1
|
Peng Y, Zong Y, Wang D, Chen J, Chen ZS, Peng F, Liu Z. Current drugs for HIV-1: from challenges to potential in HIV/AIDS. Front Pharmacol 2023; 14:1294966. [PMID: 37954841 PMCID: PMC10637376 DOI: 10.3389/fphar.2023.1294966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
The human immunodeficiency virus (HIV) persists in latently infected CD4+T cells and integrates with the host genome until cell death. Acquired immunodeficiency syndrome (AIDS) is associated with HIV-1. Possibly, treating HIV/AIDS is an essential but challenging clinical goal. This review provides a detailed account of the types and mechanisms of monotherapy and combination therapy against HIV-1 and describes nanoparticle and hydrogel delivery systems. In particular, the recently developed capsid inhibitor (Lenacapavir) and the Ainuovirine/tenofovir disoproxil fumarate/lamivudine combination (ACC008) are described. It is interestingly to note that the lack of the multipass transmembrane proteins serine incorporator 3 (SERINC3) and the multipass transmembrane proteins serine incorporator 5 (SERINC5) may be one of the reasons for the enhanced infectivity of HIV-1. This discovery of SERINC3 and SERINC5 provides new ideas for HIV-1 medication development. Therefore, we believe that in treating AIDS, antiviral medications should be rationally selected for pre-exposure and post-exposure prophylaxis to avoid the emergence of drug resistance. Attention should be paid to the research and development of new drugs to predict HIV mutations as accurately as possible and to develop immune antibodies to provide multiple guarantees for the cure of AIDS.
Collapse
Affiliation(s)
- Yuan Peng
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yanjun Zong
- Department of Medical Microbiology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Dongfeng Wang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Junbing Chen
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Fujun Peng
- School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Zhijun Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| |
Collapse
|
2
|
Zhao Q, Almutairi M, Tailor A, Lister A, Harper N, Line J, Meng X, Pratoomwun J, Jaruthamsophon K, Sukasem C, Sun Y, Sun L, Ogese MO, MacEwan DJ, Pirmohamed M, Liu J, Ostrov DA, Liu H, Zhang F, Naisbitt DJ. HLA Class-II‒Restricted CD8 + T Cells Contribute to the Promiscuous Immune Response in Dapsone-Hypersensitive Patients. J Invest Dermatol 2021; 141:2412-2425.e2. [PMID: 33798536 DOI: 10.1016/j.jid.2021.03.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022]
Abstract
HLA-B∗13:01 is associated with dapsone (DDS)-induced hypersensitivity, and it has been shown that CD4+ and CD8+ T cells are activated by DDS and its nitroso metabolite (nitroso dapsone [DDS-NO]). However, there is a need to define the importance of the HLA association in the disease pathogenesis. Thus, DDS- and DDS-NO‒specific CD8+ T-cell clones (TCCs) were generated from hypersensitive patients expressing HLA-B∗13:01 and were assessed for phenotype and function, HLA allele restriction, and killing of target cells. CD8+ TCCs were stimulated to proliferate and secrete effector molecules when exposed to DDS and/or DDS-NO. DDS-responsive and several DDS-NO‒responsive TCCs expressing a variety of TCR sequences displayed HLA class-I restriction, with the drug (metabolite) interacting with multiple HLA-B alleles. However, activation of certain DDS-NO‒responsive CD8+ TCCs was inhibited with HLA class-II block, with DDS-NO binding to HLA-DQB1∗05:01. These TCCs were of different origin but expressed TCRs displaying the same amino acid sequences. They were activated through a hapten pathway; displayed CD45RO, CD28, PD-1, and CTLA-4 surface molecules; secreted the same panel of effector molecules as HLA class-I‒restricted TCCs; but displayed a lower capacity to lyse target cells. To conclude, DDS and DDS-NO interact with a number of HLA molecules to activate CD8+ TCCs, with HLA class-II‒restricted CD8+ TCCs that display hybrid CD4‒CD8 features also contributing to the promiscuous immune response that develops in patients.
Collapse
Affiliation(s)
- Qing Zhao
- MRC Centre for Drug Safety Science, Department of Pharmacology & Therapeutics, The University of Liverpool, Liverpool, United Kingdom; Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Mubarak Almutairi
- MRC Centre for Drug Safety Science, Department of Pharmacology & Therapeutics, The University of Liverpool, Liverpool, United Kingdom
| | - Arun Tailor
- MRC Centre for Drug Safety Science, Department of Pharmacology & Therapeutics, The University of Liverpool, Liverpool, United Kingdom
| | - Adam Lister
- MRC Centre for Drug Safety Science, Department of Pharmacology & Therapeutics, The University of Liverpool, Liverpool, United Kingdom
| | - Nicolas Harper
- MRC Centre for Drug Safety Science, Department of Pharmacology & Therapeutics, The University of Liverpool, Liverpool, United Kingdom
| | - James Line
- MRC Centre for Drug Safety Science, Department of Pharmacology & Therapeutics, The University of Liverpool, Liverpool, United Kingdom
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science, Department of Pharmacology & Therapeutics, The University of Liverpool, Liverpool, United Kingdom
| | - Jirawat Pratoomwun
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Centre (SDMC), Ramathibodi Hospital, Bangkok, Thailand; Faculty of Medical Technology, Huachiew Chalermprakiet University, Samut Prakan, Thailand
| | - Kanoot Jaruthamsophon
- MRC Centre for Drug Safety Science, Department of Pharmacology & Therapeutics, The University of Liverpool, Liverpool, United Kingdom; Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Centre (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Yonghu Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Lele Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Monday O Ogese
- MRC Centre for Drug Safety Science, Department of Pharmacology & Therapeutics, The University of Liverpool, Liverpool, United Kingdom
| | - David J MacEwan
- MRC Centre for Drug Safety Science, Department of Pharmacology & Therapeutics, The University of Liverpool, Liverpool, United Kingdom
| | - Munir Pirmohamed
- MRC Centre for Drug Safety Science, Department of Pharmacology & Therapeutics, The University of Liverpool, Liverpool, United Kingdom
| | - Jianjun Liu
- Human Genetics, Genome Institute of Singapore, A∗STAR, Singapore
| | - David A Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| | - Dean J Naisbitt
- MRC Centre for Drug Safety Science, Department of Pharmacology & Therapeutics, The University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|