1
|
Grossman E, Shtein I, Gruntman M. Combined Effects of Heavy Metal and Simulated Herbivory on Leaf Trichome Density in Sunflowers. PLANTS (BASEL, SWITZERLAND) 2024; 13:2733. [PMID: 39409603 PMCID: PMC11479035 DOI: 10.3390/plants13192733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024]
Abstract
Trichomes play a key role in both heavy metal tolerance and herbivory defense, and both stressors have been shown to induce increased trichome density. However, the combined effect of these stressors on trichome density in general, and specifically on metal-hyperaccumulating plants, has yet to be examined. The aim of this study was to test the effect of cadmium availability and herbivory on leaf trichome density and herbivore deterrence in the metal hyperaccumulator Helianthus annuus. To test this, H. Annuus plants were grown in control pots or pots inoculated with 10 mg/kg cadmium and were subjected to either no herbivory or simulated herbivory using mechanical damage and foliar jasmonic acid application. Herbivore deterrence was tested in a feeding assay using Spodoptera littoralis caterpillars. Interestingly, while the trichome density of H. annuus increased by 79% or 53.5% under high cadmium availability or simulated herbivory, respectively, it decreased by 26% when the stressors were combined. Furthermore, regardless of cadmium availability, simulated herbivory induced a 40% increase in deterrence of S. littoralis. These findings suggest that the combination of metal availability and herbivory might present excessive stress to hyperaccumulators. Moreover, they suggest that the risk of metal bioaccumulation in phytoremediation can be reduced by simulated herbivory.
Collapse
Affiliation(s)
- Eyal Grossman
- Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Ilana Shtein
- Eastern R&D Center, Milken Campus, Ariel 40700, Israel;
| | - Michal Gruntman
- Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv 69978, Israel;
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
2
|
Krämer U. Metal Homeostasis in Land Plants: A Perpetual Balancing Act Beyond the Fulfilment of Metalloproteome Cofactor Demands. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:27-65. [PMID: 38277698 DOI: 10.1146/annurev-arplant-070623-105324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
One of life's decisive innovations was to harness the catalytic power of metals for cellular chemistry. With life's expansion, global atmospheric and biogeochemical cycles underwent dramatic changes. Although initially harmful, they permitted the evolution of multicellularity and the colonization of land. In land plants as primary producers, metal homeostasis faces heightened demands, in part because soil is a challenging environment for nutrient balancing. To avoid both nutrient metal limitation and metal toxicity, plants must maintain the homeostasis of metals within tighter limits than the homeostasis of other minerals. This review describes the present model of protein metalation and sketches its transfer from unicellular organisms to land plants as complex multicellular organisms. The inseparable connection between metal and redox homeostasis increasingly draws our attention to more general regulatory roles of metals. Mineral co-option, the use of nutrient or other metals for functions other than nutrition, is an emerging concept beyond that of nutritional immunity.
Collapse
Affiliation(s)
- Ute Krämer
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Bochum, Germany;
| |
Collapse
|
3
|
Randé H, Michalet R, Nemer D, Delerue F. Relative contribution of canopy and soil effects between plants with different metal tolerance along a metal pollution gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166905. [PMID: 37699491 DOI: 10.1016/j.scitotenv.2023.166905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
Multiple effects, operating either on the long-term (soil-engineering effects) or on the short-term during plant life (microclimate modification or resources pre-emption), can act simultaneously and determine the outcome of plant-plant interactions. These diverse effects have not been disentangled along a gradient of metal/metalloid pollution, although this is crucial for understanding the dominant species turnover along the gradient, and thus the driving processes of facilitation recurrently found in metalliferous ecosystems, which could help improving ecological restoration of these degraded ecosystems. Here, we experimentally assessed different short-term effects of two dominant forbs of highly polluted habitats (Hutchinsia alpina and Arenaria multicaulis, tolerant to metal stress) and two grasses of less polluted habitats (Agrostis capillaris and Festuca rubra, less tolerant to metal stress) on target plant species (the same as the dominant species mentioned above) transplanted along a large metal pollution gradient. Additionally, in highly polluted environments, we differentiated short- from long-term effects of the two metallicolous forbs, which had different abilities to concentrate metals in their leaves. In line with other studies along metal gradients, variation of short-term interactions appeared to follow the Stress Gradient Hypothesis for plants less adapted to metal pollution (p = 0.030), with positive interactions dominating in most severe areas. Regarding long-term effects, the species with highest leaf metal-accumulation showed no negative effect contrary to the Elemental allelopathy Hypothesis. Long-term effects of the species with lower leaf-metal accumulation could not be determined because of the occurrence of an unexpected difference in micro-habitat conditions (soil depth and humidity) for this species along the metal pollution gradient. Increasing short-term facilitation along metal pollution gradients, which confirmed previous studies, is promising for improving conditions and restoring the most polluted environments. However, long-term results stressed the difficulty to quantify these effects given that these areas are highly fragmented and heterogeneous.
Collapse
Affiliation(s)
- Hugo Randé
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Richard Michalet
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - David Nemer
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Florian Delerue
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France.
| |
Collapse
|
4
|
Zhang P, Li W, Qiu H, Liu M, Li Y, He E. Metal resistant gut microbiota facilitates snails feeding on metal hyperaccumulator plant Sedum alfredii in the phytoremediation field. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113514. [PMID: 35427879 DOI: 10.1016/j.ecoenv.2022.113514] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/09/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
The interactions between hyperaccumulators and their associated herbivores have been mostly investigated in their natural habitats and largely ignored in the phytoremediation practice. Herein, we investigated the herbivory status of Zn/Cd-hyperaccumulating plant Sedum alfredii from both their natural habitats and their applied remediation field, and inspected the adaptive strategies of the herbivores from the perspective of their facilitative gut microbiota. Field investigations showed that snail species Bradybaena ravida was the dominant herbivore feeding on S. alfredii and they can be only found in sites with lower levels of heavy metals compared with the plant natural habitat. Gut microbial community was analyzed using two sequencing methods (16S rRNA and czcA-Zn/Cd resistant gene) to comparatively understand the effect of gut microbes in facilitating snail feeding on the hyperaccumulators. The results revealed significant differences in the diversity and richness between the gut microbiota of the two snail populations, which was more pronounced by the czcA sequencing method. Despite of the compositional differences, their functions seemed to converge into three categories as metal-tolerant and contaminant degraders, gut symbionts, and pathogens. Further function potentials predicted by Tax4Fun based on 16 S sequencing data were in accordance with this categorization as the most abundant metabolic pathways were two-component system and ABC transporter, which was closely related to metal stress adaptation. The prevalence of positive interactions (~80%) indicated by the co-occurrence network analysis based on czcA sequencing data in both groups of gut microbiota further suggested the facilitative effect of these metal-tolerant gut microbes in coping with the high metal diet, which ultimately assist the snails to successfully feed on S. alfredii plants and thrive. This work for the first time provides evidence that the herbivore adaptation to hyperaccumulators were also associated with their gut microbial adaptation to metals.
Collapse
Affiliation(s)
- Peihua Zhang
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenxing Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Ye Li
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
5
|
Mohiley A, Laaser T, Höreth S, Clemens S, Tielbörger K, Gruntman M. Between the devil and the deep blue sea: herbivory induces foraging for and uptake of cadmium in a metal hyperaccumulating plant. Proc Biol Sci 2021; 288:20211682. [PMID: 34583580 PMCID: PMC8479331 DOI: 10.1098/rspb.2021.1682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/07/2021] [Indexed: 11/12/2022] Open
Abstract
Plants have been shown to change their foraging behaviour in response to resource heterogeneity. However, an unexplored hypothesis is that foraging could be induced by environmental stressors, such as herbivory, which might increase the demand for particular resources, such as those required for herbivore defence. This study examined the way simulated herbivory affects both root foraging for and uptake of cadmium (Cd), in the metal-hyperaccumulating plant Arabidopsis halleri, which uses this heavy metal as herbivore defence. Simulated herbivory elicited enhanced relative allocation of roots to Cd-rich patches as well as enhanced Cd uptake, and these responses were exhibited particularly by plants from non-metalliferous origin, which have lower metal tolerance. By contrast, plants from a metalliferous origin, which are more tolerant to Cd, did not show any preference in root allocation, yet enhanced Cd sharing between ramets when exposed to herbivory. These results suggest that foraging for heavy metals, as well as their uptake and clonal-sharing, could be stimulated in A. halleri by herbivory impact. Our study provides first support for the idea that herbivory can induce not only defence responses in plants but also affect their foraging, resource uptake and clonal sharing responses.
Collapse
Affiliation(s)
- Anubhav Mohiley
- Plant Ecology Group, Institute for Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Tanja Laaser
- Plant Ecology Group, Institute for Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Stephan Höreth
- Lehrstuhl Pflanzenphysiologie, Universität Bayreuth, Bayreuth
| | - Stephan Clemens
- Lehrstuhl Pflanzenphysiologie, Universität Bayreuth, Bayreuth
| | - Katja Tielbörger
- Plant Ecology Group, Institute for Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Michal Gruntman
- Plant Ecology Group, Institute for Evolution and Ecology, University of Tübingen, Tübingen, Germany
- School of Plant Sciences and Food Security and Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Mohiley A, Tielbörger K, Weber M, Clemens S, Gruntman M. Competition for light induces metal accumulation in a metal hyperaccumulating plant. Oecologia 2021; 197:157-165. [PMID: 34370097 DOI: 10.1007/s00442-021-05001-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/16/2021] [Indexed: 11/25/2022]
Abstract
Plants can respond to competition with a myriad of physiological or morphological changes. Competition has also been shown to affect the foraging decisions of plants belowground. However, a completely unexplored idea is that competition might also affect plants' foraging for specific elements required to inhibit the growth of their competitors. In this study, we examined the effect of simulated competition on root foraging and accumulation of heavy metals in the metal hyperaccumulating perennial plant Arabidopsis halleri, whose metal accumulation has been shown to provide allelopathic ability. A. halleri plants originating from both metalliferous and non-metalliferous soils were grown in a "split-root" setup with one root in a high-metal pot and the other in a low-metal one. The plants were then assigned to either simulated light competition or no-competition (control) treatments, using vertical green or clear plastic filters, respectively. While simulated light competition did not induce greater root allocation into the high-metal pots, it did result in enhanced metal accumulation by A. halleri, particularly in the less metal-tolerant plants, originating from non-metalliferous soils. Interestingly, this accumulation response was particularly enhanced for zinc rather than cadmium. These results provide support to the idea that the accumulation of metals by hyperaccumulating plants can be facultative and change according to their demand following competition.
Collapse
Affiliation(s)
- Anubhav Mohiley
- Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Katja Tielbörger
- Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Michael Weber
- Plant Physiology Department, University of Bayreuth, Bayreuth, Germany
| | - Stephan Clemens
- Plant Physiology Department, University of Bayreuth, Bayreuth, Germany
| | - Michal Gruntman
- Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany.
- School of Plant Sciences and Food Security, Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
7
|
Delhaye G, Bauman D, Séleck M, Ilunga wa Ilunga E, Mahy G, Meerts P. Interspecific trait integration increases with environmental harshness: A case study along a metal toxicity gradient. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13570] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Guillaume Delhaye
- Laboratoire d'Ecologie Végétale et Biogéochimie Université Libre de Bruxelles Bruxelles Belgium
- Environmental Change Institute School of Geography and the Environment University of Oxford Oxford UK
| | - David Bauman
- Laboratoire d'Ecologie Végétale et Biogéochimie Université Libre de Bruxelles Bruxelles Belgium
- Environmental Change Institute School of Geography and the Environment University of Oxford Oxford UK
| | - Maxime Séleck
- Department of Forest, Nature and Landscape Biodiversity and Landscape Unit University of LiègeGembloux Agro‐Bio Tech Gembloux Belgium
| | - Edouard Ilunga wa Ilunga
- Ecology, Restoration Ecology and Landscape Research Unit Faculty of Agronomy University of Lubumbashi Lubumbashi Democratic Republic of Congo
| | - Grégory Mahy
- Department of Forest, Nature and Landscape Biodiversity and Landscape Unit University of LiègeGembloux Agro‐Bio Tech Gembloux Belgium
| | - Pierre Meerts
- Laboratoire d'Ecologie Végétale et Biogéochimie Université Libre de Bruxelles Bruxelles Belgium
| |
Collapse
|