1
|
Shimoyama Y, Sasaki D, Ohara-Nemoto Y, Nemoto TK, Nakasato M, Sasaki M, Ishikawa T. Immunoelectron Microscopic Analysis of Dipeptidyl-Peptidases and Dipeptide Transporter Involved in Nutrient Acquisition in Porphyromonas gingivalis. Curr Microbiol 2023; 80:106. [PMID: 36797528 DOI: 10.1007/s00284-023-03212-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023]
Abstract
Porphyromonas gingivalis is an asaccharolytic, Gram-negative, anaerobic bacterium representing a keystone pathogen in chronic periodontitis. The bacterium's energy production depends on the metabolism of amino acids, which are predominantly incorporated as dipeptides via the proton-dependent oligopeptide transporter (Pot). In this study, the localization of dipeptidyl-peptidases (DPPs) and Pot was investigated for the first time in P. gingivalis using immunoelectron microscopy with specific antibodies for the bacterial molecules and gold-conjugated secondary antibodies on ultrathin sections. High-temperature protein G and hemin-binding protein 35 were used as controls, and the cytoplasmic localization of the former and outer membrane localization of the latter were confirmed. P. gingivalis DPP4, DPP5, DPP7, and DPP11, which are considered sufficient for complete dipeptide production, were detected in the periplasmic space. In contrast, DPP3 was localized in the cytoplasmic space in accord with the absence of a signal sequence. The inner membrane localization of Pot was confirmed. Thus, spatial integration of the nutrient acquisition system exists in P. gingivalis, in which where dipeptides are produced in the periplasmic space by DPPs and readily transported across the inner membrane via Pot.
Collapse
Affiliation(s)
- Yu Shimoyama
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, 1-1-1 Idai-Dori, Yahaba-Cho, Shiwa-Gun, Iwate, 028-3694, Japan
| | - Daisuke Sasaki
- Division of Periodontology, Department of Conservative Dentistry, Iwate Medical University School of Dentistry, 1-3-27 Chuo-Dori, Morioka, Iwate, 020-8505, Japan.
| | - Yuko Ohara-Nemoto
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, 1-1-1 Idai-Dori, Yahaba-Cho, Shiwa-Gun, Iwate, 028-3694, Japan
- Department of Pediatric Dentistry, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto 1-7-1, Nagasaki, 852-8588, Japan
| | - Takayuki K Nemoto
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, 1-1-1 Idai-Dori, Yahaba-Cho, Shiwa-Gun, Iwate, 028-3694, Japan
- Department of Pediatric Dentistry, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto 1-7-1, Nagasaki, 852-8588, Japan
| | - Manami Nakasato
- Division of Periodontology, Department of Conservative Dentistry, Iwate Medical University School of Dentistry, 1-3-27 Chuo-Dori, Morioka, Iwate, 020-8505, Japan
| | - Minoru Sasaki
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, 1-1-1 Idai-Dori, Yahaba-Cho, Shiwa-Gun, Iwate, 028-3694, Japan
| | - Taichi Ishikawa
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, 1-1-1 Idai-Dori, Yahaba-Cho, Shiwa-Gun, Iwate, 028-3694, Japan
| |
Collapse
|
2
|
Sasaki M, Shimoyama Y, Kodama Y, Ishikawa T. Tryptophanyl tRNA Synthetase from Human Macrophages Infected by Porphyromonas gingivalis Induces a Proinflammatory Response Associated with Atherosclerosis. Pathogens 2021; 10:1648. [PMID: 34959604 PMCID: PMC8708850 DOI: 10.3390/pathogens10121648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 11/16/2022] Open
Abstract
Porphyromonas gingivalis is the most common microorganism associated with adult periodontal disease, causing inflammation around the subgingival lesion. In this study, we investigated tryptophanyl tRNA synthase (WRS) production by THP-1 cells infected with P. gingivalis. Cytokine production, leukocyte adhesion molecules, and low-density lipoprotein receptor (LDLR) expressions in cultured cells were examined. WRS was detected in THP-1 cell culture supernatants stimulated with P. gingivalis from 1 to 24 h, and apparent production was observed after 4 h. No change in WRS mRNA expression was observed from 1 to 6 h in THP-1 cells, whereas its expression was significantly increased 12 h after stimulation with P. gingivalis. Lactate dehydrogenase (LDH) activity was observed from 4 to 24 h. The TNF-α, IL-6, IL-8, and CXCL2 levels of THP-1 cells were upregulated after treatment with recombinant WRS (rWRS) and were significantly reduced when THP-1 cells were treated with C29. The MCP-1, ICAM-1, and VCAM-1 levels in human umbilical vein endothelial cells were upregulated following treatment with rWRS, and TAK242 suppressed these effects. Additionally, unmodified LDLR, macrophage scavenger receptor A, and lectin-like oxidized LDLRs were upregulated in THP-1 cells treated with rWRS. These results suggest that WRS from macrophages infected with P. gingivalis is associated with atherosclerosis.
Collapse
Affiliation(s)
- Minoru Sasaki
- Department of Microbiology, Division of Molecular Microbiology, Iwate Medical University, Morioka 028-3694, Japan; (Y.S.); (Y.K.); (T.I.)
| | | | | | | |
Collapse
|
3
|
Ishikawa Y, Saiki K, Urano-Tashiro Y, Yamanaka Y, Takahashi Y. Expression and diversity of the sialic acid-binding adhesin and its homologs associated with oral streptococcal infection. Microbiol Immunol 2021; 66:59-66. [PMID: 34783072 DOI: 10.1111/1348-0421.12950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/13/2021] [Accepted: 11/06/2021] [Indexed: 11/29/2022]
Abstract
Streptococcus gordonii, one of the early colonizers of oral biofilms, is involved in the development of dental caries, periodontal disease, and infective endocarditis. The Hsa adhesin of S. gordonii DL1 has the ability to bind strongly to the terminal sialic acid groups of host glycoproteins via the binding region, NR2, which is important for the pathogenicity of S. gordonii DL1. Low similarity with the NR2 of Hsa homologs among other streptococcal species has been reported. However, the reports have been limited to certain strains. This study attempted to assess frequency of the expression on the bacterial cell surface and to analyze the diversity of Hsa homologs among different wild strains of oral streptococci. We isolated 186 wild-type strains of oral streptococci from healthy volunteers and analyzed their hemagglutinating activity on human erythrocytes and their Hsa homologs and NR2 homologous regions by dot immunoblotting using anti-Hsa and anti-NR2 antisera, respectively. We found 30 strains reacted with anti-NR2 antiserum (NR2-positive) and determined the sequence of the NR2 regions. Many strains with high hemagglutinating activity were also NR2-positive, suggesting that the NR2 region may be associated with hemagglutinating activity. Among the NR2-positive strains, four different amino acid sequence patterns were observed, demonstrating diversity in the NR2 region. Notably, S. gordonii strains frequently possessed Hsa homologs and NR2-like antigens compared to other streptococci. It is speculated that the possessing frequency of Hsa homologs and the amino acid sequence of NR2 region may vary among streptococcal species. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yuiko Ishikawa
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Tokyo, Japan
| | - Keitarou Saiki
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Tokyo, Japan
| | - Yumiko Urano-Tashiro
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Tokyo, Japan
| | - Yuki Yamanaka
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Tokyo, Japan
| | - Yukihiro Takahashi
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Tokyo, Japan
| |
Collapse
|
4
|
Abiotrophia defectiva DnaK Promotes Fibronectin-Mediated Adherence to HUVECs and Induces a Proinflammatory Response. Int J Mol Sci 2021; 22:ijms22168528. [PMID: 34445234 PMCID: PMC8395199 DOI: 10.3390/ijms22168528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 01/15/2023] Open
Abstract
Abiotrophia defectiva is a nutritionally variant streptococci that is found in the oral cavity, and it is an etiologic agent of infective endocarditis. We have previously reported the binding activity of A. defectiva to fibronectin and to human umbilical vein endothelial cells (HUVECs). However, the contribution of some adhesion factors on the binding properties has not been well delineated. In this study, we identified DnaK, a chaperon protein, as being one of the binding molecules of A. defectiva to fibronectin. Recombinant DnaK (rDnaK) bound immobilized fibronectin in a concentration-dependent manner, and anti-DnaK antiserum reduced the binding activity of A. defectiva with both fibronectin and HUVECs. Furthermore, DnaK were observed on the cell surfaces via immune-electroscopic analysis with anti-DnaK antiserum. Expression of IL-8, CCL2, ICAM-1, and VCAM-1 was upregulated with the A. defectiva rDnaK treatment in HUVECs. Furthermore, TNF-α secretion of THP-1 macrophages was also upregulated with the rDnaK. We observed these upregulations in rDnaK treated with polymyxin B, but not in the heat-treated rDnaK. The findings show that A. defectiva DnaK functions not only as an adhesin to HUVECs via the binding to fibronectin but also as a proinflammatory agent in the pathogenicity to cause infective endocarditis.
Collapse
|