1
|
Williams HJ, Sridhar VH, Hurme E, Gall GE, Borrego N, Finerty GE, Couzin ID, Galizia CG, Dominy NJ, Rowland HM, Hauber ME, Higham JP, Strandburg-Peshkin A, Melin AD. Sensory collectives in natural systems. eLife 2023; 12:e88028. [PMID: 38019274 PMCID: PMC10686622 DOI: 10.7554/elife.88028] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023] Open
Abstract
Groups of animals inhabit vastly different sensory worlds, or umwelten, which shape fundamental aspects of their behaviour. Yet the sensory ecology of species is rarely incorporated into the emerging field of collective behaviour, which studies the movements, population-level behaviours, and emergent properties of animal groups. Here, we review the contributions of sensory ecology and collective behaviour to understanding how animals move and interact within the context of their social and physical environments. Our goal is to advance and bridge these two areas of inquiry and highlight the potential for their creative integration. To achieve this goal, we organise our review around the following themes: (1) identifying the promise of integrating collective behaviour and sensory ecology; (2) defining and exploring the concept of a 'sensory collective'; (3) considering the potential for sensory collectives to shape the evolution of sensory systems; (4) exploring examples from diverse taxa to illustrate neural circuits involved in sensing and collective behaviour; and (5) suggesting the need for creative conceptual and methodological advances to quantify 'sensescapes'. In the final section, (6) applications to biological conservation, we argue that these topics are timely, given the ongoing anthropogenic changes to sensory stimuli (e.g. via light, sound, and chemical pollution) which are anticipated to impact animal collectives and group-level behaviour and, in turn, ecosystem composition and function. Our synthesis seeks to provide a forward-looking perspective on how sensory ecologists and collective behaviourists can both learn from and inspire one another to advance our understanding of animal behaviour, ecology, adaptation, and evolution.
Collapse
Affiliation(s)
- Hannah J Williams
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - Vivek H Sridhar
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - Edward Hurme
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - Gabriella E Gall
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
- Zukunftskolleg, University of KonstanzKonstanzGermany
| | | | | | - Iain D Couzin
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - C Giovanni Galizia
- Biology Department, University of KonstanzKonstanzGermany
- Zukunftskolleg, University of KonstanzKonstanzGermany
| | - Nathaniel J Dominy
- Zukunftskolleg, University of KonstanzKonstanzGermany
- Department of Anthropology, Dartmouth CollegeHanoverUnited States
| | - Hannah M Rowland
- Max Planck Research Group Predators and Toxic Prey, Max Planck Institute for Chemical EcologyJenaGermany
| | - Mark E Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois at Urbana-ChampaignUrbana-ChampaignUnited States
| | - James P Higham
- Zukunftskolleg, University of KonstanzKonstanzGermany
- Department of Anthropology, New York UniversityNew YorkUnited States
| | - Ariana Strandburg-Peshkin
- Max Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
- Biology Department, University of KonstanzKonstanzGermany
| | - Amanda D Melin
- Zukunftskolleg, University of KonstanzKonstanzGermany
- Department of Anthropology and Archaeology, University of CalgaryCalgaryCanada
- Alberta Children’s Hospital Research Institute, University of CalgaryCalgaryCanada
| |
Collapse
|
2
|
Murugavel B, Kandula S, Somanathan H, Kelber A. Home ranges, directionality and the influence of moon phases on the movement ecology of Indian flying fox males in southern India. Biol Open 2023; 12:286595. [PMID: 36648245 PMCID: PMC9922730 DOI: 10.1242/bio.059513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
Flying foxes of the genus Pteropus are amongst the largest fruit bats and potential long-range pollinators and seed dispersers in the paleotropics. Pteropus giganteus (currently P. medius) is the only flying fox that is distributed throughout the Indian mainland, including in urban and rural areas. Using GPS telemetry, we mapped the home ranges and examined flight patterns in P. giganteus males across moon phases in a semi-urban landscape in southern India. Home range differed between the tracked males (n=4), likely due to differences in their experience in the landscape. We found that nightly time spent outside the roost, distance commuted and the number of sites visited by tracked individuals did not differ significantly between moon phases. In 61% of total tracked nights across bats, the first foraging site was within 45˚ of the emergence direction. At the colony-level, scan-based observations showed emergence flights were mostly in the northeast (27%), west (22%) and southwest (19%) directions that could potentially be related to the distribution of foraging resources. The movement ecology of fruit bats in relation to the pollination and seed dispersal services they provide requires to be investigated in future studies. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Baheerathan Murugavel
- IISER TVM Centre for Research and Education in Ecology and Evolution (ICREEE), School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Maruthamala P. O, Vithura, Kerala 695551, India
| | - Sripathi Kandula
- 74-6-51, Sravanthi Enclave, Prakash Nagar, Rajamahendravaram, Andhra Pradesh, 533103 India
| | - Hema Somanathan
- IISER TVM Centre for Research and Education in Ecology and Evolution (ICREEE), School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Maruthamala P. O, Vithura, Kerala 695551, India
| | - Almut Kelber
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden,Author for correspondence ()
| |
Collapse
|
3
|
Montecino-Latorre D, Goldstein T, Kelly TR, Wolking DJ, Kindunda A, Kongo G, Bel-Nono SO, Kazwala RR, Suu-Ire RD, Barker CM, Johnson CK, Mazet JAK. Seasonal shedding of coronavirus by straw-colored fruit bats at urban roosts in Africa. PLoS One 2022; 17:e0274490. [PMID: 36107832 PMCID: PMC9477308 DOI: 10.1371/journal.pone.0274490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
The straw-colored fruit bat (Eidolon helvum) is a pteropodid whose conservation is crucial for maintaining functional connectivity of plant populations in tropical Africa. Land conversion has pushed this species to adapt to roosting in urban centers across its range. These colonies often host millions of individuals, creating intensive human-bat contact interfaces that could facilitate the spillover of coronaviruses shed by these bats. A better understanding of coronavirus dynamics in these roosts is needed to identify peak times of exposure risk in order to propose evidence-based management that supports safe human-bat coexistence, as well as the conservation of this chiropteran. We studied the temporal patterns of coronavirus shedding in E. helvum, by testing thousands of longitudinally-collected fecal samples from two spatially distant urban roosts in Ghana and Tanzania. Shedding of coronaviruses peaked during the second part of pup weaning in both roosts. Assuming that coronavirus shedding is directly related to spillover risk, our results indicate that exposure mitigation should target reducing contact between people and E. helvum roosts during the pup "weaning" period. This recommendation can be applied across the many highly-populated urban sites occupied by E. helvum across Africa.
Collapse
Affiliation(s)
- Diego Montecino-Latorre
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Tracey Goldstein
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, United States of America
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Terra R. Kelly
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - David J. Wolking
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Adam Kindunda
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Godphrey Kongo
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | | | - Rudovick R. Kazwala
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Richard D. Suu-Ire
- School of Veterinary Medicine, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Christopher M. Barker
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Christine Kreuder Johnson
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Jonna A. K. Mazet
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, United States of America
| |
Collapse
|