1
|
Seuront L, Henry S, Breton E, Spilmont N, Elias F. Marine foams impede metabolic and behavioural traits in the rough periwinkle Littorina saxatilis. MARINE ENVIRONMENTAL RESEARCH 2024; 197:106486. [PMID: 38588615 DOI: 10.1016/j.marenvres.2024.106486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/20/2024] [Accepted: 03/30/2024] [Indexed: 04/10/2024]
Abstract
Foams are a ubiquitous feature of marine environments. They can have major economic, societal and ecological consequences through their accumulation on the shore. Despite their pervasive nature and evidence that stable foam deposits play a pivotal role in the ecology of soft shore and estuaries, very limited amounts of information are available on their contribution to the structure and function at play in rocky intertidal ecosystems. This study shows that the metabolic rate of the high-shore gastropod Littorina saxatilis is significantly higher in individuals exposed to foams. Behavioural assays conducted under laboratory-controlled conditions further show that this species detects foam-born infochemicals both indirectly or directly, hence rely on both airborne and contact chemosensory cues. L. saxatilis also actively avoid areas covered in foam, and increase their activity in the presence of foam. These observations are interpreted in terms of foam-induced increased metabolic stress and increases behavioural anxiety and vigilance. They are further discussed in relation to the occurrence of two phytoplankton species known to produce repellent and/or toxic compounds such as domoic acid and dimethylsulfoniopropionate, the diatom Pseudo-nitzschia multistriata and the haptophyte Phaeocystis globosa, with the latter occurring at unusually high density. Taken together, these results suggest that the accumulation of foams on intertidal rocky shores may have major implications on taxa relying on both airborne and contact chemosensory cues to navigate, find food and mating partners. Specifically, the observed increased behavioural activity coupled with increased metabolic demands may impact species fitness and highlight potentially large ecological consequences in rocky intertidal ecosystems characterized by strong hydrodynamism and elevated organic matter content leading to the presence of long-lived foam.
Collapse
Affiliation(s)
- Laurent Seuront
- CNRS, Univ. Lille, Univ. Littoral Côte D'Opale, IRD, UMR 8187 LOG, Station Marine de Wimereux, F-59000, Lille, France; Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, Tokyo, Japan; Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa.
| | - Solène Henry
- CNRS, Univ. Lille, Univ. Littoral Côte D'Opale, IRD, UMR 8187 LOG, Station Marine de Wimereux, F-59000, Lille, France
| | - Elsa Breton
- Univ. Littoral Côte D'Opale, CNRS, Univ. Lille, IRD, UMR 8187 LOG, F-59000, Lille, France
| | - Nicolas Spilmont
- CNRS, Univ. Lille, Univ. Littoral Côte D'Opale, IRD, UMR 8187 LOG, Station Marine de Wimereux, F-59000, Lille, France
| | - Florence Elias
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes, ESPCI-PSL-Sorbonne Université-Université de Paris, 75005, Paris, France
| |
Collapse
|
2
|
Terlau JF, Brose U, Boy T, Pawar S, Pinsky M, Hirt MR. Predicting movement speed of beetles from body size and temperature. MOVEMENT ECOLOGY 2023; 11:27. [PMID: 37194049 DOI: 10.1186/s40462-023-00389-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/06/2023] [Indexed: 05/18/2023]
Abstract
Movement facilitates and alters species interactions, the resulting food web structures, species distribution patterns, community structures and survival of populations and communities. In the light of global change, it is crucial to gain a general understanding of how movement depends on traits and environmental conditions. Although insects and notably Coleoptera represent the largest and a functionally important taxonomic group, we still know little about their general movement capacities and how they respond to warming. Here, we measured the exploratory speed of 125 individuals of eight carabid beetle species across different temperatures and body masses using automated image-based tracking. The resulting data revealed a power-law scaling relationship of average movement speed with body mass. By additionally fitting a thermal performance curve to the data, we accounted for the unimodal temperature response of movement speed. Thereby, we yielded a general allometric and thermodynamic equation to predict exploratory speed from temperature and body mass. This equation predicting temperature-dependent movement speed can be incorporated into modeling approaches to predict trophic interactions or spatial movement patterns. Overall, these findings will help improve our understanding of how temperature effects on movement cascade from small to large spatial scales as well as from individual to population fitness and survival across communities.
Collapse
Affiliation(s)
- Jördis F Terlau
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany.
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena, Germany.
| | - Ulrich Brose
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena, Germany
| | - Thomas Boy
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena, Germany
| | - Samraat Pawar
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, UK
| | - Malin Pinsky
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ, USA
| | - Myriam R Hirt
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
3
|
Atkins RL, Clancy KM, Ellis WT, Osenberg CW. Thermal Traits Vary with Mass and across Populations of the Marsh Periwinkle, Littoraria irrorata. THE BIOLOGICAL BULLETIN 2022; 242:173-196. [PMID: 35767414 DOI: 10.1086/719850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
AbstractPhysiological processes influence how individuals perform in various environmental contexts. The basis of such processes, metabolism, scales allometrically with body mass and nonlinearly with temperature, as described by a thermal performance curve. Past studies of thermal performance curves tend to focus on effects of temperature on a single body size or population, rather than variation in the thermal performance curve across sizes and populations. Here, we estimate intraspecific variation in parameters of the thermal performance curve in the salt marsh gastropod Littoraria irrorata. First, we quantify the thermal performance curve for respiration rate as a function of both temperature and body size in Littoraria and evaluate whether the thermal parameters and body size scaling are interdependent. Next, we quantify how parameters in the thermal performance curve for feeding rate vary between three Littoraria populations that occur along a latitudinal gradient. Our work suggests that the thermal traits describing Littoraria respiration are dependent on body mass and that both the thermal traits and the mass scaling of feeding vary across sites. We found limited evidence to suggest that mass scaling of Littoraria feeding or respiration rates depends on temperature. Variation in the thermal performance curves interacts with the size structure of the Littoraria population to generate divergent population-level responses to temperature. These results highlight the importance of considering variation in population size structure and physiological allometry when attempting to predict how temperature change will affect physiological responses and consumer-resource interactions.
Collapse
|
4
|
Réveillon T, Rota T, Chauvet É, Lecerf A, Sentis A. Energetic mismatch induced by warming decreases leaf litter decomposition by aquatic detritivores. J Anim Ecol 2022; 91:1975-1987. [PMID: 35471565 DOI: 10.1111/1365-2656.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/31/2022] [Indexed: 11/26/2022]
Abstract
1. The balance of energetic losses and gains is of paramount importance for understanding and predicting the persistence of populations and ecosystem processes in a rapidly changing world. Previous studies suggested that metabolic rate often increases faster with warming than resource ingestion rate, leading to an energetic mismatch at high temperature. However, little is known about the ecological consequences of this energetic mismatch for population demography and ecosystem functions. 2. Here, we combined laboratory experiments and modeling to investigate the energetic balance of a stream detritivore (Gammarus fossarum) along a temperature gradient and the consequences for detritivore populations and organic matter decomposition. 3. We experimentally measured the energetic losses (metabolic rate) and supplies (ingestion rate) of Gammarus and we modeled the impact of rising temperatures and changes in Gammarus body size induced by warming on population dynamics and benthic organic matter dynamics in freshwater systems. 4. Our experimental results indicated an energetic mismatch in a Gammarus population where losses via metabolic rate increase faster than supplies via food ingestion with warming, which translated in a decrease of energetic efficiency with temperature rising from 5 to 20 °C. Moreover, our consumer-resource model predicts a decrease in the biomass of Gammarus population with warming, associated with lower maximum abundances and steeper abundance decreases after biomass annual peaks. These changes resulted in a decrease of leaf litter decomposition rate and thus longer persistence of leaf litter standing stock over years in the simulations. In addition, Gammarus body size reductions led to shorter persistence for both leaf litter and Gammarus biomasses at low temperature and the opposite trend at high temperature, revealing that body size reduction was weakening the effect of temperature on resource and consumer persistence. 5. Our model contributes to identifying the mechanisms that explain how thermal effects at the level of individuals may cascade through trophic interactions and influence important ecosystem processes. Considering the balance of physiological processes is crucial to improve our ability to predict the impact of climate change on carbon stocks and ecosystem functions.
Collapse
Affiliation(s)
- Tom Réveillon
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Thibaut Rota
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Éric Chauvet
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Antoine Lecerf
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Arnaud Sentis
- INRAE, Aix Marseille Université, UMR RECOVER, 3275 route Cézanne, FR-13182, Aix-en-Provence, France
| |
Collapse
|
5
|
Kordas RL, Pawar S, Kontopoulos DG, Woodward G, O'Gorman EJ. Metabolic plasticity can amplify ecosystem responses to global warming. Nat Commun 2022; 13:2161. [PMID: 35443761 PMCID: PMC9021271 DOI: 10.1038/s41467-022-29808-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
Organisms have the capacity to alter their physiological response to warming through acclimation or adaptation, but the consequence of this metabolic plasticity for energy flow through food webs is currently unknown, and a generalisable framework does not exist for modelling its ecosystem-level effects. Here, using temperature-controlled experiments on stream invertebrates from a natural thermal gradient, we show that the ability of organisms to raise their metabolic rate following chronic exposure to warming decreases with increasing body size. Chronic exposure to higher temperatures also increases the acute thermal sensitivity of whole-organismal metabolic rate, independent of body size. A mathematical model parameterised with these findings shows that metabolic plasticity could account for 60% higher ecosystem energy flux with just +2 °C of warming than a traditional model based on ecological metabolic theory. This could explain why long-term warming amplifies ecosystem respiration rates through time in recent mesocosm experiments, and highlights the need to embed metabolic plasticity in predictive models of global warming impacts on ecosystems. Organisms can alter their physiological response to warming. Here, the authors show that the ability to raise metabolic rate following exposure to warming is inverse to body size and provide a mathematical model which estimates that metabolic plasticity could amplify energy flux through ecosystems in response to warming.
Collapse
Affiliation(s)
- Rebecca L Kordas
- The Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Samraat Pawar
- The Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Dimitrios-Georgios Kontopoulos
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt, Germany.,Senckenberg Research Institute, Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Guy Woodward
- The Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Eoin J O'Gorman
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| |
Collapse
|
6
|
Kratina P, Rosenbaum B, Gallo B, Horas EL, O’Gorman EJ. The Combined Effects of Warming and Body Size on the Stability of Predator-Prey Interactions. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.772078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Environmental temperature and body size are two prominent drivers of predation. Despite the ample evidence of their independent effects, the combined impact of temperature and predator-prey body size ratio on the strength and stability of trophic interactions is not fully understood. We experimentally tested how water temperature alters the functional response and population stability of dragonfly nymphs (Cordulegaster boltonii) feeding on freshwater amphipods (Gammarus pulex) across a gradient of their body size ratios. Attack coefficients were highest for small predators feeding on small prey at low temperatures, but shifted toward the largest predators feeding on larger prey in warmer environments. Handling time appeared to decrease with increasing predator and prey body size in the cold environment, but increase at higher temperatures. These findings indicate interactive effects of temperature and body size on functional responses. There was also a negative effect of warming on the stability of predator and prey populations, but this was counteracted by a larger predator-prey body size ratio at higher temperatures. Here, a greater Hill exponent reduced feeding at low prey densities when predators were much larger than their prey, enhancing the persistence of both predator and prey populations in the warmer environment. These experimental findings provide new mechanistic insights into the destabilizing effect of warming on trophic interactions and the key role of predator-prey body size ratios in mitigating these effects.
Collapse
|
7
|
O’Gorman EJ, Chemshirova I, McLaughlin ÓB, Stewart RIA. Impacts of Warming on Reciprocal Subsidies Between Aquatic and Terrestrial Ecosystems. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.795603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cross-ecosystem subsidies are important as their recipients often rely on them to supplement in situ resource availability. Global warming has the potential to alter the quality and quantity of these subsidies, but our knowledge of these effects is currently limited. Here, we quantified the biomass and diversity of the invertebrates exchanged between freshwater streams and terrestrial grasslands in a natural warming experiment in Iceland. We sampled invertebrates emerging from the streams, those landing on the water surface, ground-dwelling invertebrates falling into the streams, and those drifting through the streams. Emerging invertebrate biomass or diversity did not change with increasing temperature, suggesting no effect of warming on aquatic subsidies to the terrestrial environment over the 1-month duration of the study. The biomass and diversity of aerial invertebrates of terrestrial origin landing on the streams increased with temperature, underpinned by increasing abundance and species richness, indicating that the greater productivity of the warmer streams may attract more foraging insects. The biomass of ground-dwelling invertebrates falling into the streams also increased with temperature, underpinned by increasing body mass and species evenness, suggesting that soil warming leads to terrestrial communities dominated by larger, more mobile organisms, and thus more in-fall to the streams. The biomass and diversity of terrestrial invertebrates in the drift decreased with temperature, however, underpinned by decreasing abundance and species richness, reflecting upstream consumption due to the higher energetic demands of aquatic consumers in warmer environments. These results highlight the potential for asynchronous responses to warming for reciprocal subsidies between aquatic and terrestrial environments and the importance of further research on warming impacts at the interface of these interdependent ecosystems.
Collapse
|
8
|
Meng S, Tran TT, Delnat V, Stoks R. Transgenerational exposure to warming reduces the sensitivity to a pesticide under warming. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117217. [PMID: 33915393 DOI: 10.1016/j.envpol.2021.117217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Despite the increased attention for temporal aspects of stressor interactions and for effects of warming in ecotoxicological studies, we lack knowledge on how different exposure durations to warming may affect pesticide sensitivity. We tested how three types of exposure duration to 4 °C warming (acute, developmental and transgenerational exposure to 24 °C vs 20 °C) shape the effect of the pesticide chlorpyrifos on two ecologically relevant fitness-related traits of mosquito larvae: heat tolerance and antipredator behaviour. Transgenerational (from the parental generation) and developmental (from the egg stage) warming appeared energetically more stressful than acute warming (from the final instar), because (i) only the latter resulted in an adaptive increase of heat tolerance, and (ii) especially developmental and transgenerational warming reduced the diving responsiveness and diving time. Exposure to chlorpyrifos decreased the heat tolerance, diving responsiveness and diving time. The impact of chlorpyrifos was lower at 24 °C than at 20 °C indicating that the expected increase in toxicity at 24 °C was overruled by the observed increase in pesticide degradation. Notably, although our results suggest that transgenerational warming was energetically more stressful, it did reduce the chlorpyrifos-induced negative effects at 24 °C on heat tolerance and the alarm escape response compared to acute warming. Our results provide important evidence that the exposure duration to warming may determine the impact of a pesticide under warming, thereby identifying a novel temporal aspect of stressor interactions in risk assessment.
Collapse
Affiliation(s)
- Shandong Meng
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium.
| | - Tam T Tran
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium; Institute of Aquaculture, Nha Trang University, Khanh Hoa, Viet Nam
| | - Vienna Delnat
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Belgium
| |
Collapse
|
9
|
Sohlström EH, Archer LC, Gallo B, Jochum M, Kordas RL, Rall BC, Rosenbaum B, O'Gorman EJ. Thermal acclimation increases the stability of a predator-prey interaction in warmer environments. GLOBAL CHANGE BIOLOGY 2021; 27:3765-3778. [PMID: 34009702 DOI: 10.1111/gcb.15715] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/07/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
Global warming over the next century is likely to alter the energy demands of consumers and thus the strengths of their interactions with their resources. The subsequent cascading effects on population biomasses could have profound effects on food web stability. One key mechanism by which organisms can cope with a changing environment is phenotypic plasticity, such as acclimation to warmer conditions through reversible changes in their physiology. Here, we measured metabolic rates and functional responses in laboratory experiments for a widespread predator-prey pair of freshwater invertebrates, sampled from across a natural stream temperature gradient in Iceland (4-18℃). This enabled us to parameterize a Rosenzweig-MacArthur population dynamical model to study the effect of thermal acclimation on the persistence of the predator-prey pairs in response to warming. Acclimation to higher temperatures either had neutral effects or reduced the thermal sensitivity of both metabolic and feeding rates for the predator, increasing its energetic efficiency. This resulted in greater stability of population dynamics, as acclimation to higher temperatures increased the biomass of both predator and prey populations with warming. These findings indicate that phenotypic plasticity can act as a buffer against the impacts of environmental warming. As a consequence, predator-prey interactions between ectotherms may be less sensitive to future warming than previously expected, but this requires further investigation across a broader range of interacting species.
Collapse
Affiliation(s)
- Esra H Sohlström
- EcoNetLab (Theory in Biodiversity Science), German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Louise C Archer
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Bruno Gallo
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Malte Jochum
- Experimental interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | | | - Björn C Rall
- EcoNetLab (Theory in Biodiversity Science), German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Benjamin Rosenbaum
- EcoNetLab (Theory in Biodiversity Science), German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Eoin J O'Gorman
- School of Life Sciences, University of Essex, Colchester, UK
| |
Collapse
|
10
|
Tan S, Li P, Yao Z, Liu G, Yue B, Fu J, Chen J. Metabolic cold adaptation in the Asiatic toad: intraspecific comparison along an altitudinal gradient. J Comp Physiol B 2021; 191:765-776. [PMID: 34089366 DOI: 10.1007/s00360-021-01381-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022]
Abstract
The metabolic cold adaptation (MCA) hypothesis predicts an increase in metabolic rate and thermal sensitivity of poikilotherms from cold environments as compared to those from warm environments, when measured under standardized conditions. This compensatory response is also expected to evolve in life history and behavioral traits if the reductions in these phenotypic traits at low temperature involves in a reduction in fitness. We investigated the extent to which the level of energy intake (measured as feeding rate), energy turnover (measured as standard metabolic rate, SMR) and the energy budget (energy allocation to growth and physical activity) are influenced by climatic conditions in three populations of the Asiatic toad (Bufo gargarizans) distributed across an altitudinal gradient of 1350 m in the Qionglai Mountains of Western China. We found a similar thermal reaction norm of SMR at both population and individual levels; therefore, the data did not support the MCA hypothesis. However, there was a co-gradient variation (CoGV) for mass change rate in which the high and medium altitudinal populations displayed slower mass change rates than their counterparts from low altitudes. Moreover, this CoGV pattern was accompanied by a low feeding rate and high physical activity for the high- and medium-altitude populations. Our results highlight that adjustments in energy intake and energy allocation to behaviors, but not energy allocation to metabolism of maintenance, could act as an energetic strategy to accommodate the varied growth efficiency in Asiatic toads along an altitudinal gradient.
Collapse
Affiliation(s)
- Song Tan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- College of Life Sciences, Sichuan University, Chengdu, 610064, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Ping Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Zhongyi Yao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- College of Life Sciences, Sichuan University, Chengdu, 610064, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Gaohui Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- Chinese Research Academy of Environmental Sciences, No.8, Dayangfang, Beiyuan, Beijing, 100012, China
| | - Bisong Yue
- College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Jinzhong Fu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
- Department of Integrative Biology, University of Guelph, Guelph, N1G 2W1, Canada.
| | - Jingfeng Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing, 100049, China.
| |
Collapse
|
11
|
Cloyed CS, Grady JM, Savage VM, Uyeda JC, Dell AI. The allometry of locomotion. Ecology 2021; 102:e03369. [PMID: 33864262 DOI: 10.1002/ecy.3369] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 01/25/2021] [Accepted: 02/22/2021] [Indexed: 11/07/2022]
Abstract
Organismal locomotion mediates ecological interactions and shapes community dynamics. Locomotion is constrained by intrinsic and environmental factors and integrating these factors should clarify how locomotion affects ecology across scales. We extended general theory based on metabolic scaling and biomechanics to predict the scaling of five locomotor performance traits: routine speed, maximum speed, maximum acceleration, minimum powered turn radius, and angular speed. To test these predictions, we used phylogenetically informed analyses of a new database with 884 species and found support for our quantitative predictions. Larger organisms were faster but less maneuverable than smaller organisms. Routine and maximum speeds scaled with body mass to 0.20 and 0.17 powers, respectively, and plateaued at higher body masses, especially for maximum speed. Acceleration was unaffected by body mass. Minimum turn radius scaled to a 0.19 power, and the 95% CI included our theoretical prediction, as we predicted. Maximum angular speed scaled higher than predicted but in the same direction. We observed universal scaling among locomotor modes for routine and maximum speeds but the intercepts varied; flying organisms were faster than those that swam or ran. Acceleration was independent of size in flying and aquatic taxa but decreased with body mass in land animals, possibly due to the risk of injury large, terrestrial organisms face at high speeds and accelerations. Terrestrial mammals inhabiting structurally simple habitats tended to be faster than those in complex habitats. Despite effects of body size, locomotor mode, and habitat complexity, universal scaling of locomotory performance reveals the general ways organisms move across Earth's complex environments.
Collapse
Affiliation(s)
- Carl S Cloyed
- National Great Rivers Research and Education Center, East Alton, Illinois, 62024, USA.,Department of Biology, Washington University of St. Louis, St. Louis, Missouri, 63130, USA.,Dauphin Island Sea Lab, Dauphin Island, Alabama, 36528, USA
| | - John M Grady
- National Great Rivers Research and Education Center, East Alton, Illinois, 62024, USA
| | - Van M Savage
- Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, California, 90024, USA
| | - Josef C Uyeda
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061, USA
| | - Anthony I Dell
- National Great Rivers Research and Education Center, East Alton, Illinois, 62024, USA.,Department of Biology, Washington University of St. Louis, St. Louis, Missouri, 63130, USA
| |
Collapse
|
12
|
Swinton C, Swinton E, Phillips I, Lukowiak K. A thermal stressor, propranolol and long-term memory formation in freshly collected Lymnaea. J Exp Biol 2021; 224:jeb.242293. [PMID: 33795418 DOI: 10.1242/jeb.242293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/25/2021] [Indexed: 11/20/2022]
Abstract
A heat stressor (1 h at 30°C) in Lymnaea stagnalis before operant conditioning training of aerial respiration is sufficient to enhance long-term memory (LTM) formation in 'average' cognitive ability, laboratory-reared, inbred snails. However, in freshly collected outbred snails, the same heat stressor blocks LTM formation in 'smart' cognitive phenotype but not in average cognitive phenotype strains. Here, we hypothesize that (1) preventing the stress associated with the heat stressor before training allows LTM to form in the smart phenotype strains; and (2) alleviating the stress before a memory recall session allows a formed LTM to be recalled in the smart phenotype strains. We found that an injection of propranolol, which mitigates the stressor, before snails experience the heat stressor enabled two strains of the smart phenotype snails to form LTM, consistent with our first hypothesis. However, the injection of propranolol before a memory test session did not alleviate a memory recall block in the smart phenotype snails. Thus, our second hypothesis was not supported. Therefore, smart cognitive phenotype snails encountering a heat stressor have an inability to form LTM, but this inability can be overcome by the pre-injection of propranolol.
Collapse
Affiliation(s)
- Cayley Swinton
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Erin Swinton
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Iain Phillips
- Water Security Agency, Saskatoon, SK S7N 3R3, Canada
| | - Ken Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
13
|
Ilić M, Klintworth S, Jackson MC. Quality over quantity: Trophic cascades in a warming world. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Maja Ilić
- School of Biological Sciences Queen's University Belfast Belfast UK
| | | | | |
Collapse
|
14
|
Shokri M, Cozzoli F, Ciotti M, Gjoni V, Marrocco V, Vignes F, Basset A. A new approach to assessing the space use behavior of macroinvertebrates by automated video tracking. Ecol Evol 2021; 11:3004-3014. [PMID: 33841762 PMCID: PMC8019041 DOI: 10.1002/ece3.7129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 11/25/2022] Open
Abstract
Individual space and resource use are central issues in ecology and conservation. Recent technological advances such as automated tracking techniques are boosting ecological research in this field. However, the development of a robust method to track space and resource use is still challenging for at least one important ecosystem component: motile aquatic macroinvertebrates. The challenges are mostly related to the small body size and rapid movement of many macroinvertebrate species and to light scattering and wave signal interference in aquatic habitats.We developed a video tracking method designed to reliably assess space use behavior among individual aquatic macroinvertebrates under laboratory (microcosm) conditions. The approach involves the use of experimental apparatus integrating a near infrared backlight source, a Plexiglas multi-patch maze, multiple infrared cameras, and automated video analysis. It allows detection of the position of fast-moving (~ 3 cm/s) and translucent individuals of small size (~ 5 mm in length, ~1 mg in dry weight) on simulated resource patches distributed over an experimental microcosm (0.08 m2).To illustrate the adequacy of the proposed method, we present a case study regarding the size dependency of space use behavior in the model organism Gammarus insensibilis, focusing on individual patch selection, giving-up times, and cumulative space used.In the case study, primary data were collected on individual body size and individual locomotory behavior, for example, mean speed, acceleration, and step length. Individual entrance and departure times were recorded for each simulated resource patch in the experimental maze. Individual giving-up times were found to be characterized by negative size dependency, with patch departure occurring sooner in larger individuals than smaller ones, and individual cumulative space used (treated as the overall surface area of resource patches that individuals visited) was found to scale positively with body size.This approach to studying space use behavior can deepen our understanding of species coexistence, yielding insights into mechanistic models on larger spatial scales, for example, home range, with implications for ecological and evolutionary processes, as well as for the management and conservation of populations and ecosystems. Despite being specifically developed for aquatic macroinvertebrates, this method can also be applied to other small aquatic organisms such as juvenile fish and amphibians.
Collapse
Affiliation(s)
- Milad Shokri
- Laboratory of EcologyDepartment of Biological and Environmental Sciences and TechnologiesUniversity of the SalentoLecceItaly
| | - Francesco Cozzoli
- Laboratory of EcologyDepartment of Biological and Environmental Sciences and TechnologiesUniversity of the SalentoLecceItaly
- Research Institute on Terrestrial Ecosystems (IRET) ‐ National Research Council of Italy (CNR) via SalariaRomaItaly
| | - Mario Ciotti
- Laboratory of EcologyDepartment of Biological and Environmental Sciences and TechnologiesUniversity of the SalentoLecceItaly
| | - Vojsava Gjoni
- Laboratory of EcologyDepartment of Biological and Environmental Sciences and TechnologiesUniversity of the SalentoLecceItaly
| | - Vanessa Marrocco
- Laboratory of EcologyDepartment of Biological and Environmental Sciences and TechnologiesUniversity of the SalentoLecceItaly
| | - Fabio Vignes
- Laboratory of EcologyDepartment of Biological and Environmental Sciences and TechnologiesUniversity of the SalentoLecceItaly
| | - Alberto Basset
- Laboratory of EcologyDepartment of Biological and Environmental Sciences and TechnologiesUniversity of the SalentoLecceItaly
| |
Collapse
|
15
|
Dahirel M, Gaudu V, Ansart A. Boldness and exploration vary between shell morphs but not environmental contexts in the snail
Cepaea nemoralis. Ethology 2021. [DOI: 10.1111/eth.13129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Maxime Dahirel
- Univ Rennes CNRS ECOBIO (Ecosystèmes, biodiversité, évolution) ‐ UMR 6553 Rennes France
- INRAE CNRS ISA Université Côte d’Azur Sophia‐Antipolis France
| | - Valentin Gaudu
- Univ Rennes CNRS ECOBIO (Ecosystèmes, biodiversité, évolution) ‐ UMR 6553 Rennes France
| | - Armelle Ansart
- Univ Rennes CNRS ECOBIO (Ecosystèmes, biodiversité, évolution) ‐ UMR 6553 Rennes France
| |
Collapse
|
16
|
Gvoždík L, Boukal DS. Impacts of predator-induced behavioural plasticity on the temperature dependence of predator-prey activity and population dynamics. J Anim Ecol 2020; 90:503-514. [PMID: 33159686 DOI: 10.1111/1365-2656.13383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 11/04/2020] [Indexed: 11/28/2022]
Abstract
Predation is a key ecological interaction affecting populations and communities. Climate warming can modify this interaction both directly by the kinetic effects of temperature on biological rates and indirectly through integrated behavioural and physiological responses of the predators and prey. Temperature dependence of predation rates can further be altered by predator-induced plasticity of prey locomotor activity, but empirical data about this effect are lacking. We propose a general framework to understand the influence of predator-induced developmental plasticity on behavioural thermal reaction norms in prey and their consequences for predator-prey dynamics. Using a mesocosm experiment with dragonfly larvae (predator) and newt larvae (prey), we tested if the predator-induced plasticity alters the elevation or the slope of the thermal reaction norms for locomotor activity metrics in prey. We also estimated the joint predator-prey thermal response in mean locomotor speed, which determines prey encounter rate, and modelled the effect of both phenomena on predator-prey population dynamics. Thermal reaction norms for locomotor activity in prey were affected by predation risk cues but with minor influence on the joint predator-prey behavioural response. We found that predation risk cues significantly decreased the intercept of thermal reaction norm for total activity rate (i.e. all body movements) but not the other locomotor activity metrics in the prey, and that prey locomotor activity rate and locomotor speed increased with prey density. Temperature had opposite effects on the mean relative speed of predator and prey as individual speed increased with temperature in predators but decreased in prey. This led to a negligible effect of body temperature on predicted prey encounter rates and predator-prey dynamics. The behavioural component of predator-prey interaction varied much more between individuals than with temperature and the presence of predation risk cues in our system. We conclude that within-population variation in locomotor activity can buffer the influence of body temperature and predation risk cues on predator-prey interactions, and further research should focus on the magnitude and sources of behavioural variation in interacting species to predict the impact of climate change on predator-prey interactions and food web dynamics.
Collapse
Affiliation(s)
- Lumír Gvoždík
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| | - David S Boukal
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.,Czech Academy of Sciences, Biology Centre, Institute of Entomology, České Budějovice, Czech Republic
| |
Collapse
|
17
|
Kratina P, Watts TJ, Green DS, Kordas RL, O'Gorman EJ. Interactive effects of warming and microplastics on metabolism but not feeding rates of a key freshwater detritivore. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113259. [PMID: 31563782 DOI: 10.1016/j.envpol.2019.113259] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Microplastics are an emerging pollutant of high concern, with their prevalence in the environment linked to adverse impacts on aquatic organisms. However, our knowledge of these impacts on freshwater species is rudimentary, and there is almost no research directly testing how these effects can change under ongoing and future climate warming. Given the potential for multiple stressors to interact in nature, research on the combined impacts of microplastics and environmental temperature requires urgent attention. Thus, we experimentally manipulated environmentally realistic concentrations of microplastics and temperature to partition their independent and combined impacts on metabolic and feeding rates of a model freshwater detritivore. There was a significant increase in metabolic and feeding rates with increasing body mass and temperature, in line with metabolic and foraging theory. Experimental warming altered the effect of microplastics on metabolic rate, which increased with microplastic concentration at the lowest temperature, but decreased at the higher temperatures. The microplastics had no effect on the amount of litter consumed by the detritivores, therefore, did not result in altered feeding rates. These results show that the metabolism of important freshwater detritivores could be altered by short-term exposure to microplastics, with greater inhibition of metabolic rates at higher temperatures. The consequences of these metabolic changes may take longer to manifest than the duration of our experiments, requiring further investigation. Our results suggest little short-term impact of microplastics on litter breakdown by gammarid amphipods and highlight the importance of environmental context for a better understanding of microplastic pollution in freshwater ecosystems.
Collapse
Affiliation(s)
- Pavel Kratina
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom.
| | - Tania J Watts
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom.
| | - Dannielle S Green
- Applied Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge, Cambridgeshire, CB11PT, United Kingdom.
| | - Rebecca L Kordas
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, United Kingdom.
| | - Eoin J O'Gorman
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom.
| |
Collapse
|
18
|
Archer LC, Sohlström EH, Gallo B, Jochum M, Woodward G, Kordas RL, Rall BC, O'Gorman EJ. Consistent temperature dependence of functional response parameters and their use in predicting population abundance. J Anim Ecol 2019; 88:1670-1683. [PMID: 31283002 PMCID: PMC6899737 DOI: 10.1111/1365-2656.13060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 06/05/2019] [Indexed: 11/29/2022]
Abstract
Global warming is one of the greatest threats to the persistence of populations: increased metabolic demands should strengthen pairwise species interactions, which could destabilize food webs at the higher organizational levels. Quantifying the temperature dependence of consumer-resource interactions is thus essential for predicting ecological responses to warming. We explored feeding interactions between different predator-prey pairs in controlled-temperature chambers and in a system of naturally heated streams. We found consistent temperature dependence of attack rates across experimental settings, though the magnitude and activation energy of attack rate were specific to each predator, which varied in mobility and foraging mode. We used these parameters along with metabolic rate measurements to estimate energetic efficiency and population abundance with warming. Energetic efficiency accurately estimated field abundance of a mobile predator that struggled to meet its metabolic demands, but was a poor predictor for a sedentary predator that operated well below its energetic limits. Temperature effects on population abundance may thus be strongly dependent on whether organisms are regulated by their own energy intake or interspecific interactions. Given the widespread use of functional response parameters in ecological modelling, reconciling outcomes from laboratory and field studies increases the confidence and precision with which we can predict warming impacts on natural systems.
Collapse
Affiliation(s)
- Louise C Archer
- Department of Life Sciences, Imperial College London, London, UK.,School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - Esra H Sohlström
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Goettingen, Goettingen, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Bruno Gallo
- Department of Life Sciences, Imperial College London, London, UK
| | - Malte Jochum
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Goettingen, Goettingen, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Plant Sciences, University of Bern, Bern, Switzerland.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Guy Woodward
- Department of Life Sciences, Imperial College London, London, UK
| | - Rebecca L Kordas
- Department of Life Sciences, Imperial College London, London, UK
| | - Björn C Rall
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Eoin J O'Gorman
- School of Biological Sciences, University of Essex, Colchester, UK
| |
Collapse
|