1
|
Wang R, Li J, Meng L. Multi-organ proteome reveals different nursing ability between two honeybee srocks. J Proteomics 2025; 316:105417. [PMID: 40037490 DOI: 10.1016/j.jprot.2025.105417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/10/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
High royal jelly production is an adaptive reproductive investment syndrome in honey bees that enhances their nursing ability to queen bee larvae. However, the biological basis of this reproduction investment at the multi-organ level remains elusive. In this study, proteome across 11 organs of two bee stocks: high royal jelly production bees (RJBs) and Italian bees (ITBs) was compared. Our analysis revealed significant differences in protein expression profiles in brain, fat body, mandibular gland, and Malpighian tubule, highlighting their crucial roles in regulating royal jelly secretion in RJBs. The increased energy turnover, protein synthesis, and lipid synthesis observed in RJBs compared to ITBs highlight their enhanced metabolic activity, which is essential for the robust secretion of royal jelly in RJBs. The elevated abundance of major royal jelly proteins (MRJPs), hexamerins, and vitellogenin suggests their critical contributions to the nutritional and material requirement necessary for royal jelly secretion. Furthermore, the high level of vitellogenin and juvenile hormone esterase may suppress juvenile hormones, which contribute to a strong royal jelly secretion and sensitivity of RJBs to larval pheromones relative to ITBs. This comprehensive dataset contributes to a better understanding of nursing behavior and reproductive investment in honey bees. Significiance. The royal jelly secretion syndrome is a colony level social trait dominated by the intricate interplay of multiple organs. However, previous studies have primarily focused on individual organs. In this study, the proteome of 11 organs was compared between high royal jelly production bees (RJBs) and Italian bees (ITBs) to provide knowledge on how multiple organs cooperate to boost the elevated royal jelly production by RJBs. Nutrition supply was sufficient at multiple organs of RJBs when compared to ITBs, indicating that nutrition plays an essential role in boosting energy metabolism, protein and lipid synthesis, and directly contributes to the amount of royal jelly secretion. The high level of secretion of storage proteins, such as MRJPs, hex, and vitellogenin, provides sufficient nutrition and material for royal jelly secretion. Moreover, the higher levels of vitellogenin and juvenile hormone esterase may suppress juvenile hormone synthesis, and contributing to stronger sense of RJBs to larval pheromone relative to ITBs. This suggests that nutrition can influence the hormone levels and sensory abilities of RJBs nurse bees to promote their royal jelly secretion ability. The reported data provide insights into the systematic regulation strategy of honeybee nursing behavior and reproductive investment.
Collapse
Affiliation(s)
- Ronghua Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Technology Promotion Station of Animal Husbandry Gansu Province, Lanzhou 730030, China
| | - Jianke Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Lifeng Meng
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Kocher S, Kingwell C. The Molecular Substrates of Insect Eusociality. Annu Rev Genet 2024; 58:273-295. [PMID: 39146360 PMCID: PMC11588544 DOI: 10.1146/annurev-genet-111523-102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The evolution of eusociality in Hymenoptera-encompassing bees, ants, and wasps-is characterized by multiple gains and losses of social living, making this group a prime model to understand the mechanisms that underlie social behavior and social complexity. Our review synthesizes insights into the evolutionary history and molecular basis of eusociality. We examine new evidence for key evolutionary hypotheses and molecular pathways that regulate social behaviors, highlighting convergent evolution on a shared molecular toolkit that includes the insulin/insulin-like growth factor signaling (IIS) and target of rapamycin (TOR) pathways, juvenile hormone and ecdysteroid signaling, and epigenetic regulation. We emphasize how the crosstalk among these nutrient-sensing and endocrine signaling pathways enables social insects to integrate external environmental stimuli, including social cues, with internal physiology and behavior. We argue that examining these pathways as an integrated regulatory circuit and exploring how the regulatory architecture of this circuit evolves alongside eusociality can open the door to understanding the origin of the complex life histories and behaviors of this group.
Collapse
Affiliation(s)
- Sarah Kocher
- Department of Ecology and Evolutionary Biology, Lewis-Sigler Institute for Integrative Biology, and Howard Hughes Medical Institute, Princeton University, Princeton, New Jersey, USA;
| | - Callum Kingwell
- Smithsonian Tropical Research Institute, Ancon, Panama
- Department of Ecology and Evolutionary Biology, Lewis-Sigler Institute for Integrative Biology, and Howard Hughes Medical Institute, Princeton University, Princeton, New Jersey, USA;
| |
Collapse
|
3
|
Fine JD, Foster LJ, McAfee A. Indirect exposure to insect growth disruptors affects honey bee (Apis mellifera) reproductive behaviors and ovarian protein expression. PLoS One 2023; 18:e0292176. [PMID: 37782633 PMCID: PMC10545116 DOI: 10.1371/journal.pone.0292176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/14/2023] [Indexed: 10/04/2023] Open
Abstract
Pesticide exposure and queen loss are considered to be major causes of honey bee colony mortality, yet little is known regarding the effects of regularly encountered agrochemicals on honey bee reproduction. Here, we present the results of a two-generational study using specialized cages to expose queens to commonly used insect growth disrupting pesticides (IGDs) via their retinue of worker bees. Under IGD exposure, we tracked queen performance and worker responses to queens, then the performance of the exposed queens' offspring was assessed to identify patterns that may contribute to the long-term health and stability of a social insect colony. The positive control, novaluron, resulted in deformed larvae hatching from eggs laid by exposed queens, and methoxyfenozide, diflubenzuron, and novaluron caused a slight decrease in daily egg laying rates, but this was not reflected in the total egg production over the course of the experiment. Curiously, eggs laid by queens exposed to pyriproxyfen exhibited increased hatching rates, and those larvae developed into worker progeny with increased responsiveness to their queens. Additionally, pyriproxyfen and novaluron exposure affected the queen ovarian protein expression, with the overwhelming majority of differentially expressed proteins coming from the pyriproxyfen exposure. We discuss these results and the potential implications for honey bee reproduction and colony health.
Collapse
Affiliation(s)
- Julia D. Fine
- Invasive Species and Pollinator Health Research Unit, USDA-ARS, Davis, CA, United States of America
| | - Leonard J. Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Alison McAfee
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
4
|
Walton A, Toth AL. Nutritional inequalities structure worker division of labor in social insects. CURRENT OPINION IN INSECT SCIENCE 2023; 58:101059. [PMID: 37230413 DOI: 10.1016/j.cois.2023.101059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/16/2023] [Accepted: 05/20/2023] [Indexed: 05/27/2023]
Abstract
Eusocial insect societies are fundamentally non-egalitarian. The reproductive caste 'wins' in terms of resource accumulation, whereas non-reproductive workers 'lose'. Here, we argue that the division of labor among workers is also organized by nutritional inequalities. Across vastly different social systems and a variety of hymenopteran species, there is a recurrent pattern of lean foragers and corpulent nest workers. Experimental manipulations confirm causal associations between nutritional differences, associated molecular pathways, and behavioral roles in insect societies. The comparative and functional genomic data suggest that a conserved toolkit of core metabolic, nutrient storage, and signaling genes has evolved to regulate the social insect division of labor. Thus, the unequal distribution of food resources can be considered a fundamental organizing factor in the social insect division of labor.
Collapse
Affiliation(s)
- Alexander Walton
- Biological Sciences, University of Alberta, Edmonton AB T6G 2E9, Canada
| | - Amy L Toth
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50014 USA.
| |
Collapse
|
5
|
Corby-Harris V, Snyder L, Meador C, Watkins-DeJong E, Obernesser BT, Brown N, Carroll MJ. Diet and pheromones interact to shape honey bee (Apis mellifera) worker physiology. JOURNAL OF INSECT PHYSIOLOGY 2022; 143:104442. [PMID: 36195173 DOI: 10.1016/j.jinsphys.2022.104442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 08/31/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Honey bee colony health is a function of the individuals, their interactions, and the environment. A major goal of honey bee research is to understand how colonies respond to stress. Individual-level studies of the bee stress response are tractable, but their results do not always translate to the colony level. Nutritional stress is an important factor in colony declines. Nutrition studies are typically conducted on individual nurse workers (nurses), who are primarily responsible for converting pollen into brood. Nurse physiology is sensitive to both pollen and pheromones, which communicate signals among colony members. Here, we asked whether pheromones influence nurse nutrient pathways involved in brood care, and whether diet influences colony communication. We exposed caged, nurse-aged workers to different combinations of pheromones and pollen, and measured traits related to brood care. We found that pheromones enhanced pollen-dependent processes such as hypopharyngeal gland growth and mrjp1 expression, and buffered the negative effects of starvation. Pollen also enhanced how nurse phenotypes respond to pheromones. Therefore, diet and pheromones interact to influence nurse nutritional physiology and aspects of brood care. These findings have implications for studying colony function and health in an increasingly stressful climate.
Collapse
Affiliation(s)
| | - Lucy Snyder
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85719, United States
| | - Charlotte Meador
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85719, United States
| | | | | | - Nicholas Brown
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85719, United States
| | - Mark J Carroll
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85719, United States
| |
Collapse
|
6
|
St. Clair AL, Suresh S, Dolezal AG. Access to prairie pollen affects honey bee queen fecundity in the field and lab. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.908667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Beekeepers experience high annual losses of colonies, with environmental stressors like pathogens, reduced forage, and pesticides as contributors. Some factors, like nutritional stress from reduced flower abundance or diversity, are more pronounced in agricultural landscapes where extensive farming limits pollen availability. In addition to affecting other aspects of colony health, quantity and quality of pollen available are important for colony brood production and likely for queen egg laying. While some US beekeepers report >50% of colony loss due to queen failure, the causes of poor-quality queens are poorly understood. Access to resources from native prairie habitat is suggested as a valuable late-season resource for honey bees that can reverse colony growth declines, but it is not clear how prairie forage influences queen egg laying. We hypothesized that the pollen resources present in an extensive Midwestern corn/soybean agroecosystem during the critical late season period affect honey bee queen egg laying and that access to native prairies can increase queen productivity. To test this, we designed a field experiment in Iowa, keeping colonies in either soybean or prairie landscapes during a critical period of forage dearth, and we quantified queen egg laying as well as pollen collection (quantity and species). Then, using pollen collected in the field experiments, we created representative dietary mixtures, which we fed to bees using highly controlled laboratory cages to test how consumption of these diets affected the egg laying of naive queens. In two out of three years, queens in prairies laid more eggs compared to those in soybean fields. Pollen quantity did not vary between the two landscapes, but composition of species did, and was primarily driven by collection of evening primrose (Oenothera biennis). When pollen representative of the two landscapes was fed to caged bees in the laboratory queens fed prairie pollen laid more eggs, suggesting that pollen from this landscape plays an important role in queen productivity. More work is needed to tease apart the drivers of these differences, but understanding how egg laying is regulated is useful for designing landscapes for sustainable pollinator management and can inform feeding regimes for beekeepers.
Collapse
|
7
|
Litsey EM, Chung S, Fine JD. The Behavioral Toxicity of Insect Growth Disruptors on Apis mellifera Queen Care. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.729208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As social insects, honey bees (Apis mellifera) rely on the coordinated performance of various behaviors to ensure that the needs of the colony are met. One of the most critical of these behaviors is the feeding and care of egg laying honey bee queens by non-fecund female worker attendants. These behaviors are crucial to honey bee reproduction and are known to be elicited by the queen’s pheromone blend. The degree to which workers respond to this blend can vary depending on their physiological status, but little is known regarding the impacts of developmental exposure to agrochemicals on this behavior. This work investigated how exposing workers during larval development to chronic sublethal doses of insect growth disruptors affected their development time, weight, longevity, and queen pheromone responsiveness as adult worker honey bees. Exposure to the juvenile hormone analog pyriproxyfen consistently shortened the duration of pupation, and pyriproxyfen and diflubenzuron inconsistently reduced the survivorship of adult bees. Finally, pyriproxyfen and methoxyfenozide treated bees were found to be less responsive to queen pheromone relative to other treatment groups. Here, we describe these results and discuss their possible physiological underpinnings as well as their potential impacts on honey bee reproduction and colony performance.
Collapse
|
8
|
Walton A, Toth AL. Resource limitation, intra‐group aggression and brain neuropeptide expression in a social wasp. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Alexander Walton
- Department of Ecology, Evolution, and Organismal Biology Iowa State University Ames IA USA
| | - Amy L. Toth
- Department of Ecology, Evolution, and Organismal Biology Iowa State University Ames IA USA
- Department of Entomology Iowa State University Ames IA USA
| |
Collapse
|
9
|
McAfee A, Milone JP, Metz B, McDermott E, Foster LJ, Tarpy DR. Honey bee queen health is unaffected by contact exposure to pesticides commonly found in beeswax. Sci Rep 2021; 11:15151. [PMID: 34312437 PMCID: PMC8313582 DOI: 10.1038/s41598-021-94554-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/01/2021] [Indexed: 11/24/2022] Open
Abstract
Honey bee queen health is crucial for colony health and productivity, and pesticides have been previously associated with queen loss and premature supersedure. Prior research has investigated the effects of indirect pesticide exposure on queens via workers, as well as direct effects on queens during development. However, as adults, queens are in constant contact with wax as they walk on comb and lay eggs; therefore, direct pesticide contact with adult queens is a relevant but seldom investigated exposure route. Here, we conducted laboratory and field experiments to investigate the impacts of topical pesticide exposure on adult queens. We tested six pesticides commonly found in wax: coumaphos, tau-fluvalinate, atrazine, 2,4-DMPF, chlorpyriphos, chlorothalonil, and a cocktail of all six, each administered at 1, 4, 8, 16, and 32 times the concentrations typically found in wax. We found no effect of any treatment on queen mass, sperm viability, or fat body protein expression. In a field trial testing queen topical exposure of a pesticide cocktail, we found no impact on egg-laying pattern, queen mass, emergence mass of daughter workers, and no proteins in the spermathecal fluid were differentially expressed. These experiments consistently show that pesticides commonly found in wax have no direct impact on queen performance, reproduction, or quality metrics at the doses tested. We suggest that previously reported associations between high levels of pesticide residues in wax and queen failure are most likely driven by indirect effects of worker exposure (either through wax or other hive products) on queen care or queen perception.
Collapse
Affiliation(s)
- Alison McAfee
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA. .,Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T1Z4, Canada.
| | - Joseph P Milone
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Bradley Metz
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Erin McDermott
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| | - David R Tarpy
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
10
|
Developmental environment shapes honeybee worker response to virus infection. Sci Rep 2021; 11:13961. [PMID: 34234217 PMCID: PMC8263599 DOI: 10.1038/s41598-021-93199-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/18/2021] [Indexed: 11/08/2022] Open
Abstract
The consequences of early-life experiences are far reaching. In particular, the social and nutritional environments that developing animals experience can shape their adult phenotypes. In honeybees, larval nutrition determines the eventual social roles of adults as reproductive queens or sterile workers. However, little is known about the effects of developmental nutrition on important adult worker phenotypes such as disease resilience. In this study, we manipulated worker developmental nutrition in two distinct ways under semi-natural field conditions. In the first experiment, we restricted access to nutrition via social isolation by temporarily preventing alloparental care. In the second experiment, we altered the diet quality experienced by the entire colony, leading to adult bees that had developed entirely in a nutritionally restricted environment. When bees from these two experiments reached the adult stage, we challenged them with a common bee virus, Israeli acute paralysis virus (IAPV) and compared mortality, body condition, and the expression of immune genes across diet and viral inoculation treatments. Our findings show that both forms of early life nutritional stress, whether induced by lack of alloparental care or diet quality restriction, significantly reduced bees' resilience to virus infection and affected the expression of several key genes related to immune function. These results extend our understanding of how early life nutritional environment can affect phenotypes relevant to health and highlight the importance of considering how nutritional stress can be profound even when filtered through a social group. These results also provide important insights into how nutritional stress can affect honeybee health on a longer time scale and its potential to interact with other forms of stress (i.e. disease).
Collapse
|
11
|
DeGrandi-Hoffman G, Corby-Harris V, Carroll M, Toth AL, Gage S, Watkins deJong E, Graham H, Chambers M, Meador C, Obernesser B. The Importance of Time and Place: Nutrient Composition and Utilization of Seasonal Pollens by European Honey Bees ( Apis mellifera L.). INSECTS 2021; 12:insects12030235. [PMID: 33801848 PMCID: PMC8000538 DOI: 10.3390/insects12030235] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 01/29/2023]
Abstract
Simple Summary Honey bees rely on pollen and nectar to provide nutrients to support their yearly colony cycle. Specifics of the cycle differ among geographic regions as do the species of flowering plants and the nutrients they provide. We examined responses of honey bees from two different queen lines fed pollens from locations that differed in floral species composition and yearly colony cycles. We detected differences between the queen lines in the amount of pollen they consumed and the size of their hypopharyngeal glands (HPG). There were also seasonal differences between the nutrient composition of pollens. Spring pollens collected from colonies in both locations had higher amino and fatty acid concentrations than fall pollens. There also were seasonal differences in responses to the pollens consumed by bees from both queen lines. Bees consumed more spring than fall pollen, but digested less of it so that bees consumed more protein from fall pollens. Though protein consumption was higher with fall pollen, HPG were larger in spring bees. Abstract Honey bee colonies have a yearly cycle that is supported nutritionally by the seasonal progression of flowering plants. In the spring, colonies grow by rearing brood, but in the fall, brood rearing declines in preparation for overwintering. Depending on where colonies are located, the yearly cycle can differ especially in overwintering activities. In temperate climates of Europe and North America, colonies reduce or end brood rearing in the fall while in warmer climates bees can rear brood and forage throughout the year. To test the hypothesis that nutrients available in seasonal pollens and honey bee responses to them can differ we analyzed pollen in the spring and fall collected by colonies in environments where brood rearing either stops in the fall (Iowa) or continues through the winter (Arizona). We fed both types of pollen to worker offspring of queens that emerged and open mated in each type of environment. We measured physiological responses to test if they differed depending on the location and season when the pollen was collected and the queen line of the workers that consumed it. Specifically, we measured pollen and protein consumption, gene expression levels (hex 70, hex 110, and vg) and hypopharyngeal gland (HPG) development. We found differences in macronutrient content and amino and fatty acids between spring and fall pollens from the same location and differences in nutrient content between locations during the same season. We also detected queen type and seasonal effects in HPG size and differences in gene expression between bees consuming spring vs. fall pollen with larger HPG and higher gene expression levels in those consuming spring pollen. The effects might have emerged from the seasonal differences in nutritional content of the pollens and genetic factors associated with the queen lines we used.
Collapse
Affiliation(s)
- Gloria DeGrandi-Hoffman
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 East Allen Road, Tucson, AZ 85719, USA; (V.C.-H.); (Mark Carroll); (E.W.d.); (H.G.); (Mona Chambers); (C.M.)
- Correspondence:
| | - Vanessa Corby-Harris
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 East Allen Road, Tucson, AZ 85719, USA; (V.C.-H.); (Mark Carroll); (E.W.d.); (H.G.); (Mona Chambers); (C.M.)
| | - Mark Carroll
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 East Allen Road, Tucson, AZ 85719, USA; (V.C.-H.); (Mark Carroll); (E.W.d.); (H.G.); (Mona Chambers); (C.M.)
| | - Amy L. Toth
- Department of Entomology, Iowa State University, 2310 Pammel Drive, 339 Science Hall II, Ames, IA 50011, USA;
| | - Stephanie Gage
- Georgia Institute of Technology, School of Physics, Howey Physics Building, 837 State Street NW, Atlanta, GA 30313, USA;
| | - Emily Watkins deJong
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 East Allen Road, Tucson, AZ 85719, USA; (V.C.-H.); (Mark Carroll); (E.W.d.); (H.G.); (Mona Chambers); (C.M.)
| | - Henry Graham
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 East Allen Road, Tucson, AZ 85719, USA; (V.C.-H.); (Mark Carroll); (E.W.d.); (H.G.); (Mona Chambers); (C.M.)
| | - Mona Chambers
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 East Allen Road, Tucson, AZ 85719, USA; (V.C.-H.); (Mark Carroll); (E.W.d.); (H.G.); (Mona Chambers); (C.M.)
| | - Charlotte Meador
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 East Allen Road, Tucson, AZ 85719, USA; (V.C.-H.); (Mark Carroll); (E.W.d.); (H.G.); (Mona Chambers); (C.M.)
| | - Bethany Obernesser
- Department of Entomology, University of Arizona, Forbes 410, P.O. Box 210036, Tucson, AZ 85721, USA;
| |
Collapse
|
12
|
Collie J, Granela O, Brown EB, Keene AC. Aggression Is Induced by Resource Limitation in the Monarch Caterpillar. iScience 2020; 23:101791. [PMID: 33376972 PMCID: PMC7756136 DOI: 10.1016/j.isci.2020.101791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/27/2020] [Accepted: 11/06/2020] [Indexed: 11/17/2022] Open
Abstract
Food represents a limiting resource for the growth and developmental progression of many animal species. As a consequence, competition over food, space, or other resources can trigger territoriality and aggressive behavior. In the monarch butterfly, Danaus plexippus, caterpillars feed predominantly on milkweed, raising the possibility that access to milkweed is critical for growth and survival. Here, we characterize the role of food availability on aggression in monarch caterpillars and find that monarch caterpillars display stereotyped aggressive lunges that increase during development, peaking during the fourth and fifth instar stages. The number of lunges toward a conspecific caterpillar was significantly increased under conditions of low food availability, suggesting resource defense may trigger aggression. These findings establish monarch caterpillars as a model for investigating interactions between resource availability and aggressive behavior under ecologically relevant conditions and set the stage for future investigations into the neuroethology of aggression in this system.
Collapse
Affiliation(s)
- Joseph Collie
- Department of Biological Sciences, and the Program in Neurogenetics, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Odelvys Granela
- Department of Biological Sciences, and the Program in Neurogenetics, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Elizabeth B. Brown
- Department of Biological Sciences, and the Program in Neurogenetics, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
- Corresponding author
| | - Alex C. Keene
- Department of Biological Sciences, and the Program in Neurogenetics, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
- Corresponding author
| |
Collapse
|
13
|
Stephan JG, de Miranda JR, Forsgren E. American foulbrood in a honeybee colony: spore-symptom relationship and feedbacks. BMC Ecol 2020; 20:15. [PMID: 32143610 PMCID: PMC7060557 DOI: 10.1186/s12898-020-00283-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/25/2020] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND The most severe bacterial disease of honeybees is American foulbrood (AFB). The epidemiology of AFB is driven by the extreme spore resilience, the difficulty of bees to remove these spores, and the considerable incidence of undetected spore-producing colonies. The honeybee collective defence mechanisms and their feedback on colony development, which involves a division of labour at multiple levels of colony organization, are difficult to model. To better predict disease outbreaks we need to understand the feedback between colony development and disease progression within the colony. We therefore developed Bayesian models with data from forty AFB-diseased colonies monitored over an entire foraging season to (i) investigate the relationship between spore production and symptoms, (ii) disentangle the feedback loops between AFB epidemiology and natural colony development, and (iii) discuss whether larger insect societies promote or limit within-colony disease transmission. RESULTS Rather than identifying a fixed spore count threshold for clinical symptoms, we estimated the probabilities around the relationship between spore counts and symptoms, taking into account modulators such as brood amount/number of bees and time post infection. We identified a decrease over time in the bees-to-brood ratio related to disease development, which should ultimately induce colony collapse. Lastly, two contrasting theories predict that larger colonies could promote either higher (classical epidemiological SIR-model) or lower (increasing spatial nest segregation and more effective pathogen removal) disease prevalence. CONCLUSIONS AFB followed the predictions of the SIR-model, partly because disease prevalence and brood removal are decoupled, with worker bees acting more as disease vectors, infecting new brood, than as agents of social immunity, by removing infected brood. We therefore established a direct link between disease prevalence and social group size for a eusocial insect. We furthermore provide a probabilistic description of the relationship between AFB spore counts and symptoms, and how disease development and colony strength over a season modulate this relationship. These results help to better understand disease development within honeybee colonies, provide important estimates for further epidemiological modelling, and gained important insights into the optimal sampling strategy for practical beekeeping and honeybee research.
Collapse
Affiliation(s)
- Jörg G Stephan
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
- Swedish Species Information Centre, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Eva Forsgren
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| |
Collapse
|