1
|
Nelson JA, Thorarensen HT. Thermal tolerance of cultured and wild Icelandic arctic charr (Salvelinus alpinus) at self-selected flow rates. J Therm Biol 2024; 121:103863. [PMID: 38723312 DOI: 10.1016/j.jtherbio.2024.103863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/26/2024]
Abstract
Climate change is predicted to change not only the temperature of many freshwater systems but also flow dynamics. Understanding how fishes will fare in the future requires knowing how they will respond to both extended variations of temperature and flow. Arctic charr have had their thermal tolerance measured, but never with respect to flow. Additionally, this circumpolar species has multiple populations exhibiting dramatic phenotypic plasticity which may mean that regional differences in thermal tolerance are unaccounted for. In Iceland, Arctic charr populations have experienced highly variable flow and temperature conditions over the past 10,000 years. The Icelandic climate, topography and geothermal activity have created a mosaic of freshwater habitats inhabited by charr that vary substantially in both temperature and flow. Our purpose was to test whether populations from these varied environments had altered thermal tolerance and whether phenotypic plasticity of thermal tolerance in charr depends on flow. We raised cultured Icelandic charr from hatch under a 2 X 2 matrix of flow and temperature and compared them to wild charr captured from matching flow and temperature environments. Wild fish were more thermally tolerant than cultured fish at both acclimation temperatures and were more thermally plastic. Icelandic Arctic charr were more thermally tolerant than comparison charr populations across Europe and North America, but only when acclimated to 13 °C; fish acclimated to 5 °C compared equably with comparison charr populations. Icelandic Arctic charr were also more thermally plastic than all but one other salmonine species. Neither flow of rearing or the flow selected during a thermal tolerance (CTmax) test factored into thermal tolerance. Thermal tolerance was also independent of body size, condition factor, heart and gill size. In summary, wild Icelandic Arctic charr have greater thermal tolerance and plasticity than predicted from the literature and their latitude, but artificial selection for properties like growth rate or fecundity may be breeding that increased tolerance out of cultured fish. As the world moves toward a warmer climate and increased dependence on cultured fish, this is a noteworthy result and merits further study.
Collapse
Affiliation(s)
- Jay A Nelson
- Department of Aquaculture and Fish Biology, Hólar University College, 551, Sauðárkrókur, Iceland.
| | - Helgi Thor Thorarensen
- Department of Aquaculture and Fish Biology, Hólar University College, 551, Sauðárkrókur, Iceland
| |
Collapse
|
2
|
Cruz AR, Davidowitz G, Moore CM, Bronstein JL. Mutualisms in a warming world. Ecol Lett 2023. [PMID: 37303268 DOI: 10.1111/ele.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/13/2023]
Abstract
Predicting the impacts of global warming on mutualisms poses a significant challenge given the functional and life history differences that usually exist among interacting species. However, this is a critical endeavour since virtually all species on Earth depend on other species for survival and/or reproduction. The field of thermal ecology can provide physiological and mechanistic insights, as well as quantitative tools, for addressing this challenge. Here, we develop a conceptual and quantitative framework that connects thermal physiology to species' traits, species' traits to interacting mutualists' traits and interacting traits to the mutualism. We first identify the functioning of reciprocal mutualism-relevant traits in diverse systems as the key temperature-dependent mechanisms driving the interaction. We then develop metrics that measure the thermal performance of interacting mutualists' traits and that approximate the thermal performance of the mutualism itself. This integrated approach allows us to additionally examine how warming might interact with resource/nutrient availability and affect mutualistic species' associations across space and time. We offer this framework as a synthesis of convergent and critical issues in mutualism science in a changing world, and as a baseline to which other ecological complexities and scales might be added.
Collapse
Affiliation(s)
- Austin R Cruz
- Department of Ecology & Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
| | - Goggy Davidowitz
- Department of Ecology & Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
- Department of Entomology, The University of Arizona, Tucson, Arizona, USA
| | | | - Judith L Bronstein
- Department of Ecology & Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
- Department of Entomology, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
3
|
Chown SL. Macrophysiology for decision‐making. J Zool (1987) 2022. [DOI: 10.1111/jzo.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- S. L. Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences Monash University Melbourne Victoria Australia
| |
Collapse
|
4
|
Roeder KA, Daniels JD. Thermal tolerance of western corn rootworm: Critical thermal limits, knock-down resistance, and chill coma recovery. J Therm Biol 2022; 109:103338. [DOI: 10.1016/j.jtherbio.2022.103338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
|
5
|
Pottier P, Burke S, Zhang RY, Noble DWA, Schwanz LE, Drobniak SM, Nakagawa S. Developmental plasticity in thermal tolerance: Ontogenetic variation, persistence, and future directions. Ecol Lett 2022; 25:2245-2268. [PMID: 36006770 DOI: 10.1111/ele.14083] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 01/07/2023]
Abstract
Understanding the factors affecting thermal tolerance is crucial for predicting the impact climate change will have on ectotherms. However, the role developmental plasticity plays in allowing populations to cope with thermal extremes is poorly understood. Here, we meta-analyse how thermal tolerance is initially and persistently impacted by early (embryonic and juvenile) thermal environments by using data from 150 experimental studies on 138 ectothermic species. Thermal tolerance only increased by 0.13°C per 1°C change in developmental temperature and substantial variation in plasticity (~36%) was the result of shared evolutionary history and species ecology. Aquatic ectotherms were more than three times as plastic as terrestrial ectotherms. Notably, embryos expressed weaker but more heterogenous plasticity than older life stages, with numerous responses appearing as non-adaptive. While developmental temperatures did not have persistent effects on thermal tolerance overall, persistent effects were vastly under-studied, and their direction and magnitude varied with ontogeny. Embryonic stages may represent a critical window of vulnerability to changing environments and we urge researchers to consider early life stages when assessing the climate vulnerability of ectotherms. Overall, our synthesis suggests that developmental changes in thermal tolerance rarely reach levels of perfect compensation and may provide limited benefit in changing environments.
Collapse
Affiliation(s)
- Patrice Pottier
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Samantha Burke
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Rose Y Zhang
- Division of Ecology and Evolution, Research School of Biology, College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lisa E Schwanz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Szymon M Drobniak
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Braschler B, Chown SL, Duffy GA. Sub-critical limits are viable alternatives to critical thermal limits. J Therm Biol 2021; 101:103106. [PMID: 34879920 DOI: 10.1016/j.jtherbio.2021.103106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/02/2021] [Accepted: 09/17/2021] [Indexed: 01/05/2023]
Abstract
Thermal traits are frequently used to explain variation in species distributions, abundance, and sensitivity to climate change. Due to their utility and ease of measurement, critical thermal limits in particular have proliferated across the ecophysiological literature. Critical limit assays can, however, have deleterious or even lethal effects on individuals and there is growing recognition that intermediate metrics of performance can provide a further, nuanced understanding of how species interact with their environments. Meanwhile, the scarcity of data describing sub-critical or voluntary limits, which have been proposed as alternatives to critical limits and can be collected under less extreme conditions, reduces their value in comparative analyses and broad-scale syntheses. To overcome these limitations and determine if sub-critical limits are viable proxies for upper and lower critical thermal limits we measured and compared the critical and sub-critical thermal limits of 2023 ants representing 51 species. Sub-critical limits in isolation were a satisfactory linear predictor for both individual and species critical limits and when species identity was also considered there were substantial gains in variance explained. These gains indicate that a species-specific conversion factor can further improve estimates of critical traits using sub-critical proxies. Sub-critical limits can, therefore, be integrated into broader syntheses of critical limits and confidently used to calculate common ecological metrics, such as warming tolerance, so long as uncertainty in estimates is explicitly acknowledged. Although lower thermal traits exhibited more variation than their upper counterparts, the stronger phylogenetic signal of lower thermal traits indicates that appropriate conversions for lower thermal traits can be inferred from congenerics or other closely related taxa.
Collapse
Affiliation(s)
- Brigitte Braschler
- Section of Conservation Biology, Department of Environmental Sciences, University of Basel, St. Johanns-Vorstadt 10, CH-4056, Basel, Switzerland; DSI-NRF Centre of Excellence for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Steven L Chown
- School of Biological Sciences, Monash University, Victoria, 3800, Australia
| | - Grant A Duffy
- School of Biological Sciences, Monash University, Victoria, 3800, Australia.
| |
Collapse
|