1
|
Ragothaman M, Yoo SY. Engineered Phage-Based Cancer Vaccines: Current Advances and Future Directions. Vaccines (Basel) 2023; 11:vaccines11050919. [PMID: 37243023 DOI: 10.3390/vaccines11050919] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Bacteriophages have emerged as versatile tools in the field of bioengineering, with enormous potential in tissue engineering, vaccine development, and immunotherapy. The genetic makeup of phages can be harnessed for the development of novel DNA vaccines and antigen display systems, as they can provide a highly organized and repetitive presentation of antigens to immune cells. Bacteriophages have opened new possibilities for the targeting of specific molecular determinants of cancer cells. Phages can be used as anticancer agents and carriers of imaging molecules and therapeutics. In this review, we explored the role of bacteriophages and bacteriophage engineering in targeted cancer therapy. The question of how the engineered bacteriophages can interact with the biological and immunological systems is emphasized to comprehend the underlying mechanism of phage use in cancer immunotherapy. The effectiveness of phage display technology in identifying high-affinity ligands for substrates, such as cancer cells and tumor-associated molecules, and the emerging field of phage engineering and its potential in the development of effective cancer treatments are discussed. We also highlight phage usage in clinical trials as well as the related patents. This review provides a new insight into engineered phage-based cancer vaccines.
Collapse
Affiliation(s)
- Murali Ragothaman
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
2
|
Hashemi ZS, Zarei M, Mubarak SMH, Hessami A, Mard-Soltani M, Khalesi B, Zakeri A, Rahbar MR, Jahangiri A, Pourzardosht N, Khalili S. Pierce into Structural Changes of Interactions Between Mutated Spike Glycoproteins and ACE2 to Evaluate Its Potential Biological and Therapeutic Consequences. Int J Pept Res Ther 2021; 28:33. [PMID: 34931119 PMCID: PMC8674523 DOI: 10.1007/s10989-021-10346-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 12/27/2022]
Abstract
The structural consequences of ongoing mutations on the SARS-CoV-2 spike-protein remains to be fully elucidated. These mutations could change the binding affinity between the virus and its target cell. Moreover, obtaining new mutations would also change the therapeutic efficacy of the designed drug candidates. To evaluate these consequences, 3D structure of a mutant spike protein was predicted and checked for stability, cavity sites, and residue depth. The docking analyses were performed between the 3D model of the mutated spike protein and the ACE2 protein and an engineered therapeutic ACE2 against COVID-19. The obtained results revealed that the N501Y substitution has altered the interaction orientation, augmented the number of interface bonds, and increased the affinity against the ACE2. On the other hand, the P681H mutation contributed to the increased cavity size and relatively higher residue depth. The binding affinity between the engineered therapeutic ACE2 and the mutant spike was significantly higher with a distinguished binding orientation. It could be concluded that the mutant spike protein increased the affinity, preserved the location, changed the orientation, and altered the interface amino acids of its interaction with both the ACE2 and its therapeutic engineered version. The obtained results corroborate the more aggressive nature of mutated SARS-CoV-2 due to their higher binding affinity. Moreover, designed ACe2-baased therapeutics would be still highly effective against covid-19, which could be the result of conserved nature of cellular ACE2. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10989-021-10346-1.
Collapse
Affiliation(s)
- Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mahboubeh Zarei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shaden M. H. Mubarak
- Department of Clinical Laboratory Science, Faculty of Pharmacy, University of Kufa, Najaf, Iraq
| | - Anahita Hessami
- School of Pharmacy, Shiraz University of medical sciences, Shiraz, Iran
| | - Maysam Mard-Soltani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Alireza Zakeri
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Mohammad Reza Rahbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Navid Pourzardosht
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
3
|
Bonakdar A, Sahebazzamani F, Rasaee MJ, Hosseinkhani S, Rahbarizadeh F, Mahboudi F, Ganjali MR. In silico design and in vitro characterization of a recombinant antigen for specific recognition of NMP22. Int J Biol Macromol 2019; 140:69-77. [PMID: 31404598 DOI: 10.1016/j.ijbiomac.2019.08.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 01/22/2023]
Abstract
Although urine cytology and cystoscopy are current gold standard methods in diagnosis and surveillance of Bladder cancer (BC), they have some limitations which necessitates novel diagnostic approaches to compensate their drawbacks. In this regard, Nuclear Matrix Protein 22 (NMP22) is introduced as a potential tumor biomarker for BC detection (FDA approved). NMP22 determination mainly occurs through immunoassay platforms, raising a proper antibody against its antigen. Hence, development of such immunoassays seems crucial. Various bioinformatic tools were harnessed to select a region with lowest variability, highest density for linear and conformational epitopes, lowest post translational modifications, highest antigenicity, best physicochemical properties and reliable transcriptional properties. Subsequently, E. coli BL21 (DE3) and P. pastoris GS115 were applied for exogenous expression. Ultimately, protein purification and quantification was followed by ELISA test for antibody analyses. Both host successfully expressed the antigen, while the E. coli expression was with higher yield. The commercial anti-NMP22 antibodies showed relatively equal detection results. However, the slight better detection for the antigen with P. pastoris origin could be deduced as better structural properties for P. pastoris. These results indicate higher expression yields and lower costs for over-expression of this eukaryotic antigen.
Collapse
Affiliation(s)
- Alireza Bonakdar
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Sahebazzamani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javad Rasaee
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran; Biosensor Research Center, Endocrinology & Metabolism Molecular - Cellular Sciences Institute, Iran
| |
Collapse
|