64 viruses isolated from 1998 to 2018 upon storage at 4 °C and 20 °C for a defined duration. Interestingly, and contrary to our current understanding, 22 strains (34%) showed a greater loss of viability upon short-term storage at 4 °C than at 20 °C. Thirty-seven strains (57%) showed an almost equal loss, and only five strains (8%) were more stable at 4 °C than at 20 °C. This finding warrants reconsideration of the temperature for the temporary storage of clinical samples for RSV isolation.
Collapse
Affiliation(s)
- Yuki Kitai
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Miyagino 2-11-12, Miyagino-ku, Sendai 983-8520, Japan; (Y.K.); (S.O.); (O.W.); (T.K.); (R.O.)
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan; (K.S.); (K.K.)
| | - Ko Sato
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan; (K.S.); (K.K.)
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan
| | - Kazuya Shirato
- Department of Virology III, National Institute of Infectious Disease, Tokyo 208-0011, Japan; (K.S.); (M.T.)
| | - Suguru Ohmiya
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Miyagino 2-11-12, Miyagino-ku, Sendai 983-8520, Japan; (Y.K.); (S.O.); (O.W.); (T.K.); (R.O.)
| | - Oshi Watanabe
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Miyagino 2-11-12, Miyagino-ku, Sendai 983-8520, Japan; (Y.K.); (S.O.); (O.W.); (T.K.); (R.O.)
| | - Tomoko Kisu
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Miyagino 2-11-12, Miyagino-ku, Sendai 983-8520, Japan; (Y.K.); (S.O.); (O.W.); (T.K.); (R.O.)
| | - Reiko Ota
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Miyagino 2-11-12, Miyagino-ku, Sendai 983-8520, Japan; (Y.K.); (S.O.); (O.W.); (T.K.); (R.O.)
| | - Makoto Takeda
- Department of Virology III, National Institute of Infectious Disease, Tokyo 208-0011, Japan; (K.S.); (M.T.)
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan; (K.S.); (K.K.)
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Miyagino 2-11-12, Miyagino-ku, Sendai 983-8520, Japan; (Y.K.); (S.O.); (O.W.); (T.K.); (R.O.)
- Correspondence: ; Tel./Fax: +81-22-293-1173
| |
Collapse
|
5
|
Shaw Stewart PD, Bach JL. Temperature dependent viral tropism: understanding viral seasonality and pathogenicity as applied to the avoidance and treatment of endemic viral respiratory illnesses. Rev Med Virol 2022; 32:e2241. [PMID: 33942417 PMCID: PMC8209954 DOI: 10.1002/rmv.2241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/29/2022]
Abstract
This review seeks to explain three features of viral respiratory illnesses that have perplexed generations of virologists: (1) the seasonal timing of respiratory illness and the rapid response of outbreaks to weather, specifically temperature; (2) the common viruses causing respiratory illness worldwide, including year-round disease in the Tropics; (3) the rapid arrival and termination of epidemics caused by influenza and other viruses. The inadequacy of the popular explanations of seasonality is discussed, and a simple hypothesis is proposed, called temperature dependent viral tropism (TDVT), that is compatible with the above features of respiratory illness. TDVT notes that viruses can spread more effectively if they moderate their pathogenicity (thereby maintaining host mobility) and suggests that endemic respiratory viruses accomplish this by developing thermal sensitivity within a range that supports organ-specific viral tropism within the human body, whereby they replicate most rapidly at temperatures below body temperature. This can confine them to the upper respiratory tract and allow them to avoid infecting the lungs, heart, gut etc. Biochemical and tissue-culture studies show that 'wild' respiratory viruses show such natural thermal sensitivity. The typical early autumn surge of colds and the occurrence of respiratory illness in the Tropics year-round at intermediate levels are explained by the tendency for strains to adapt their thermal sensitivity to their local climate and season. TDVT has important practical implications for preventing and treating respiratory illness including Covid-19. It is testable with many options for experiments to increase our understanding of viral seasonality and pathogenicity.
Collapse
|
6
|
Sato K, Hayashi H, Shimotai Y, Yamaya M, Hongo S, Kawakami K, Matsuzaki Y, Nishimura H. TMPRSS2 Activates Hemagglutinin-Esterase Glycoprotein of Influenza C Virus. J Virol 2021; 95:e0129621. [PMID: 34406864 PMCID: PMC8513465 DOI: 10.1128/jvi.01296-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023] Open
Abstract
Influenza C virus (ICV) has only one kind of spike protein, the hemagglutinin-esterase (HE) glycoprotein. HE functions similarly to hemagglutinin (HA) and neuraminidase of the influenza A and B viruses (IAV and IBV, respectively). It has a monobasic site, which is cleaved by some host enzymes. The cleavage is essential to activating the virus, but the enzyme or enzymes in the respiratory tract have not been identified. This study investigated whether the host serine proteases, transmembrane protease serine S1 member 2 (TMPRSS2) and human airway trypsin-like protease (HAT), which reportedly cleave HA of IAV/IBV, are involved in HE cleavage. We established TMPRSS2- and HAT-expressing MDCK cells (MDCK-TMPRSS2 and MDCK-HAT). ICV showed multicycle replication with HE cleavage without trypsin in MDCK-TMPRSS2 cells as well as IAV did. The HE cleavage and multicycle replication did not appear in MDCK-HAT cells infected with ICV without trypsin, while HA cleavage and multistep growth of IAV appeared in the cells. Amino acid sequences of the HE cleavage site in 352 ICV strains were completely preserved. Camostat and nafamostat suppressed the growth of ICV and IAV in human nasal surface epithelial (HNE) cells. Therefore, this study revealed that, at least, TMPRSS2 is involved in HE cleavage and suggested that nafamostat could be a candidate for therapeutic drugs for ICV infection. IMPORTANCE Influenza C virus (ICV) is a pathogen that causes acute respiratory illness, mostly in children, but there are no anti-ICV drugs. ICV has only one kind of spike protein, the hemagglutinin-esterase (HE) glycoprotein on the virion surface, which possesses receptor-binding, receptor-destroying, and membrane fusion activities. The HE cleavage is essential for the virus to be activated, but the enzyme or enzymes in the respiratory tract have not been identified. This study revealed that transmembrane protease serine S1 member 2 (TMPRSS2), and not human airway trypsin-like protease (HAT), is involved in HE cleavage. This is a novel study on the host enzymes involved in HE cleavage, and the result suggests that the host enzymes, such as TMPRSS2, may be a target for therapeutic drugs of ICV infection.
Collapse
Affiliation(s)
- Ko Sato
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Miyagi, Japan
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hideki Hayashi
- Medical University Research Administrator, Nagasaki University School of Medicine, Sakamoto, Nagasaki, Japan
| | - Yoshitaka Shimotai
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Iida-Nishi, Yamagata, Japan
| | - Mutsuo Yamaya
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate school of Medicine, Sendai, Miyagi, Japan
| | - Seiji Hongo
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Iida-Nishi, Yamagata, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Iida-Nishi, Yamagata, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Miyagi, Japan
| |
Collapse
|
7
|
Eccles R. Why is temperature sensitivity important for the success of common respiratory viruses? Rev Med Virol 2020; 31:1-8. [PMID: 32776651 PMCID: PMC7435572 DOI: 10.1002/rmv.2153] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 01/01/2023]
Abstract
This review explores the idea that temperature sensitivity is an important factor in determining the success of respiratory viruses as human parasites. The review discusses several questions. What is viral temperature sensitivity? At what range of temperatures are common respiratory viruses sensitive? What is the mechanism for their temperature sensitivity? What is the range of temperature along the human airway? What is it that makes respiratory viruses such successful parasites of the human airway? What is the role of temperature sensitivity in respiratory zoonoses? A definition of temperature sensitivity is proposed, as “the property of a virus to replicate poorly or not at all, at the normal body temperature of the host (restrictive temperature), but to replicate well at the lower temperatures found in the upper airway of the host (permissive temperature).” Temperature sensitivity may influence the success of a respiratory virus in several ways. Firstly; by restricting the infection to the upper airways and reducing the chance of systemic infection that may reduce host mobility and increase mortality, and thus limit the spread of the virus. Secondly; by causing a mild upper airway illness with a limited immune response compared to systemic infection, which means that persistent herd immunity does not develop to the same extent as with systemic infections, and re‐infection may occur later. Thirdly; infection of the upper airway triggers local reflex rhinorrhea, coughing and sneezing which aid the exit of the virus from the host and the spread of infection in the community.
Collapse
Affiliation(s)
- Ronald Eccles
- Emeritus Professor, Cardiff School of Biosciences, Cardiff University, UK
| |
Collapse
|
8
|
Consensus and variations in cell line specificity among human metapneumovirus strains. PLoS One 2019; 14:e0215822. [PMID: 31013314 PMCID: PMC6478314 DOI: 10.1371/journal.pone.0215822] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/09/2019] [Indexed: 11/30/2022] Open
Abstract
Human metapneumovirus (HMPV) has been a notable etiological agent of acute respiratory infection in humans, but it was not discovered until 2001, because HMPV replicates only in a limited number of cell lines and the cytopathic effect (CPE) is often mild. To promote the study of HMPV, several groups have generated green fluorescent protein (GFP)-expressing recombinant HMPV strains (HMPVGFP). However, the growing evidence has complicated the understanding of cell line specificity of HMPV, because it seems to vary notably among HMPV strains. In addition, unique A2b clade HMPV strains with a 180-nucleotide duplication in the G gene (HMPV A2b180nt-dup strains) have recently been detected. In this study, we re-evaluated and compared the cell line specificity of clinical isolates of HMPV strains, including the novel HMPV A2b180nt-dup strains, and six recombinant HMPVGFP strains, including the newly generated recombinant HMPV A2b180nt-dup strain, MG0256-EGFP. Our data demonstrate that VeroE6 and LLC-MK2 cells generally showed the highest infectivity with any clinical isolates and recombinant HMPVGFP strains. Other human-derived cell lines (BEAS-2B, A549, HEK293, MNT-1, and HeLa cells) showed certain levels of infectivity with HMPV, but these were significantly lower than those of VeroE6 and LLC-MK2 cells. Also, the infectivity in these suboptimal cell lines varied greatly among HMPV strains. The variations were not directly related to HMPV genotypes, cell lines used for isolation and propagation, specific genome mutations, or nucleotide duplications in the G gene. Thus, these variations in suboptimal cell lines are likely intrinsic to particular HMPV strains.
Collapse
|