1
|
Zhang W, Zhang H, Zhan M, Jing R, Wang X, Zhang Z. Epidemiological characteristics of invasive Aspergillus isolates: Morphology, drug susceptibility, and mutations in azole drug targets. J Infect Public Health 2025; 18:102612. [PMID: 39637619 DOI: 10.1016/j.jiph.2024.102612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND The global epidemiology of aspergillosis varies and is influenced by various factors. To elucidate the disease burden and identify effective control strategies, the epidemiological characteristics of Aspergillus infections have to be investigated. The aim of this study was to assess the epidemiological characteristics of various Aspergillus species, including their morphological features, species identification, and in vitro susceptibility to nine antifungal agents in a large tertiary hospital in northern China. METHODS Ninety-five clinical isolates of Aspergillus were collected from patients. Aspergillus species identification was performed using conventional morphological methods, MALDI-TOF MS, and gene sequencing. In vitro susceptibility to nine antifungal agents was evaluated using the Sensititre YeastOne system. Target genes (cyp51A and cyp51b) of A. tubinazole were sequenced using the Sanger method. RESULTS Aspergillus fumigatus, Aspergillus niger, Aspergillus flavus, Aspergillus tubingensis, and Aspergillus terreus were the most common isolated species. Rare species included Aspergillus tamarii, Aspergillus usamil, Aspergillus versicolor, Aspergillus udagawae, Aspergillus lentulus, Aspergillus sydowii, and Aspergillus quadrilineatus. Pulmonary infections accounted for 86.3 % (82/95) of collected cases, and the in-hospital mortality rate was 22.1 %. The median minimum inhibitory concentration (MIC) range of amphotericin B was 1.5-4 mg/L. The MIC range of triazoles against Aspergillus species, excluding Aspergillus udagawae and Aspergillus lentulus, was 0.12-0.5 mg/L. The median minimum effective concentration range of echinocandins was < 0.008-0.03 mg/L. Non-wild-type resistance to amphotericin B was observed in 29.6 % (16/54) of Aspergillus fumigatus isolates, and non-wild-type resistance to voriconazole was observed in 11.1 % (1/9) of Aspergillus tubingensis isolates. Moreover, CYP51A and CYP51b of Aspergillus tabinensis had 2-29 and 10-13 nucleotide mutations, respectively. CONCLUSION Patients with non- Aspergillus fumigatus infection accounted for 43.2 %. The T256A amino acid substitution in CYP51A of Aspergillus tabinensis did not lead to increased azole drug MICs.
Collapse
Affiliation(s)
- Wei Zhang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, People's Republic of China
| | - Hongxia Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, People's Republic of China
| | - Minghua Zhan
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, People's Republic of China
| | - Ran Jing
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, People's Republic of China; Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Xinsheng Wang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, People's Republic of China.
| | - Zhihua Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, People's Republic of China.
| |
Collapse
|
2
|
Grassiri B, Esin S, Piatek ME, More O'Ferrall L, Sake JA, Griffith DM, Kavanagh K, Ehrhardt C, Maria Piras A, Batoni G, Marie Healy A. The activity of a Ga(III) catecholate complex against Aspergillus fumigatus in conditions mimicking cystic fibrosis lung and inhaled formulations for its pulmonary administration. Int J Pharm 2024; 667:124871. [PMID: 39490551 DOI: 10.1016/j.ijpharm.2024.124871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Azole-resistant Aspergillus fumigatus (A. fumigatus) is an emerging worldwide pathogen. Pulmonary aspergillosis primarily affects severely immunocompromised patients and is also a particularly critical condition for cystic fibrosis (CF) patients. A recently designed gallium polypyridyl catecholate complex, GaS1, has previously demonstrated in vitro and in vivo antimicrobial activity against Gram-negative bacteria. In the present work GaS1 activity was assessed against A. fumigatus clinical isolates in a novel air-liquid-interface lung infection model, mimicking the conditions found in the CF airways. Furthermore, in this study both a solution for nebulisation and dry powders for inhalation were developed with a view to optimising GaS1 delivery to the lung. The solution for nebulisation was characterised for its osmolality and pH, while the dry powders were characterised by scanning electron microscopy, powder X-ray diffraction, thermal analysis and laser light scattering particle size analysis. The aerodynamic deposition profiles of all formulations were determined using a next generation impactor. GaS1, tested in a concentration range of 0.016-0.5 mg/mL, inhibited the growth of A. fumigatus lung isolates in a complex host-environment-mimicking medium at the non-toxic concentration of 0.063 mg/mL. A marked dose-dependent antifungal activity of GaS1 was also observed in the presence of differentiated human distal lung epithelial cells (NCI-H441) at the air liquid interface, with nearly no fungal growth detected at the macroscopic and microscopic level. A solution for nebulisation and three different dry powder inhaler formulations, prepared by spray-drying GaS1 with different concentrations of L-leucine, displayed suitable aerodynamic characteristics for GaS1 delivery to the lungs, while maintaining excellent antifungal activity. Overall, the results obtained highlight the potential of gallium-polypyridyl catecholate complexes for the management of difficult-to-treat A. fumigatus pulmonary infections.
Collapse
Affiliation(s)
- Brunella Grassiri
- School of Pharmacy and Pharmaceutical Science, Trinity College Dublin, Dublin, Ireland; Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Magdalena E Piatek
- Department of Biology, Maynooth University, Maynooth, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - Lewis More O'Ferrall
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland; Department of Chemistry, Royal College of Surgeons in Ireland, Dublin, Ireland; School of Food Science & Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Johannes A Sake
- School of Pharmacy and Pharmaceutical Science, Trinity College Dublin, Dublin, Ireland
| | - Darren M Griffith
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland; Department of Chemistry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Science, Trinity College Dublin, Dublin, Ireland
| | | | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Science, Trinity College Dublin, Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland.
| |
Collapse
|
3
|
Kang Y, Li Q, Yao Y, Xu C, Qiu Z, Jia W, Li G, Wang P. Epidemiology and Azole Resistance of Clinical Isolates of Aspergillus fumigatus from a Large Tertiary Hospital in Ningxia, China. Infect Drug Resist 2024; 17:427-439. [PMID: 38328338 PMCID: PMC10849152 DOI: 10.2147/idr.s440363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
Purpose The objective of this study was to determine the clinical distribution, in vitro antifungal susceptibility and underlying resistance mechanisms of Aspergillus fumigatus (A. fumigatus) isolates from the General Hospital of Ningxia Medical University between November 2021 and May 2023. Methods Antifungal susceptibility testing was performed using the Sensititre YeastOne YO10, and isolates with high minimal inhibitory concentrations (MICs) were further confirmed using the standard broth microdilution assays established by the Clinical and Laboratory Standards Institute (CLSI) M38-third edition. Whole-Genome Resequencing and RT-qPCR in azole-resistant A. fumigatus strains were performed to investigate the underlying resistance mechanisms. Results Overall, a total of 276 A. fumigatus isolates were identified from various clinical departments, showing an increasing trend in the number of isolates over the past 3 years. Two azole-resistant A. fumigatus strains (0.72%) were observed, one of which showed overexpression of cyp51A, cyp51B, cdr1B, MDR1/2, artR, srbA, erg24A, and erg4B, but no cyp51A mutation. However, the other strain harbored two alterations in the cyp51A sequences (L98H/S297T). Therefore, we first described two azole-resistant clinical A. fumigatus strains in Ningxia, China, and reported one azole-resistant strain that has the L98H/S297T mutations in the cyp51A gene without any tandem repeat (TR) sequences in the promoter region. Conclusions This study emphasizes the importance of enhancing attention and surveillance of azole-resistant A. fumigatus, particularly those with non-TR point mutations of cyp51A or non-cyp51A mutations, in order to gain a better understanding of their prevalence and spread in the region.
Collapse
Affiliation(s)
- Yuting Kang
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Qiujie Li
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Yao Yao
- Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Chao Xu
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Zhuoran Qiu
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Wei Jia
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
- Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Gang Li
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
- Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| | - Pengtao Wang
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, People’s Republic of China
| |
Collapse
|
4
|
Khan S, Bilal H, Shafiq M, Zhang D, Awais M, Chen C, Khan MN, Wang Q, Cai L, Islam R, Zeng Y. Distribution of Aspergillus species and risk factors for aspergillosis in mainland China: a systematic review. Ther Adv Infect Dis 2024; 11:20499361241252537. [PMID: 38835831 PMCID: PMC11149451 DOI: 10.1177/20499361241252537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/17/2024] [Indexed: 06/06/2024] Open
Abstract
Background Aspergillus, a widespread fungus in the natural environment, poses a significant threat to human health by entering the human body via the airways and causing a disease called aspergillosis. This study comprehensively analyzed data on aspergillosis in published articles from mainland China to investigate the prevalence of Aspergillus, and risk factors, mortality rate, and underlying condition associated with aspergillosis. Methods Published articles were retrieved from Google Scholar, PubMed, and Science Direct online search engines. In the 101 analyzed studies, 3558 Aspergillus isolates were meticulously collected and classified. GraphPad Prism 8 was used to statistically examine the epidemiology and clinical characteristics of aspergillosis. Results Aspergillus fumigatus was prominently reported (n = 2679, 75.14%), followed by A. flavus (n = 437, 12.25%), A. niger (n = 219, 6.14%), and A. terreus (n = 119, 3.33%). Of a total of 9810 patients, 7513 probable cases accounted for the highest number, followed by confirmed cases (n = 1956) and possible cases (n = 341). In patients, cough emerged as the most common complaint (n = 1819, 18.54%), followed by asthma (n = 1029, 10.48%) and fever (1024, 10.44%). Of total studies, invasive pulmonary aspergillosis (IPA) was reported in 47 (45.53%) studies, exhibiting an increased prevalence in Beijing (n = 12, 25.53%), Guangdong (n = 7, 14.89%), and Shanghai (n = 6, 12.76%). Chronic pulmonary aspergillosis (CPA) was reported in 14 (13.86%) studies. Among the total of 14 studies, the occurrence of CPA was 5 (35.71%) in Beijing and 3 (21.42%) in Shanghai. Allergic bronchopulmonary aspergillosis (ABPA), was reported at a lower frequency (n = 8, 7.92%), Guangdong recorded a relatively high number (n = 3, 37.5%), followed by Beijing (n = 2, 25.0%), and Shanghai (n = 1, 12.5%). Percentage of death reported: IPA had the highest rate (n = 447, 68.87%), followed by CPA (n = 181, 27.88%) and ABPA (n = 14, 2.15%). Among the aspergillosis patients, 6220 had underlying conditions, including chronic lung disease (n = 3765, 60.53%), previous tuberculosis (n = 416, 6.68%), and organ transplant or organ failure (n = 648, 10.41%). Aspergillosis was also found in patients using corticosteroid therapy (n = 622, 10.0%). Conclusion This review sheds light on the prevalence patterns of Aspergillus species, risk factors of aspergillosis, and gaps in surveillance that could be helpful for the control and treatment of aspergillosis and guide the researchers in future studies. Registration This systematic review was prospectively registered on PROSPERO: Registration ID CRD42023476870.
Collapse
Affiliation(s)
- Sabir Khan
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Hazrat Bilal
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Muhammad Shafiq
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Dongxing Zhang
- Department of Dermatology, Meizhou Dongshan Hospital, Meizhou, Guangdong, China
- Department of Dermatology, Meizhou People's Hospital, Meizhou, Guangdong, China
| | - Muhammad Awais
- Department of Environmental Science, Kunming University of Science and Technology, Yunnan, China
| | - Canhua Chen
- Clinical Laboratory, Meizhou People's Hospital, Meizhou, Guangdong, China
| | - Muhammad Nadeem Khan
- Faculty of Biological Sciences, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Qian Wang
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Medical-Surgical and Experimental Sciences, University of Sassari - Neurology Unit, Azienza Ospedaliera Universitaria (AOU) Sassari, Sassari, Italy
| | - Lin Cai
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Rehmat Islam
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yuebin Zeng
- Department of Dermatology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610021, China
| |
Collapse
|
5
|
Zeeshan M, Memon S, Malick A, Naqvi SF, Farooqi J, Ghanchi NK, Jabeen K. Fluconazole-resistant Candida parapsilosis complex candidemia and analysis of mutations in the ERG11 gene from Pakistan. Mycoses 2024; 67:e13677. [PMID: 37990393 DOI: 10.1111/myc.13677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Recent reports of the emergence of fluconazole resistance in Candida parapsilosis species complex poses a challenge, more specifically in settings where echinocandin-based treatment regime is not feasible. OBJECTIVE This study reported emergence of fluconazole resistance in C. parapsilosis species complex strains isolated from blood cultures. MATERIALS AND METHODS This retrospective observational study was conducted from 2018 to 2020 at a tertiary care laboratory from Pakistan. Fluconazole-resistant C. parapsilosis species complex fungemia cases were identified from laboratory database and clinical details were collected. Identification of C. parapsilosis species complex was done using API 20C AUX and Cornmeal Tween80 agar morphology. Minimum inhibitory concentrations (MICs) were determined using Sensititre YeastONE and interpretation was done with CLSI M60 ED1:2017. ERG11 gene region was amplified and sequenced by Sanger sequencing and analysed by MEGA 11 Software. RESULTS A total of 13 (8.5%) fluconazole-resistant isolates were identified from 152 C. parapsilosis species complex candidemia cases. Fluconazole MICs of resistant isolates ranged between 8 and 256 μg/mL. Analysis of ERG11 gene revealed nonsynonymous mutations at position Y132F in 86% of the fluconazole-resistant isolates. Diabetes and hospitalization were important risk factors for candidemia with fluconazole-resistant C. parapsilosis complex. CONCLUSION This is the first report of the emergence and molecular mechanisms of fluconazole resistance in C. parapsilosis species complex from Pakistan. Y132F mutation in the ERG11 gene was the most common mutation in fluconazole-resistant strains. These findings are concerning and necessitate better diagnostics, newer antifungals, ongoing surveillance and further insights on resistance mechanisms in the country.
Collapse
Affiliation(s)
- Mohammad Zeeshan
- Department of Pathology & Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Saba Memon
- Department of Pathology & Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Ayesha Malick
- Aga Khan University Medical College, Karachi, Pakistan
| | - Syed Faheem Naqvi
- Department of Pathology & Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Joveria Farooqi
- Department of Pathology & Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Najia Karim Ghanchi
- Department of Pathology & Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Kauser Jabeen
- Department of Pathology & Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
6
|
Barrs VR, Hobi S, Wong A, Sandy J, Shubitz LF, Bęczkowski PM. Invasive fungal infections and oomycoses in cats 2. Antifungal therapy. J Feline Med Surg 2024; 26:1098612X231220047. [PMID: 38189264 PMCID: PMC10949877 DOI: 10.1177/1098612x231220047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
CLINICAL RELEVANCE Invasive fungal infections (IFIs) and oomycoses (hereafter termed invasive fungal-like infections [IFLIs]) are characterised by penetration of tissues by fungal elements. The environment is the most common reservoir of infection. IFIs and IFLIs can be frustrating to treat because long treatment times are usually required and, even after attaining clinical cure, there may be a risk of relapse. Owner compliance with medication administration and recheck examinations can also decline over time. In addition, some antifungal drugs are expensive, have variable interpatient pharmacokinetic properties, can only be administered parenterally and/or have common adverse effects (AEs). Despite these limitations, treatment can be very rewarding, especially when an otherwise progressive and fatal disease is cured. AIM In the second of a two-part article series, the spectrum of activity, mechanisms of action, pharmacokinetic and pharmacodynamic properties, and AEs of antifungal drugs are reviewed, and the treatment and prognosis of specific IFIs/IFLIs - dermatophytic pseudomycetoma, cryptococcosis, sino-orbital aspergillosis, coccidioidomycosis, histoplasmosis, sporotrichosis, phaeohyphomycosis, mucormycosis and oomycosis - are discussed. Part 1 reviewed the diagnostic approach to IFIs and IFLIs. EVIDENCE BASE Information on antifungal drugs is drawn from pharmacokinetic studies in cats. Where such studies have not been performed, data from 'preclinical' animals (non-human studies) and human studies are reviewed. The review also draws on the wider published evidence and the authors' combined expertise in feline medicine, mycology, dermatology, clinical pathology and anatomical pathology. ABBREVIATIONS FOR ANTIFUNGAL DRUGS AMB (amphotericin B); FC (flucytosine); FCZ (fluconazole); ISA (isavuconazole); ITZ (itraconazole); KCZ (ketoconazole); PCZ (posaconazole); TRB (terbinafine); VCZ (voriconazole).
Collapse
Affiliation(s)
- Vanessa R Barrs
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR China
- Centre for Animal Health and Welfare, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR China
| | - Stefan Hobi
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR China
| | - Angeline Wong
- Shatin Animal Hospital, Tai Wai, New Territories, Hong Kong, SAR China
| | - Jeanine Sandy
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR China
| | - Lisa F Shubitz
- Valley Fever Center for Excellence, The University of Arizona, AZ, USA
| | - Paweł M Bęczkowski
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR China
| |
Collapse
|
7
|
Ding YY, Zhou H, Peng-Deng, Zhang BQ, Zhang ZJ, Wang GH, Zhang SY, Wu ZR, Wang YR, Liu YQ. Antimicrobial activity of natural and semi-synthetic carbazole alkaloids. Eur J Med Chem 2023; 259:115627. [PMID: 37467619 DOI: 10.1016/j.ejmech.2023.115627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Since the first natural carbazole alkaloid, murrayanine, was isolated from Mwraya Spreng, carbazole alkaloid derivatives have been widely concerned for their anti-tumor, anti-viral and anti-bacterial activities. In recent decades, a growing body of data suggest that carbazole alkaloids and their derivatives have different biological activities. This is the first comprehensive description of the antifungal and antibacterial activities of carbazole alkaloids in the past decade (2012-2022), including natural and partially synthesized carbazole alkaloids in the past decade. Finally, the challenges and problems faced by this kind of alkaloids are summarized. This paper will be helpful for further exploration of this kind of alkaloids.
Collapse
Affiliation(s)
- Yan-Yan Ding
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, China
| | - Han Zhou
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Peng-Deng
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Bao-Qi Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Guang-Han Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, China
| | - Zheng-Rong Wu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yi-Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, China; State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
8
|
Álvarez-Pérez S, García ME, Martínez-Nevado E, Blanco JL. Presence of Aspergillus fumigatus with the TR 34/L98H Cyp51A mutation and other azole-resistant aspergilli in the air of a zoological park. Res Vet Sci 2023; 164:104993. [PMID: 37657393 DOI: 10.1016/j.rvsc.2023.104993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/03/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
Antifungal-resistant fungi, including Aspergillus fumigatus and other Aspergillus species, pose an urgent threat to human and animal health. Furthermore, the environmental route of azole resistance selection due to the widespread use of azole fungicides in crop protection and other applications is a major public health issue. Although environmental surveillance of fungi is frequently performed in many zoological parks and wildlife rehabilitation centers, the antifungal susceptibility of recovered isolates is only rarely analyzed, which precludes a clear assessment of the threat posed by these fungi to captive animals. In this study, we assessed the presence of airborne azole-resistant Aspergillus spp., including the so-called 'cryptic species' (i.e., species which are phenotypically similar to more well-known aspergilli but clearly constitute different phylogenetic lineages) in a zoological park located in the city of Madrid, Spain. In general, our results revealed a low prevalence A. fumigatus and cryptic aspergilli with decreased susceptibility to azoles. However, we detected an A. fumigatus isolate with the TR34/L98H mutation in the gene encoding the lanosterol 14α-demethylase (Cyp51A), consisting of a tandem repeat of 34 base pairs in the promoter region and a lysine to histidine substitution at codon 98. Notably, this TR34/L98H mutation has been linked to the environmental route of azole resistance selection, thus highlighting the 'One Health' dimension of the emerging problem of antifungal resistance. In this context, continuous environmental surveillance of azole-resistant aspergilli in zoological parks and other similar animal facilities is recommended.
Collapse
Affiliation(s)
- Sergio Álvarez-Pérez
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, Madrid 28040, Spain.
| | - Marta E García
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, Madrid 28040, Spain
| | | | - José L Blanco
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, Madrid 28040, Spain
| |
Collapse
|
9
|
Gołofit-Szymczak M, Wójcik-Fatla A, Stobnicka-Kupiec A, Górny RL. Filters of automobile air conditioning systems as in-car source of exposure to infections and toxic moulds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108188-108200. [PMID: 37749467 PMCID: PMC10611836 DOI: 10.1007/s11356-023-29947-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
The main component of an air conditioning system is air filters. Over time, the filters of an air conditioning system in cars can turn into sources of emission of microbiological hazards. The aim of this study was to quantitatively and qualitatively assess the presence of infectious and toxic fungi in the AC filters in passenger cars. The studied non-woven filters were removed from passenger cars during the "winter"/"summer" seasons. The taxonomic identification of the fungi isolated from the filters was performed using both the culture-based and molecular methods. RT-PCR was applied to assess the presence of gene fragments regulating aflatoxin biosynthesis in the isolates obtained from fungal cultures. The average fungal concentrations in the filter samples collected during the summer/winter season were 5.4 × 104 cfu/m2 and 2.4 × 104 cfu/m2, respectively. Most of the filter samples, collected in both the studied seasons, revealed the presence of Aspergillus species including A. fumigatus, A. niger, A. terreus and/or A. flavus. The recorded levels of fungal contamination of AC filters in passenger cars indicate the necessity for more frequent filter replacement in this type of vehicle. Occupational exposure to moulds and the resulting health problems that may be experienced by professional drivers should be properly recognised in order to undertake effective preventive measures.
Collapse
Affiliation(s)
- Małgorzata Gołofit-Szymczak
- Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection-National Research Institute, Warsaw, Poland.
| | - Angelina Wójcik-Fatla
- Department of Health Biohazards and Parasitology, Institute of Rural Health, Lublin, Poland
| | - Agata Stobnicka-Kupiec
- Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection-National Research Institute, Warsaw, Poland
| | - Rafał L Górny
- Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection-National Research Institute, Warsaw, Poland
| |
Collapse
|
10
|
Itoh M, Matsumoto N, Hagino K, Sawayama N, Kuwayama M, Yamada K, Toyotome T. Nationwide Survey about the Occurrence of Aspergillosis in Captive Penguins in Zoos and Aquariums in Japan. Animals (Basel) 2023; 13:1913. [PMID: 37370423 DOI: 10.3390/ani13121913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
We surveyed the facilities that were members of the Japan Association of Zoos and Aquariums to clarify the incidence of aspergillosis, which is a major cause of death in captive penguins, and to discern effective preventive measures. Responses were obtained for 2910 penguins in 64 facilities; 73 penguins (2.5%) in 35 facilities had died from aspergillosis during the past 5 years from April 2016 to March 2021. Answers to questions about the rearing environment indicated that aspergillosis occurred significantly more often in facilities where penguins were reared outdoors, were in contact with soil, or were moved outside of the rearing enclosure. Answers to questions about their dead penguins indicated that 76% may have been at individual risk (e.g., young age, old age, molting period, and breeding season) and 54% were thought to be reared in uncomfortable environments (e.g., high temperature, high humidity). Aspergillosis may occur when individual risk factors and uncomfortable environmental factors are added to the risk factors of exposure to Aspergillus, such as the presence of soil. These conditions must be recognized as risk factors for aspergillosis, and appropriate preventive measures, such as avoiding penguin contact with the soil where Aspergillus is expected to be present, can minimize aspergillosis-related deaths.
Collapse
Affiliation(s)
- Megumi Itoh
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Naoya Matsumoto
- Noboribetsu Marine Park Nixe, Noboribetsu 059-0492, Hokkaido, Japan
- School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Kanagawa, Japan
| | - Kyogo Hagino
- Noboribetsu Marine Park Nixe, Noboribetsu 059-0492, Hokkaido, Japan
| | - Nanako Sawayama
- Noboribetsu Marine Park Nixe, Noboribetsu 059-0492, Hokkaido, Japan
| | - Miki Kuwayama
- Noboribetsu Marine Park Nixe, Noboribetsu 059-0492, Hokkaido, Japan
| | - Kazutaka Yamada
- School of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Kanagawa, Japan
| | - Takahito Toyotome
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
- Diagnostic Center for Animal Health and Food Safety, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Chiba, Japan
| |
Collapse
|
11
|
Naicker S, Mohanlall V, Ngubane S, Mellem J, Mchunu NP. Phenotypic Array for Identification and Screening of Antifungals against Aspergillus Isolates from Respiratory Infections in KwaZulu Natal, South Africa. J Fungi (Basel) 2023; 9:616. [PMID: 37367552 DOI: 10.3390/jof9060616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
The rapid emergence of invasive fungal infections correlates with the increasing population of immunocompromised individuals, with many cases leading to death. The progressive increase in the incidence of Aspergillus isolates is even more severe due to the clinical challenges in treating invasive infections in immunocompromised patients with respiratory conditions. Rapid detection and diagnosis are needed to reduce mortality in individuals with invasive aspergillosis-related infections and thus efficient identification impacts clinical success. The phenotypic array method was compared to conventional morphology and molecular identification on thirty-six Aspergillus species isolated from patients with respiratory infections at the Inkosi Albert Luthuli Hospital in Kwa-Zulu Natal. In addition, an antimicrobial array was also carried out to screen for possible novel antimicrobial compounds for treatment. Although traditional morphological techniques are useful, genetic identification was the most reliable, assigning 26 to Aspergillus fumigatus species, 8 Aspergillus niger, and 2 Aspergillus flavus including cryptic species of A. niger, A. tubingensis and A. welwitschiae. The phenotypic array technique was only able to identify isolates up to the genus level due to a lack of adequate reference clinical species in the database. However, this technique proved crucial in assessing a wide range of possible antimicrobial options after these isolates exhibited some resistance to azoles. Antifungal profiles of the thirty-six isolates on the routine azole voriconazole showed a resistance of 6%, with 61% having moderate susceptibility. All isolates resistant to the salvage therapy drug, posaconazole pose a serious concern. Significantly, A. niger was the only species resistant (25%) to voriconazole and has recently been reported as the species isolated from patients with COVID-19-associated pulmonary aspergillosis (CAPA). Phenotypic microarray showed that 83% of the isolates were susceptible to the 24 new compounds and novel compounds were identified for potentially effective combination treatment of fungal infections. This study also reports the first TR34/98 mutation in Aspergillus clinical isolates which is located in the cyp51A gene.
Collapse
Affiliation(s)
- Sarla Naicker
- Department of Biotechnology and Food Science, Durban University of Technology, Durban 4000, Kwa-Zulu Natal, South Africa
| | - Viresh Mohanlall
- Department of Biotechnology and Food Science, Durban University of Technology, Durban 4000, Kwa-Zulu Natal, South Africa
| | - Sandile Ngubane
- Department of Biotechnology and Food Science, Durban University of Technology, Durban 4000, Kwa-Zulu Natal, South Africa
| | - John Mellem
- Department of Biotechnology and Food Science, Durban University of Technology, Durban 4000, Kwa-Zulu Natal, South Africa
| | | |
Collapse
|
12
|
Hsu TH, Huang PY, Fan YC, Sun PL. Azole Resistance and cyp51A Mutation of Aspergillus fumigatus in a Tertiary Referral Hospital in Taiwan. J Fungi (Basel) 2022; 8:jof8090908. [PMID: 36135633 PMCID: PMC9504549 DOI: 10.3390/jof8090908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 01/30/2023] Open
Abstract
Azole resistance in Aspergillus fumigatus has increasingly been reported worldwide. Its major mechanism of resistance is mediated by mutations in cyp51A. The objective of this study was to test the antifungal susceptibilities of A. fumigatus isolates from Chang Gung Memorial Hospital (CGMH), the largest tertiary referral hospital in Taiwan, and to investigate cyp51A mutations in azole-resistant strains. A. fumigatus isolates preserved in the Research Laboratory of Medical Mycology of CGMH from 2015 to 2021 were used. Antifungal susceptibility testing was performed using the YeastOneTM method. Isolates with high minimal inhibitory concentrations (MICs) against antifungals were further tested using the Clinical and Laboratory Standards Institute (CLSI) broth microdilution method. Mutations in the cyp51A in azole-resistant strains were detected by Sanger sequencing. The overall prevalence of azole-resistant isolates was 1.77% (two out of 113 isolates). The two azole-resistant strains had tandem repeats (TR) in the promoter region and mutations in the cyp51A gene (TR34/L98H and TR34/L98H/S297T/F495I). One strain showed intermediate susceptibility to voriconazole, and its Cyp51A protein had five amino acid substitutions (F46Y/M172V/N248T/D255E/E427K). TR34/L98H and TR34/L98H/S297T/F495I are the most prevalent cyp51A mutations in Taiwan, mediating azole resistance based on current publications and our results. YeastOneTM was validated as a rapid tool for the antifungal susceptibility test; however, further confirmation by CLSI should be considered when MIC values of voriconazole, posaconazole, and amphotericin B are close to the clinical breakpoints or ecological cutoff values.
Collapse
Affiliation(s)
- Tsun-Hao Hsu
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan
| | - Po-Yen Huang
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Yun-Chen Fan
- Research Laboratory of Medical Mycology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan
| | - Pei-Lun Sun
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Research Laboratory of Medical Mycology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan
- Correspondence: ; Tel.: +886-3-328-1200 (ext. 8778)
| |
Collapse
|
13
|
Nguyen PT, Wacker T, Brown AJP, da Silva Dantas A, Shekhova E. Understanding the Role of Nitronate Monooxygenases in Virulence of the Human Fungal Pathogen Aspergillus fumigatus. J Fungi (Basel) 2022; 8:736. [PMID: 35887491 PMCID: PMC9323177 DOI: 10.3390/jof8070736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 12/23/2022] Open
Abstract
Aspergillus fumigatus is the leading cause of the fungal invasive disease called aspergillosis, which is associated with a high mortality rate that can reach 50% in some groups of immunocompromised individuals. The increasing prevalence of azole-resistant A. fumigatus isolates, both in clinical settings and the environment, highlights the importance of discovering new fungal virulence factors that can potentially become targets for novel antifungals. Nitronate monooxygenases (Nmos) represent potential targets for antifungal compounds as no orthologs of those enzymes are present in humans. Nmos catalyse the denitrification of nitroalkanes, thereby detoxifying these mediators of nitro-oxidative stress, and therefore we tested whether Nmos provide protection for A. fumigatus against host-imposed stresses at sites of infection. The results of inhibition zone assays indicated that Nmo2 and Nmo5 are not essential for the oxidative stress resistance of A. fumigatus in vitro. In addition, the resazurin-based metabolic activity assay revealed that the growth of mutants lacking the nmo2 or nmo5 genes was only slightly reduced in the presence of 0.05 mM peroxynitrite. Nevertheless, both Nmo2 and Nmo5 were shown to contribute to defense against murine bone marrow-derived macrophages, and this was no longer observed when NADPH oxidase, the main generator of reactive oxygen species during infection, was inhibited in macrophages. Furthermore, we revealed that Nnmos promote the virulence of the fungus in the Galleria mellonella model of infection. Both nmo2 and nmo5 knock-out strains were less virulent than the wild-type control as recorded 72 h post-infection. Our results indicate that Nmos play a role in the virulence of A. fumigatus.
Collapse
|