1
|
Chen X, Yang R, Liu K, Liu M, Shi Q, Yang J, Hao G, Luo L, Du F, Wang P. From Natural Product Derivative to Hexagonal Prism Supermolecule: Potent Biofilm Disintegration, Enhanced Foliar Affinity, and Effective Management of Tomato Bacterial Canker. Angew Chem Int Ed Engl 2025:e202416079. [PMID: 39825489 DOI: 10.1002/anie.202416079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/03/2025] [Accepted: 01/17/2025] [Indexed: 01/20/2025]
Abstract
Clavibacter michiganensis (Cmm), designated as an A2 quarantine pest by the European and Mediterranean Plant Protection Organization (EPPO), incites bacterial canker of tomato, which presently eludes rapid and effective control methodologies. Dense biofilms formed by Cmm shield internal bacteria from host immune defenses and obstruct the ingress of agrochemicals. Even when agrochemicals disintegrate biofilms, splashing and bouncing during application disperse active ingredients away from target sites. Herein, we present a supramolecular strategy to fabricate a hexagonal prism-shaped material, BPGA@CB[8], assembled from an 18β-glycyrrhetinic acid derivative (PBGA) and host molecule-cucurbit[8]uril (CB[8]) via host-guest recognition. This positively charged material manifests multifaceted functionalities, notably the ability to surmount biofilm barriers, annihilate the encased pathogenic bacteria, and enhance foliar affinity of droplets. The strong in vitro potency and effective deposition of BPGA@CB[8] foster optimal conditions for robust in vivo efficacy, demonstrating superior protective and curative activities (56.9 %/53.4 %) against canker of tomato at a low-dose of 100 μg⋅mL-1 compared to BPGA (44.6 %/42.2 %), kasugamycin (30.1 %/28.4 %), and thiodiazole copper (35.4 %/31.0 %). This supramolecular material, based on natural product derivatives, provides a potent treatment for high-risk canker of tomato, and exemplifies the utility of supramolecular strategies in optimizing the attributes of natural products for managing plant bacterial diseases.
Collapse
Affiliation(s)
- Xue Chen
- State National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Run Yang
- State National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Kongjun Liu
- State National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Min Liu
- State National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Qingchuan Shi
- State National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Jinghan Yang
- State National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Gefei Hao
- State National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Laixin Luo
- Beijing Key Laboratory of Seed Disease Testing and Control, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Fengpei Du
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Peiyi Wang
- State National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| |
Collapse
|
2
|
Xu Y, Ding Y, Wu H, Li D, Li Y, Hu Y, Meng H. Glycyrrhetinic acid reduces lung inflammation caused by pneumococcal infection by reducing the toxicity of pneumolysin. Heliyon 2024; 10:e38611. [PMID: 39397991 PMCID: PMC11471213 DOI: 10.1016/j.heliyon.2024.e38611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Objective In this study, to provide new methods for the treatment of Streptococcus pneumoniae infection, we aimed to describe the anti-inflammatory and antibacterial value of glycyrrhetinic acid on the basis of its inhibitory effect on bacterial growth (without killing the bacteria) and its reduction of the toxicity of S. pneumoniae. Methods A mouse model was established via intranasal administration of Streptococcus pneumoniae D39, and glycyrrhetinic acid was subcutaneously injected for treatment. The wet‒dry ratio, bacterial flora content and inflammatory factor levels in the mouse lungs were determined. Cell experiments were used to evaluate glycyrrhetinic acid-mediated inhibition of PLY hemolysis and A549 cell death, and WB was used to measure glycyrrhetinic acid-mediated inhibition of PLY oligomerization. Results Glycyrrhetinic acid reduced the levels of inflammatory factors, the dry‒wet ratio, the abundance of S. pneumoniae in the lungs of infected mice, pneumolysin-mediated A549 cell death, erythrocyte hemolysis and PLY oligoplasia. Conclusion Glycyrrhetinic acid can reduce the virulence of S. pneumoniae by preventing the oligomerization of PLY.
Collapse
Affiliation(s)
- Yan Xu
- Department of Pediatrics, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
- School of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
| | - Ying Ding
- Department of Pediatrics, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
- School of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
| | - Hongji Wu
- Department of Pediatrics, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
| | - Donglin Li
- Department of Pediatrics, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
| | - Yudi Li
- Department of Pediatrics, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
| | - Yibo Hu
- Department of Pediatrics, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
| | - Haoji Meng
- Department of Pediatrics, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
| |
Collapse
|
3
|
Chen L, Gong J, Yong X, Li Y, Wang S. A review of typical biological activities of glycyrrhetinic acid and its derivatives. RSC Adv 2024; 14:6557-6597. [PMID: 38390501 PMCID: PMC10882267 DOI: 10.1039/d3ra08025k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Glycyrrhetinic acid, a triterpenoid compound primarily sourced from licorice root, exhibits noteworthy biological attributes, including anti-inflammatory, anti-tumor, antibacterial, antiviral, and antioxidant effects. Despite these commendable effects, its further advancement and application, especially in clinical use, have been hindered by its limited druggability, including challenges such as low solubility and bioavailability. To enhance its biological activity and pharmaceutical efficacy, numerous research studies focus on the structural modification, associated biological activity data, and underlying mechanisms of glycyrrhetinic acid and its derivatives. This review endeavors to systematically compile and organize glycyrrhetinic acid derivatives that have demonstrated outstanding biological activities over the preceding decade, delineating their molecular structures, biological effects, underlying mechanisms, and future prospects for assisting researchers in finding and designing novel glycyrrhetinic acid derivatives, foster the exploration of structure-activity relationships, and aid in the screening of potential candidate compounds.
Collapse
Affiliation(s)
- Liang Chen
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy Hainan Medical University No. 3, XueYuan Road, LongHua District Haikou City Hainan Province 571199 China
| | - Jingwen Gong
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy Hainan Medical University No. 3, XueYuan Road, LongHua District Haikou City Hainan Province 571199 China
| | - Xu Yong
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University Shanghai 200433 China
| | - Youbin Li
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy Hainan Medical University No. 3, XueYuan Road, LongHua District Haikou City Hainan Province 571199 China
| | - Shuojin Wang
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy Hainan Medical University No. 3, XueYuan Road, LongHua District Haikou City Hainan Province 571199 China
| |
Collapse
|
4
|
Shinu P, Gupta GL, Sharma M, Khan S, Goyal M, Nair AB, Kumar M, Soliman WE, Rahman A, Attimarad M, Venugopala KN, Altaweel AAA. Pharmacological Features of 18β-Glycyrrhetinic Acid: A Pentacyclic Triterpenoid of Therapeutic Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:1086. [PMID: 36903944 PMCID: PMC10005454 DOI: 10.3390/plants12051086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Glycyrrhiza glabra L. (belonging to the family Leguminosae), commonly known as Licorice, is a popular medicinal plant that has been used in traditional medicine worldwide for its ethnopharmacological efficacy in treating several ailments. Natural herbal substances with strong biological activity have recently received much attention. The main metabolite of glycyrrhizic acid is 18β-glycyrrhetinic acid (18βGA), a pentacyclic triterpene. A major active plant component derived from licorice root, 18βGA has sparked a lot of attention due to its pharmacological properties. The current review thoroughly examines the literature on 18βGA, a major active plant component obtained from Glycyrrhiza glabra L. The current work provides insight into the pharmacological activities of 18βGA and the potential mechanisms of action involved. The plant contains a variety of phytoconstituents such as 18βGA, which has a variety of biological effects including antiasthmatic, hepatoprotective, anticancer, nephroprotective, antidiabetic, antileishmanial, antiviral, antibacterial, antipsoriasis, antiosteoporosis, antiepileptic, antiarrhythmic, and anti-inflammatory, and is also useful in the management of pulmonary arterial hypertension, antipsychotic-induced hyperprolactinemia, and cerebral ischemia. This review examines research on the pharmacological characteristics of 18βGA throughout recent decades to demonstrate its therapeutic potential and any gaps that may exist, presenting possibilities for future drug research and development.
Collapse
Affiliation(s)
- Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Girdhari Lal Gupta
- Department of Pharmacology, School of Pharmacy and Technology Management, SVKM’s NMIMS University, Shirpur 425405, India
| | - Manu Sharma
- Department of Chemistry, National Forensic Sciences University Delhi Campus, New Delhi 110085, India
| | - Shahzad Khan
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Manoj Goyal
- Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Jubail 35816, Saudi Arabia
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Manish Kumar
- Department of Pharmaceutics, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Ambala 133201, India
| | - Wafaa E. Soliman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Mansoura 11152, Egypt
| | - Aminur Rahman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | | |
Collapse
|
5
|
Ham Y, Kim TJ. Synergistic inhibitory activity of Glycyrrhizae Radix and Rubi Fructus extracts on biofilm formation of Streptococcus mutans. BMC Complement Med Ther 2023; 23:22. [PMID: 36709283 PMCID: PMC9883881 DOI: 10.1186/s12906-023-03861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/25/2023] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Streptococcus mutans is a bacterium that causes oral diseases. Plaque, a biofilm produced by S. mutans and other bacteria, makes it difficult to remove cariogenic oral microorganisms, including biofilm producers. Glucan synthesis by glucosyltransferase is one of the mechanisms underlying plaque formation. This study demonstrates the effectiveness of inhibiting biofilm formation by interfering with the glucosyltransferase activity of S. mutans using edible herbal medicines. METHODS This study investigated the inhibitory activity of Glycyrrhizae Radix extract, Rubi Fructus extract, glycyrrhizin from Glycyrrhizae Radix, and ellagic acid from Rubi Fructus against glucosyltransferase activity of S. mutans. Enzyme kinetic analysis identified the mechanism by which glycyrrhizin and ellagic acid inhibit enzyme activity. RESULTS The conditions for synergistically inhibiting biofilm formation by combining Glycyrrhizae Radix and Rubi Fructus extracts were identified. Biofilm formation was also synergistically inhibited by mixing their respective active constituents, glycyrrhizin and ellagic acid. Glycyrrhizin and ellagic acid inhibited glucosyltransferase via noncompetitive and uncompetitive mechanisms, respectively, indicating that they inhibit it via distinct mechanisms. CONCLUSIONS This study presents an effective oral hygiene method using the synergistic activity of two natural plant extracts to inhibit biofilm formation through different inhibitory mechanisms against glucosyltransferase of S. mutans.
Collapse
Affiliation(s)
- Youngseok Ham
- grid.91443.3b0000 0001 0788 9816Department of Forest Products and Biotechnology, College of Science and Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 02707 Republic of Korea
| | - Tae-Jong Kim
- grid.91443.3b0000 0001 0788 9816Department of Forest Products and Biotechnology, College of Science and Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 02707 Republic of Korea
| |
Collapse
|
6
|
Zhao Y, Su X. Antibacterial activity of 18β-glycyrrhetinic acid against Neisseria gonorrhoeae in vitro. Biochem Biophys Rep 2023; 33:101427. [PMID: 36647553 PMCID: PMC9840232 DOI: 10.1016/j.bbrep.2023.101427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Gonorrhea is the second most common sexually transmitted diseases worldwide. Chronic infection of Neisseria gonorrhoeae (N. gonorrhoeae) can lead to severe complications. Presently, N. gonorrhoeae has developed resistance to almost all antibiotics used for the treatment of gonorrhea. Thus, it's urgent to explore new approaches to treat gonorrhea. Presently, nontraditional treatment method as an alternative to antibiotic use is getting more and more attention. Here we demonstrated that 18β-glycyrrhetinic acid (GRA) exhibited robust antimicrobial activity against N. gonorrhoeae in vitro. GRA led to a significant decline in viable N. gonorrhoeae in a dose dependent manner compared with DMSO treatment (P < 0.001). Addition of GRA resulted in a significant reduction in viable bacteria within 2 h post-inoculation (P < 0.001). Minimum inhibitory concentrations (MICs) to GRA ranged from 3.9 to 62.5 μg/ml overall, with MIC50 and MIC90 values of 31.25 μg/ml and 62.5 μg/ml, respectively. There was no significant difference of MIC 50 and MIC90 between multi-drug resistant (MDR) strains and non-MDR strains. Minimum bactericidal concentration (MBC) ranges were 3.9-125 μg/ml, basically consistent with MIC values. GRA inhibited biofilm formation and diminished pre-formed biofilm. These data suggested that GRA could be a candidate for gonorrhea treatment.
Collapse
|