1
|
Ballarin CS, Vizentin-Bugoni J, Hachuy-Filho L, Amorim FW. Imprints of indirect interactions on a resource-mediated ant-plant network across different levels of network organization. Oecologia 2024; 204:661-673. [PMID: 38448764 DOI: 10.1007/s00442-024-05522-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
Indirect interactions are pivotal in the evolution of interacting species and the assembly of populations and communities. Nevertheless, despite recently being investigated in plant-animal mutualism at the community level, indirect interactions have not been studied in resource-mediated mutualisms involving plant individuals that share different animal species as partners within a population (i.e., individual-based networks). Here, we analyzed an individual-based ant-plant network to evaluate how resource properties affect indirect interaction patterns and how changes in indirect links leave imprints in the network across multiple levels of network organization. Using complementary analytical approaches, we described the patterns of indirect interactions at the micro-, meso-, and macro-scale. We predicted that plants offering intermediate levels of nectar quantity and quality interact with more diverse ant assemblages. The increased number of ant species would cause a higher potential for indirect interactions in all scales evaluated. We found that nectar properties modified patterns of indirect interactions of plant individuals that share mutualistic partners, leaving imprints across different network scales. To our knowledge, this is the first study tracking indirect interactions in multiple scales within an individual-based network. We show that functional traits of interacting species, such as nectar properties, may lead to changes in indirect interactions, which could be tracked across different levels of the network organization evaluated.
Collapse
Affiliation(s)
- Caio S Ballarin
- Laboratório de Ecologia da Polinização e Interações, LEPI, Departamento de Biodiversidade e Bioestatística, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Rua Prof. Dr. Antonio Celso Wagner Zanin, Botucatu, São Paulo, CEP 18618-689, Brazil.
- Programa de Pós-Graduação em Biologia Vegetal, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, São Paulo, CEP 18618-689, Brazil.
| | - Jeferson Vizentin-Bugoni
- Programa de Pós-Graduação Em Biodiversidade Animal, Departamento de Ecologia, Zoologia e Genética, Universidade Federal de Pelotas, Campus Universitário, Capão do Leão, RS, CEP 96010-900, Brasil
| | - Leandro Hachuy-Filho
- Laboratório de Ecologia da Polinização e Interações, LEPI, Departamento de Biodiversidade e Bioestatística, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Rua Prof. Dr. Antonio Celso Wagner Zanin, Botucatu, São Paulo, CEP 18618-689, Brazil
- Programa de Pós-Graduação Em Zoologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, São Paulo, CEP 18618-689, Brazil
| | - Felipe W Amorim
- Laboratório de Ecologia da Polinização e Interações, LEPI, Departamento de Biodiversidade e Bioestatística, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Rua Prof. Dr. Antonio Celso Wagner Zanin, Botucatu, São Paulo, CEP 18618-689, Brazil
- Programa de Pós-Graduação em Biologia Vegetal, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, São Paulo, CEP 18618-689, Brazil
- Programa de Pós-Graduação Em Zoologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, São Paulo, CEP 18618-689, Brazil
| |
Collapse
|
2
|
Bimler MD, Mayfield MM. Ecology: Lifting the curtain on higher-order interactions. Curr Biol 2023; 33:R77-R79. [PMID: 36693315 DOI: 10.1016/j.cub.2022.11.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Higher-order interactions - the modification of interactions between a species pair by a third - remain poorly understood in nature. A new study manipulates pairwise and higher-order interactions in the field, offering exciting new insights into how higher-order interactions contribute to coexistence.
Collapse
Affiliation(s)
- Malyon D Bimler
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.
| | - Margaret M Mayfield
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Barbosa M, Fernandes GW, Morris RJ. Experimental evidence for a hidden network of higher-order interactions in a diverse arthropod community. Curr Biol 2023; 33:381-388.e4. [PMID: 36563693 DOI: 10.1016/j.cub.2022.11.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/25/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Transcending pairwise interactions in ecological networks remains a challenge.1,2,3,4,5 Higher-order interactions (HOIs), the modulation of a pairwise interaction by a third species,6 are thought to play a particularly important role in stabilizing coexistence and maintaining species diversity.7,8,9,10,11,12 However, HOIs have so far only been demonstrated in models9,10,11,12,13,14 or isolated experimental systems including only a few interacting species.7,8,15 Their ubiquity and importance at a community level in the real world remain unknown. We hypothesized that a complex network of HOIs could be constantly modifying pairwise interactions and shaping ecological communities and that consequently the outcome of pairwise interactions would be a product of many influences from distinct sources. Using field experiments, we tested how multiple interactions within a diverse arthropod community associated with the tropical shrub Baccharis dracunculifolia D.C. (Asteraceae) were modified by the removal of ant species or live or hatched insect galls (a non-trophic engineering effect) of the dominant galler species. We revealed an extensive hidden network of HOIs modifying each other and the "visible" pairwise interactions. Most pairwise interactions were affected indirectly by the manipulation of non-interacting taxonomic groups. The pervasiveness of these interaction modifications challenges pairwise approaches to understanding interaction outcomes and could shift our thinking about the structure and persistence of ecological communities. Investigating coexistence mechanisms involving interaction modulation by HOIs may be key to elucidating the underlying causes of the stability and persistence of ecological communities.
Collapse
Affiliation(s)
- Milton Barbosa
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK; Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, CP 486, 30161-970 Belo Horizonte, Brazil.
| | - Geraldo Wilson Fernandes
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, CP 486, 30161-970 Belo Horizonte, Brazil
| | - Rebecca Jane Morris
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK; School of Biological Sciences, University of Southampton, Highfield Campus, Life Sciences Building 85, Southampton SO17 1BJ, UK
| |
Collapse
|
4
|
Itching for an Answer: Gall-Forming Biological Control Agent Contains an Itch Mite Species Found at Localities Known for Periodic ‘Bite Outbreaks’. DIVERSITY 2023. [DOI: 10.3390/d15010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Biological control is an attractive option for controlling invasive plant species that are difficult to manage otherwise. However, the release of a non-native species as a biological control agent carries risks. The most obvious risk relates to impacts on plant species other than the plant species targeted for control. There are, however, also other risks. We report on a potential unintended impact of Dasineura dielsi, a gall-forming biological control agent that was released against Acacia cyclops in South Africa in 2003. We confirmed that the galls formed by D. dielsi on A. cyclops harbor mites in the genus Pyemotes (P. cf. ventricosus) within their gall structures, which are parasites of various insect species, but are also known to cause dermatitis in humans. Sporadic biting incidences have been reported in at least two locations in South Africa. The implications are that manual clearing of A. cyclops may expose humans to itch mites and to risks of bites. Gall-forming insects and fungi are known to create niches for herbivores and other gall-associated fauna. Although every possible food web interaction cannot be predicted, enough evidence exists to require that agent screening to include non-target risks other than those pertaining to non-host plants. Testing only whether agents are compromised by interactions with non-target plant species is not sufficient during agent evaluation. If such associations are known from the native range and therefore can form in the introduced range, then any known risk to health and socio-economic activities should be disclosed. We argue for the general development of objective assessment of such risks compared with the benefits potentially accruing from successful biological control of the target plant.
Collapse
|
5
|
Experimental manipulation of biotic and abiotic parameters changes the outcome of insect-plant interactions. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
O'Neill HM, Twiss SD, Stephens PA, Mason THE, Ryrholm N, Burman J. The importance of direct and indirect trophic interactions in determining the presence of a locally rare day-flying moth. Oecologia 2022; 198:531-542. [PMID: 34999944 PMCID: PMC8858923 DOI: 10.1007/s00442-021-05100-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 12/17/2021] [Indexed: 11/26/2022]
Abstract
Ecosystem engineers affect other organisms by creating, maintaining or modifying habitats, potentially supporting species of conservation concern. However, it is important to consider these interactions alongside non-engineering trophic pathways. We investigated the relative importance of trophic and non-trophic effects of an ecosystem engineer, red deer, on a locally rare moth, the transparent burnet (Zygaena purpuralis). This species requires specific microhabitat conditions, including the foodplant, thyme, and bare soil for egg-laying. The relative importance of grazing (i.e., trophic effect of modifying microhabitat) and trampling (i.e., non-trophic effect of exposing bare soil) by red deer on transparent burnet abundance is unknown. We tested for these effects using a novel method of placing pheromone-baited funnel traps in the field. Imago abundance throughout the flight season was related to plant composition, diversity and structure at various scales around each trap. Indirect effects of red deer activity were accounted for by testing red deer pellet and trail presence against imago abundance. Imago abundance was positively associated with thyme and plant diversity, whilst negatively associated with velvet grass and heather species cover. The presence of red deer pellets and trails were positively associated with imago abundance. The use of these sites by red deer aids the transparent burnet population via appropriate levels of grazing and the provision of a key habitat condition, bare soil, in the form of deer trails. This study shows that understanding how both trophic and non-trophic interactions affect the abundance of a species provides valuable insights regarding conservation objectives.
Collapse
Affiliation(s)
- Hagen M O'Neill
- Centre for Environmental Research Innovation and Sustainability, Institute of Technology Sligo, Ash Lane, Sligo, Ireland. O'
| | - Sean D Twiss
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Philip A Stephens
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Tom H E Mason
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
- Swiss Ornithological Institute, Seerose 1, CH-6204, Sempach, Switzerland
| | - Nils Ryrholm
- Department of Electronics, Mathematics and Natural Sciences, Faculty of Engineering and 44 Sustainable Development, University of Gävle, Gävle, Sweden
| | - Joseph Burman
- Ecology Research Group, Canterbury Christ Church University, Canterbury, Kent, England
| |
Collapse
|