1
|
Takekawa N, Nishikino T, Kishikawa JI, Hirose M, Kinoshita M, Kojima S, Minamino T, Uchihashi T, Kato T, Imada K, Homma M. Structural analysis of S-ring composed of FliFG fusion proteins in marine Vibrio polar flagellar motor. mBio 2024; 15:e0126124. [PMID: 39240115 PMCID: PMC11481574 DOI: 10.1128/mbio.01261-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024] Open
Abstract
The marine bacterium Vibrio alginolyticus possesses a polar flagellum driven by a sodium ion flow. The main components of the flagellar motor are the stator and rotor. The C-ring and MS-ring, which are composed of FliG and FliF, respectively, are parts of the rotor. Here, we purified an MS-ring composed of FliF-FliG fusion proteins and solved the near-atomic resolution structure of the S-ring-the upper part of the MS-ring-using cryo-electron microscopy. This is the first report of an S-ring structure from Vibrio, whereas, previously, only those from Salmonella have been reported. The Vibrio S-ring structure reveals novel features compared with that of Salmonella, such as tilt angle differences of the RBM3 domain and the β-collar region, which contribute to the vertical arrangement of the upper part of the β-collar region despite the diversity in the RBM3 domain angles. Additionally, there is a decrease of the inter-subunit interaction between RBM3 domains, which influences the efficiency of the MS-ring formation in different bacterial species. Furthermore, although the inner-surface electrostatic properties of Vibrio and Salmonella S-rings are altered, the residues potentially interacting with other flagellar components, such as FliE and FlgB, are well structurally conserved in the Vibrio S-ring. These comparisons clarified the conserved and non-conserved structural features of the MS-ring across different species.IMPORTANCEUnderstanding the structure and function of the flagellar motor in bacterial species is essential for uncovering the mechanisms underlying bacterial motility and pathogenesis. Our study revealed the structure of the Vibrio S-ring, a part of its polar flagellar motor, and highlighted its unique features compared with the well-studied Salmonella S-ring. The observed differences in the inter-subunit interactions and in the tilt angles between the Vibrio and Salmonella S-rings highlighted the species-specific variations and the mechanism for the optimization of MS-ring formation in the flagellar assembly. By concentrating on the region where the S-ring and the rod proteins interact, we uncovered conserved residues essential for the interaction. Our research contributes to the advancement of bacterial flagellar biology.
Collapse
Affiliation(s)
- Norihiro Takekawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Tatsuro Nishikino
- Institute for protein research, Osaka University, Suita, Osaka, Japan
| | | | - Mika Hirose
- Institute for protein research, Osaka University, Suita, Osaka, Japan
| | - Miki Kinoshita
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Seiji Kojima
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Takayuki Uchihashi
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Takayuki Kato
- Institute for protein research, Osaka University, Suita, Osaka, Japan
| | - Katsumi Imada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Michio Homma
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| |
Collapse
|
2
|
Miyamura Y, Nishikino T, Koiwa H, Homma M, Kojima S. Roles of linker region flanked by transmembrane and peptidoglycan binding region of PomB in energy conversion of the Vibrio flagellar motor. Genes Cells 2024; 29:282-289. [PMID: 38351850 DOI: 10.1111/gtc.13102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 04/04/2024]
Abstract
The flagellar components of Vibrio spp., PomA and PomB, form a complex that transduces sodium ion and contributes to rotate flagella. The transmembrane protein PomB is attached to the basal body T-ring by its periplasmic region and has a plug segment following the transmembrane helix to prevent ion flux. Previously we showed that PomB deleted from E41 to R120 (Δ41-120) was functionally comparable to the full-length PomB. In this study, three deletions after the plug region, PomB (Δ61-120), PomB (Δ61-140), and PomB (Δ71-150), were generated. PomB (Δ61-120) conferred motility, whereas the other two mutants showed almost no motility in soft agar plate; however, we observed some swimming cells with speed comparable for the wild-type cells. When the two PomB mutants were introduced into a wild-type strain, the swimming ability was not affected by the mutant PomBs. Then, we purified the mutant PomAB complexes to confirm the stator formation. When plug mutations were introduced into the PomB mutants, the reduced motility by the deletion was rescued, suggesting that the stator was activated. Our results indicate that the deletions prevent the stator activation and the linker and plug regions, from E41 to S150, are not essential for the motor function of PomB but are important for its regulation.
Collapse
Affiliation(s)
- Yusuke Miyamura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Tatsuro Nishikino
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Hiroaki Koiwa
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Michio Homma
- Division of Material Science and Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
3
|
Vélez-González F, Marcos-Vilchis A, Vega-Baray B, Dreyfus G, Poggio S, Camarena L. Rotation of the Fla2 flagella of Cereibacter sphaeroides requires the periplasmic proteins MotK and MotE that interact with the flagellar stator protein MotB2. PLoS One 2024; 19:e0298028. [PMID: 38507361 PMCID: PMC10954123 DOI: 10.1371/journal.pone.0298028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/16/2024] [Indexed: 03/22/2024] Open
Abstract
The bacterial flagellum is a complex structure formed by more than 25 different proteins, this appendage comprises three conserved structures: the basal body, the hook and filament. The basal body, embedded in the cell envelope, is the most complex structure and houses the export apparatus and the motor. In situ images of the flagellar motor in different species have revealed a huge diversity of structures that surround the well-conserved periplasmic components of the basal body. The identity of the proteins that form these novel structures in many cases has been elucidated genetically and biochemically, but in others they remain to be identified or characterized. In this work, we report that in the alpha proteobacteria Cereibacter sphaeroides the novel protein MotK along with MotE are essential for flagellar rotation. We show evidence that these periplasmic proteins interact with each other and with MotB2. Moreover, these proteins localize to the flagellated pole and MotK localization is dependent on MotB2 and MotA2. These results together suggest that the role of MotK and MotE is to activate or recruit the flagellar stators to the flagellar structure.
Collapse
Affiliation(s)
- Fernanda Vélez-González
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Arely Marcos-Vilchis
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Benjamín Vega-Baray
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Georges Dreyfus
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sebastian Poggio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laura Camarena
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
4
|
Uesaka K, Inaba K, Nishioka N, Kojima S, Homma M, Ihara K. Deciphering the genomes of motility-deficient mutants of Vibrio alginolyticus 138-2. PeerJ 2024; 12:e17126. [PMID: 38515459 PMCID: PMC10956519 DOI: 10.7717/peerj.17126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
The motility of Vibrio species plays a pivotal role in their survival and adaptation to diverse environments and is intricately associated with pathogenicity in both humans and aquatic animals. Numerous mutant strains of Vibrio alginolyticus have been generated using UV or EMS mutagenesis to probe flagellar motility using molecular genetic approaches. Identifying these mutations promises to yield valuable insights into motility at the protein structural physiology level. In this study, we determined the complete genomic structure of 4 reference specimens of laboratory V. alginolyticus strains: a precursor strain, V. alginolyticus 138-2, two strains showing defects in the lateral flagellum (VIO5 and YM4), and one strain showing defects in the polar flagellum (YM19). Subsequently, we meticulously ascertained the specific mutation sites within the 18 motility-deficient strains related to the polar flagellum (they fall into three categories: flagellar-deficient, multi-flagellar, and chemotaxis-deficient strains) by whole genome sequencing and mapping to the complete genome of parental strains VIO5 or YM4. The mutant strains had an average of 20.6 (±12.7) mutations, most of which were randomly distributed throughout the genome. However, at least two or more different mutations in six flagellar-related genes were detected in 18 mutants specifically selected as chemotaxis-deficient mutants. Genomic analysis using a large number of mutant strains is a very effective tool to comprehensively identify genes associated with specific phenotypes using forward genetics.
Collapse
Affiliation(s)
- Kazuma Uesaka
- Center for Gene Research, Nagoya University, Nagoya, Aichi, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Keita Inaba
- Center for Gene Research, Nagoya University, Nagoya, Aichi, Japan
| | - Noriko Nishioka
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
- Division of Material Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
5
|
Hu H, Popp PF, Santiveri M, Roa-Eguiara A, Yan Y, Martin FJO, Liu Z, Wadhwa N, Wang Y, Erhardt M, Taylor NMI. Ion selectivity and rotor coupling of the Vibrio flagellar sodium-driven stator unit. Nat Commun 2023; 14:4411. [PMID: 37500658 PMCID: PMC10374538 DOI: 10.1038/s41467-023-39899-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Bacteria swim using a flagellar motor that is powered by stator units. Vibrio spp. are highly motile bacteria responsible for various human diseases, the polar flagella of which are exclusively driven by sodium-dependent stator units (PomAB). However, how ion selectivity is attained, how ion transport triggers the directional rotation of the stator unit, and how the stator unit is incorporated into the flagellar rotor remained largely unclear. Here, we have determined by cryo-electron microscopy the structure of Vibrio PomAB. The electrostatic potential map uncovers sodium binding sites, which together with functional experiments and molecular dynamics simulations, reveal a mechanism for ion translocation and selectivity. Bulky hydrophobic residues from PomA prime PomA for clockwise rotation. We propose that a dynamic helical motif in PomA regulates the distance between PomA subunit cytoplasmic domains, stator unit activation, and torque transmission. Together, our study provides mechanistic insights for understanding ion selectivity and rotor incorporation of the stator unit of the bacterial flagellum.
Collapse
Affiliation(s)
- Haidai Hu
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Philipp F Popp
- Institute for Biology/Molecular Microbiology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany
| | - Mònica Santiveri
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Aritz Roa-Eguiara
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Yumeng Yan
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Freddie J O Martin
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Zheyi Liu
- College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, 314400, China
| | - Navish Wadhwa
- Department of Physics, Arizona State University, Tempe, AZ, 85287, USA
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, 85287, USA
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, 314400, China
| | - Marc Erhardt
- Institute for Biology/Molecular Microbiology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Nicholas M I Taylor
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
6
|
Takahashi K, Nishikino T, Kajino H, Kojima S, Uchihashi T, Homma M. Ring formation by Vibrio fusion protein composed of FliF and FliG, MS-ring and C-ring component of bacterial flagellar motor in membrane. Biophys Physicobiol 2023; 20:e200028. [PMID: 38496245 PMCID: PMC10941966 DOI: 10.2142/biophysico.bppb-v20.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/05/2023] [Indexed: 03/19/2024] Open
Abstract
The marine bacterium Vibrio alginolyticus has a single flagellum as a locomotory organ at the cell pole, which is rotated by the Na+-motive force to swim in a liquid. The base of the flagella has a motor composed of a stator and rotor, which serves as a power engine to generate torque through the rotor-stator interaction coupled to Na+ influx through the stator channel. The MS-ring, which is embedded in the membrane at the base of the flagella as part of the rotor, is the initial structure required for flagellum assembly. It comprises 34 molecules of the two-transmembrane protein FliF. FliG, FliM, and FliN form a C-ring just below the MS-ring. FliG is an important rotor protein that interacts with the stator PomA and directly contributes to force generation. We previously found that FliG promotes MS-ring formation in E. coli. In the present study, we constructed a fliF-fliG fusion gene, which encodes an approximately 100 kDa protein, and the successful production of this protein effectively formed the MS-ring in E. coli cells. We observed fuzzy structures around the ring using either electron microscopy or high-speed atomic force microscopy (HS-AFM), suggesting that FliM and FliN are necessary for the formation of a stable ring structure. The HS-AFM movies revealed flexible movements at the FliG region.
Collapse
Affiliation(s)
- Kanji Takahashi
- Department of Physics, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Tatsuro Nishikino
- Institute for protein research, Osaka University, Suita, Osaka 565-0871, Japan
- Present address: Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya Aichi 466-8555, Japan
| | - Hiroki Kajino
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Takayuki Uchihashi
- Department of Physics, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi 464-0814, Japan
- Department of Creative Research, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Michio Homma
- Department of Physics, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
7
|
Nishikino T, Miyanoiri Y. Site-Specific Isotope Labeling of FliG for Studying Structural Dynamics Using Nuclear Magnetic Resonance Spectroscopy. Methods Mol Biol 2023; 2646:57-70. [PMID: 36842106 DOI: 10.1007/978-1-0716-3060-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
To understand flagella-driven motility of bacteria, it is important to understand the structure and dynamics of the flagellar motor machinery. We have conducted structural dynamics analyses using solution nuclear magnetic resonance (NMR) to elucidate the detailed functions of flagellar motor proteins. Here, we introduce the analysis of the FliG protein, which is a flagellar motor protein, focusing on the preparation method of the original stable isotope-labeled protein.
Collapse
Affiliation(s)
- Tatsuro Nishikino
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Yohei Miyanoiri
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
8
|
Function and Structure of FlaK, a Master Regulator of the Polar Flagellar Genes in Marine Vibrio. J Bacteriol 2022; 204:e0032022. [PMID: 36314831 PMCID: PMC9664956 DOI: 10.1128/jb.00320-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Vibrio alginolyticus has a flagellum at the cell pole, and the fla genes, involved in its formation, are hierarchically regulated in several classes. FlaK (also called FlrA) is an ortholog of Pseudomonas aeruginosa FleQ, an AAA+ ATPase that functions as a master regulator for all later fla genes. In this study, we conducted mutational analysis of FlaK to examine its ATPase activity, ability to form a multimeric structure, and function in flagellation. We cloned flaK and confirmed that its deletion caused a nonflagellated phenotype. We substituted amino acids at the ATP binding/hydrolysis site and at the putative subunit interfaces in a multimeric structure. Mutations in these sites abolished both ATPase activity and the ability of FlaK to induce downstream flagellar gene expression. The L371E mutation, at the putative subunit interface, abolished flagellar gene expression but retained ATPase activity, suggesting that ATP hydrolysis is not sufficient for flagellar gene expression. We also found that FlhG, a negative flagellar biogenesis regulator, suppressed the ATPase activity of FlaK. The 20 FlhG C-terminal residues are critical for reducing FlaK ATPase activity. Chemical cross-linking and size exclusion chromatography revealed that FlaK mostly exists as a dimer in solution and can form multimers, independent of ATP. However, ATP induced the interaction between FlhG and FlaK to form a large complex. The in vivo effects of FlhG on FlaK, such as multimer formation and/or DNA binding, are important for gene regulation. IMPORTANCE FlaK is an NtrC-type activator of the AAA+ ATPase subfamily of σ54-dependent promoters of flagellar genes. FlhG, a MinD-like ATPase, negatively regulates the polar flagellar number by collaborating with FlhF, an FtsY-like GTPase. We found that FlaK and FlhG interact in the presence of ATP to form a large complex. Mutational analysis revealed the importance of FlaK ATPase activity in flagellar gene expression and provided a model of the Vibrio molecular mechanism that regulates the flagellar number.
Collapse
|
9
|
Homma M, Takekawa N, Fujiwara K, Hao Y, Onoue Y, Kojima S. Formation of multiple flagella caused by a mutation of the flagellar rotor protein FliM in Vibrio alginolyticus. Genes Cells 2022; 27:568-578. [PMID: 35842835 DOI: 10.1111/gtc.12975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
Marine bacterium Vibrio alginolyticus forms a single flagellum at a cell pole. In Vibrio, two proteins (GTPase FlhF and ATPase FlhG) regulate the number of flagella. We previously isolated the NMB155 mutant that forms multiple flagella despite the absence of mutations in flhF and flhG. Whole-genome sequencing of NMB155 identified an E9K mutation in FliM that is a component of C-ring in the flagellar rotor. Mutations in FliM result in defects in flagellar formation (fla) and flagellar rotation (che or mot); however, there are a few reports indicating that FliM mutations increase the number of flagella. Here, we determined that the E9K mutation confers the multi-flagellar phenotype and also the che phenotype. The co-expression of wild-type FliM and FliM-E9K indicated that they were competitive in regard to determining the flagellar number. The ATPase activity of FlhG has been correlated with the number of flagella. We observed that the ATPase activity of FlhG was increased by the addition of FliM but not by the addition of FliM-E9K in vitro. This indicates that FliM interacts with FlhG to increase its ATPase activity, and the E9K mutation may inhibit this interaction. FliM may control the ATPase activity of FlhG to properly regulate the number of the polar flagellum at the cell pole. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Norihiro Takekawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka, Japan
| | - Kazushi Fujiwara
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Yuxi Hao
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Yasuhiro Onoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
10
|
Homma M, Mizuno A, Hao Y, Kojima S. Functional analysis of the N-terminal region of Vibrio FlhG, a MinD-type ATPase in flagellar number control. J Biochem 2022; 172:99-107. [DOI: 10.1093/jb/mvac047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 11/12/2022] Open
Abstract
Summary
GTPase FlhF and ATPase FlhG are two key factors involved in regulating the flagellum number in Vibrio alginolyticus. FlhG is a paralog of the Escherichia coli cell division regulator MinD and has a longer N-terminal region than MinD with a conserved DQAxxLR motif. The deletion of this N-terminal region or a Q9A mutation in the DQAxxLR motif prevents FlhG from activating the GTPase activity of FlhF in vitro and causes a multi-flagellation phenotype. The mutant FlhG proteins, especially the N-terminally deleted variant, was remarkably reduced compared to that of the wild-type protein in vivo. When the mutant FlhG was expressed at the same level as the wild-type FlhG, the number of flagella was restored to the wild-type level. Once synthesized in Vibrio cells, the N-terminal region mutation in FlhG seems not to affect the protein stability. We speculated that the flhG translation efficiency is decreased by N-terminal mutation. Our results suggest that the N-terminal region of FlhG controls the number of flagella by adjusting the FlhF activity and the amount of FlhG in vivo. We speculate that the regulation by FlhG, achieved through transcription by the master regulator FlaK, is affected by the mutations, resulting in reduced flagellar formation by FlhF.
Collapse
Affiliation(s)
- Michio Homma
- Graduate School of Science Division of Biological Science, , Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Akira Mizuno
- Graduate School of Science Division of Biological Science, , Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yuxi Hao
- Graduate School of Science Division of Biological Science, , Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Seiji Kojima
- Graduate School of Science Division of Biological Science, , Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|