1
|
Sguotti C, Vasilakopoulos P, Tzanatos E, Frelat R. Resilience assessment in complex natural systems. Proc Biol Sci 2024; 291:20240089. [PMID: 38807517 DOI: 10.1098/rspb.2024.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/09/2024] [Indexed: 05/30/2024] Open
Abstract
Ecological resilience is the capability of an ecosystem to maintain the same structure and function and avoid crossing catastrophic tipping points (i.e. undergoing irreversible regime shifts). While fundamental for management, concrete ways to estimate and interpret resilience in real ecosystems are still lacking. Here, we develop an empirical approach to estimate resilience based on the stochastic cusp model derived from catastrophe theory. The cusp model models tipping points derived from a cusp bifurcation. We extend cusp in order to identify the presence of stable and unstable states in complex natural systems. Our Cusp Resilience Assessment (CUSPRA) has three characteristics: (i) it provides estimates on how likely a system is to cross a tipping point (in the form of a cusp bifurcation) characterized by hysteresis, (ii) it assesses resilience in relation to multiple external drivers and (iii) it produces straightforward results for ecosystem-based management. We validate our approach using simulated data and demonstrate its application using empirical time series of an Atlantic cod population and marine ecosystems in the North Sea and the Mediterranean Sea. We show that Cusp Resilience Assessment is a powerful method to empirically estimate resilience in support of a sustainable management of our constantly adapting ecosystems under global climate change.
Collapse
Affiliation(s)
- Camilla Sguotti
- Department of Biology, University of Padova , Padova 35100, Italy
- Institute of Marine Ecosystems and Fishery Science (IMF), Center for Earth System Research and Sustainability (CEN), University of Hamburg , Hamburg 22767, Germany
| | | | | | - Romain Frelat
- PO Box 30709, International Livestock Research Institute , Nairobi 00100, Kenya
| |
Collapse
|
2
|
Papantoniou G, Zervoudaki S, Assimakopoulou G, Stoumboudi MT, Tsagarakis K. Ecosystem-level responses to multiple stressors using a time-dynamic food-web model: The case of a re-oligotrophicated coastal embayment (Saronikos Gulf, E Mediterranean). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:165882. [PMID: 37574071 DOI: 10.1016/j.scitotenv.2023.165882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/07/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023]
Abstract
Multiple stressors may combine in unexpected ways to alter the structure of ecological systems, however, our current ability to evaluate their ecological impact is limited due to the lack of information concerning historic trophic interactions and ecosystem dynamics. Saronikos Gulf is a heavily exploited embayment in the E Mediterranean that has undergone significant ecological alterations during the last 20 years including a shift from long-standing eutrophic to oligotrophic conditions in the mid-2000's. Here we used a historical Ecopath food-web model of Saronikos Gulf (1998-2000) and fitted the time-dynamic module Ecosim to biomass and catch time series for the period 2001-2020. We then projected the model forward in time from 2021 to 2050 under 8 scenarios to simulate ecosystem responses to the individual and combined effect of sea surface temperature increase, primary productivity shifts and fishing effort release. Incorporating trophic interactions, climate warming, fishing and primary production improved model fit, depicting that both fishing and the environment have historically influenced ecosystem dynamics. Retrospective simulations of the model captured historical biomass and catch trends of commercially important stocks and reproduced successfully the marked recovery of marine resources 10 years after re-oligotrophication. In future scenarios increasing temperature had a detrimental impact on most functional groups, increasing and decreasing productivity had a positive and negative effect on all respectively, while fishing reductions principally benefited top predators. Combined stressors produced synergistic or antagonistic effects depending on the direction and magnitude of change of each stressor in isolation while their overall impact seemed to be strongly mediated via food-web interactions. Such holistic approaches advance of our mechanistic understanding of ecosystems enabling us to develop more effective management strategies in the face of a rapidly changing marine environment.
Collapse
Affiliation(s)
- Georgia Papantoniou
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, 46.7 km Athinon-Souniou Ave, P.O. BOX 712, Anavyssos, GR19013, Greece.
| | - Soultana Zervoudaki
- Hellenic Centre for Marine Research, Institute of Oceanography, 46.7 km Athinon-Souniou Ave, P.O. BOX 712, Anavyssos, GR19013, Greece
| | - Georgia Assimakopoulou
- Hellenic Centre for Marine Research, Institute of Oceanography, 46.7 km Athinon-Souniou Ave, P.O. BOX 712, Anavyssos, GR19013, Greece
| | - Maria Th Stoumboudi
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, 46.7 km Athinon-Souniou Ave, P.O. BOX 712, Anavyssos, GR19013, Greece
| | - Konstantinos Tsagarakis
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, 46.7 km Athinon-Souniou Ave, P.O. BOX 712, Anavyssos, GR19013, Greece
| |
Collapse
|
3
|
Hidalgo M, Vasilakopoulos P, García-Ruiz C, Esteban A, López-López L, García-Gorriz E. Resilience dynamics and productivity-driven shifts in the marine communities of the Western Mediterranean Sea. J Anim Ecol 2021; 91:470-483. [PMID: 34873693 PMCID: PMC9300018 DOI: 10.1111/1365-2656.13648] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022]
Abstract
Ecological resilience has become a conceptual cornerstone bridging ecological processes to conservation needs. Global change is increasingly associated with local changes in environmental conditions that can cause abrupt ecosystem reorganizations attending to system‐specific resilience fluctuations with time (i.e. resilience dynamics). Here we assess resilience dynamics associated with climate‐driven ecosystems transitions, expressed as changes in the relevant contribution of species with different life‐history strategies, in two benthopelagic systems. We analysed data from 1994 to 2019 coming from a scientific bottom trawl survey in two environmentally contrasting ecosystems in the Western Mediterranean Sea—Northern Spain and Alboran Sea. Benthopelagic species were categorized according to their life‐history strategies (opportunistic, periodic and equilibrium), ecosystem functions and habitats. We implemented an Integrated Resilience Assessment (IRA) to elucidate the response mechanism of the studied ecosystems to several candidate environmental stressors and quantify the ecosystems’ resilience. We demonstrate that both ecosystems responded discontinuously to changes in chlorophyll‐a concentration more than any other stressor. The response in Northern Spain indicated a more overarching regime shift than in the Alboran Sea. Opportunistic fish were unfavoured in both ecosystems in the recent periods, while invertebrate species of short life cycle were generally favoured, particularly benthic species in the Alboran Sea. The study illustrates that the resilience dynamics of the two ecosystems were mostly associated with fluctuating productivity, but subtle and long‐term effects from sea warming and fishing reduction were also discernible. Such dynamics are typical of systems with wide environmental gradient such as the Northern Spain, as well as systems with highly hydrodynamic and of biogeographical complexity such as the Alboran Sea. We stress that management should become more adaptive by utilizing the knowledge on the systems’ productivity thresholds and underlying shifts to help anticipate both short‐term/less predictable events and long‐term/expected effects of climate change.
Collapse
Affiliation(s)
- Manuel Hidalgo
- Instituto Español de Oceanografía (IEO, CSIC), Centro Oceanográfico de Baleares (COB), Ecosystem Oceanography Group (GRECO), Palma, Balearic Islands, Spain
| | | | - Cristina García-Ruiz
- Instituto Español de Oceanografía (IEO, CSIC), Centro Oceanográfico de Málaga, Fuengirola, Málaga, Spain
| | - Antonio Esteban
- Instituto Español de Oceanografía (IEO, CSIC), Centro Oceanográfico de Murcia, San Pedro del Pinar, Murcia, Spain
| | - Lucía López-López
- Instituto Español de Oceanografía (IEO, CSIC), Centro Oceanográfico de Baleares (COB), Ecosystem Oceanography Group (GRECO), Palma, Balearic Islands, Spain
| | | |
Collapse
|
4
|
Damalas D, Sgardeli V, Vasilakopoulos P, Tserpes G, Maravelias C. Evidence of climate-driven regime shifts in the Aegean Sea's demersal resources: A study spanning six decades. Ecol Evol 2021; 11:16951-16971. [PMID: 34938484 PMCID: PMC8668738 DOI: 10.1002/ece3.8330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/03/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
Climate change (CC) can alter the configuration of marine ecosystems; however, ecosystem response and resilience to change are usually case-specific. The effect of CC on the demersal resources of the Aegean Sea (east Mediterranean Sea) was investigated during the past six decades applying a combination of multivariate analysis, non-additive modeling and the Integrated Resilience Assessment (IRA) framework. We focused on the study of: (i) the biological "system" complex, using proxies of biomass (landings per unit of capacity) for 12 demersal taxa, and (ii) the environmental "stressor" complex, described by 12 abiotic variables. Pronounced changes have occurred in both the environmental and biological system over the studied period. The majority of the environmental stressors exhibited strikingly increasing trends (temperature, salinity, primary production indices) with values started exceeding the global historical means during late 1980s-early 1990s. It is suggested that the biological system exhibited a discontinuous response to CC, with two apparently climate-induced regime shifts occurring in the past 25 years. There is evidence for two-fold bifurcations and four tipping points in the system, forming a folded stability landscape with three basins of attraction. The shape of the stability landscape for the Aegean Sea's biological system suggests that while the initial state (1966-1991) was rather resilient to CC, absorbing two environmental step-changes, this was not the case for the two subsequent ones (intermediate: 1992-2002; recent: 2003-2016). Given the current trajectory of environmental change, it is highly unlikely that the biological system will ever return to its pre-1990s state, as it is entering areas of unprecedented climatic conditions and there is some evidence that the system may be even shifting toward a new state. Our approach and findings may be relevant to other marine areas of the Mediterranean and beyond, undergoing climate-driven regime shifts, and can assist to their adaptive management.
Collapse
Affiliation(s)
- Dimitrios Damalas
- Hellenic Centre for Marine ResearchInstitute of Marine Biological Resources and Inland WatersHeraklionGreece
| | - Vasiliki Sgardeli
- Hellenic Centre for Marine ResearchInstitute of Marine Biological Resources and Inland WatersHeraklionGreece
| | | | - Georgios Tserpes
- Hellenic Centre for Marine ResearchInstitute of Marine Biological Resources and Inland WatersHeraklionGreece
| | - Christos Maravelias
- Department of Ichthyology and Aquatic EnvironmentUniversity of ThessalyVolosGreece
| |
Collapse
|
5
|
Ma S, Liu D, Tian Y, Fu C, Li J, Ju P, Sun P, Ye Z, Liu Y, Watanabe Y. Critical transitions and ecological resilience of large marine ecosystems in the Northwestern Pacific in response to global warming. GLOBAL CHANGE BIOLOGY 2021; 27:5310-5328. [PMID: 34309964 DOI: 10.1111/gcb.15815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 07/04/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Natural systems can undergo critical transitions, leading to substantial socioeconomic and ecological outcomes. "Ecological resilience" has been proposed to describe the capacity of natural systems to absorb external perturbation and reorganize while undergoing change so as to still retain essentially the same function, structure, identity, and feedbacks. However, the mere application of ecological resilience in theoretical research and the lack of quantitative approaches present considerable obstacles for predicting critical transitions and understanding their mechanisms. Large marine ecosystems (LMEs) in the Northwestern Pacific are characterized by great biodiversity and productivity, as well as remarkable warming in recent decades. However, no information is available on the critical transitions and ecological resilience of LMEs in response to warming. Therefore, we applied an integrated resilience assessment framework to fisheries catch data from seven LMEs covering a wide range of regions, from tropical to subarctic, in the Northwestern Pacific to identify critical transitions, assess ecological resilience, and reconstruct folded stability landscapes, with a specific focus on the effects of warming. The results provide evidence of the occurrence of critical transitions, with fold bifurcation and hysteresis in response to increasing sea surface temperatures (SSTs) in the seven LMEs. In addition, these LMEs show similarities and synchronies in structure variations and critical transitions forced by warming. Both dramatic increases in SST and small fluctuations at the corresponding thresholds may trigger critical transitions. Ecological resilience decreases when approaching the tipping points and is repainted as the LMEs shift to alternative stable states with different resilient dynamics. Folded stability landscapes indicate that the responses of LMEs to warming are discontinuous, which may be caused by the reorganization of LMEs as their sensitivity to warming changes. Our study clarifies the nonlinear responses of LMEs to anthropogenic warming and provides examples of quantifying ecological resilience in empirical systems at unprecedented spatial and temporal scales.
Collapse
Affiliation(s)
- Shuyang Ma
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Dan Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yongjun Tian
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Caihong Fu
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, Canada
| | - Jianchao Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Peilong Ju
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Peng Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Zhenjiang Ye
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yang Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Yoshiro Watanabe
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Atmosphere and Ocean Research Institute, University of Tokyo, Chiba, Japan
| |
Collapse
|