1
|
Wang L, Xing S, Chang X, Ma L, Wenda C. Cropland Microclimate and Leaf-nesting Behavior Shape the Growth of Caterpillar under Future Warming. Integr Comp Biol 2024; 64:932-943. [PMID: 38755000 DOI: 10.1093/icb/icae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
Predicting performance responses of insects to climate change is crucial for biodiversity conservation and pest management. While most projections on insects' performance under climate change have used macro-scale weather station data, few incorporated the microclimates within vegetation that insects inhabit and their feeding behaviors (e.g., leaf-nesting: building leaf nests or feeding inside). Here, taking advantage of relatively homogenous vegetation structures in agricultural fields, we built microclimate models to examine fine-scale air temperatures within two important crop systems (maize and rice) and compared microclimate air temperatures to temperatures from weather stations. We deployed physical models of caterpillars and quantified effects of leaf-nesting behavior on operative temperatures of two Lepidoptera pests: Ostrinia furnacalis (Pyralidae) and Cnaphalocrocis medinalis (Crambidae). We built temperature-growth rate curves and predicted the growth rate of caterpillars with and without leaf-nesting behavior based on downscaled microclimate changes under different climate change scenarios. We identified widespread differences between microclimates in our crop systems and air temperatures reported by local weather stations. Leaf-nesting individuals in general had much lower body temperatures compared to non-leaf-nesting individuals. When considering microclimates, we predicted leaf-nesting individuals grow slower compared to non-leaf-nesting individuals with rising temperature. Our findings highlight the importance of considering microclimate and habitat-modifying behavior in predicting performance responses to climate change. Understanding the thermal biology of pests and other insects would allow us to make more accurate projections on crop yields and biodiversity responses to environmental changes.
Collapse
Affiliation(s)
- Ling Wang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Shuang Xing
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xinyue Chang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Liang Ma
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Cheng Wenda
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
2
|
Riddell EA, Burger IJ, Tyner-Swanson TL, Biggerstaff J, Muñoz MM, Levy O, Porter CK. Parameterizing mechanistic niche models in biophysical ecology: a review of empirical approaches. J Exp Biol 2023; 226:jeb245543. [PMID: 37955347 DOI: 10.1242/jeb.245543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Mechanistic niche models are computational tools developed using biophysical principles to address grand challenges in ecology and evolution, such as the mechanisms that shape the fundamental niche and the adaptive significance of traits. Here, we review the empirical basis of mechanistic niche models in biophysical ecology, which are used to answer a broad array of questions in ecology, evolution and global change biology. We describe the experiments and observations that are frequently used to parameterize these models and how these empirical data are then incorporated into mechanistic niche models to predict performance, growth, survival and reproduction. We focus on the physiological, behavioral and morphological traits that are frequently measured and then integrated into these models. We also review the empirical approaches used to incorporate evolutionary processes, phenotypic plasticity and biotic interactions. We discuss the importance of validation experiments and observations in verifying underlying assumptions and complex processes. Despite the reliance of mechanistic niche models on biophysical theory, empirical data have and will continue to play an essential role in their development and implementation.
Collapse
Affiliation(s)
- Eric A Riddell
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Isabella J Burger
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tamara L Tyner-Swanson
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Justin Biggerstaff
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Ofir Levy
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Cody K Porter
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
3
|
Ashe‐Jepson E, Arizala Cobo S, Basset Y, Bladon AJ, Kleckova I, Laird‐Hopkins BC, Mcfarlane A, Sam K, Savage AF, Zamora AC, Turner EC, Lamarre GPA. Tropical butterflies use thermal buffering and thermal tolerance as alternative strategies to cope with temperature increase. J Anim Ecol 2023; 92:1759-1770. [PMID: 37438871 PMCID: PMC10953451 DOI: 10.1111/1365-2656.13970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/23/2023] [Indexed: 07/14/2023]
Abstract
Climate change poses a severe threat to many taxa, with increased mean temperatures and frequency of extreme weather events predicted. Insects can respond to high temperatures using behaviour, such as angling their wings away from the sun or seeking cool local microclimates to thermoregulate or through physiological tolerance. In a butterfly community in Panama, we compared the ability of adult butterflies from 54 species to control their body temperature across a range of air temperatures (thermal buffering ability), as well as assessing the critical thermal maxima for a subset of 24 species. Thermal buffering ability and tolerance were influenced by family, wing length, and wing colour, with Pieridae, and butterflies that are large or darker in colour having the strongest thermal buffering ability, but Hesperiidae, small, and darker butterflies tolerating the highest temperatures. We identified an interaction between thermal buffering ability and physiological tolerance, where species with stronger thermal buffering abilities had lower thermal tolerance, and vice versa. This interaction implies that species with more stable body temperatures in the field may be more vulnerable to increases in ambient temperatures, for example heat waves associated with ongoing climate change. Our study demonstrates that tropical species employ diverse thermoregulatory strategies, which is also reflected in their sensitivity to temperature extremes.
Collapse
Affiliation(s)
| | | | - Yves Basset
- ForestGEOSmithsonian Tropical Research InstitutePanamaRepublic of Panama
- Biology Centre of the Czech Academy of SciencesInstitute of EntomologyČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- Maestria de EntomologiaUniversity of PanamaPanamaRepublic of Panama
| | | | - Irena Kleckova
- Biology Centre of the Czech Academy of SciencesInstitute of EntomologyČeské BudějoviceCzech Republic
| | - Benita C. Laird‐Hopkins
- Biology Centre of the Czech Academy of SciencesInstitute of EntomologyČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- Smithsonian Tropical Research InstitutePanamaRepublic of Panama
| | - Alex Mcfarlane
- ForestGEOSmithsonian Tropical Research InstitutePanamaRepublic of Panama
| | - Katerina Sam
- Biology Centre of the Czech Academy of SciencesInstitute of EntomologyČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Amanda F. Savage
- ForestGEOSmithsonian Tropical Research InstitutePanamaRepublic of Panama
| | - Ana Cecilia Zamora
- ForestGEOSmithsonian Tropical Research InstitutePanamaRepublic of Panama
| | | | - Greg P. A. Lamarre
- ForestGEOSmithsonian Tropical Research InstitutePanamaRepublic of Panama
- Biology Centre of the Czech Academy of SciencesInstitute of EntomologyČeské BudějoviceCzech Republic
| |
Collapse
|
4
|
Wenda C, Gaitán-Espitia JD, Solano-Iguaran JJ, Nakamura A, Majcher BM, Ashton LA. Heat tolerance variation reveals vulnerability of tropical herbivore-parasitoid interactions to climate change. Ecol Lett 2023; 26:278-290. [PMID: 36468222 DOI: 10.1111/ele.14150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/24/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Assessing the heat tolerance (CTmax) of organisms is central to understand the impact of climate change on biodiversity. While both environment and evolutionary history affect CTmax, it remains unclear how these factors and their interplay influence ecological interactions, communities and ecosystems under climate change. We collected and reared caterpillars and parasitoids from canopy and ground layers in different seasons in a tropical rainforest. We tested the CTmax and Thermal Safety Margins (TSM) of these food webs with implications for how species interactions could shift under climate change. We identified strong influence of phylogeny in herbivore-parasitoid community heat tolerance. The TSM of all insects were narrower in the canopy and parasitoids had lower heat tolerance compared to their hosts. Our CTmax-based simulation showed higher herbivore-parasitoid food web instability under climate change than previously assumed, highlighting the vulnerability of parasitoids and related herbivore control in tropical rainforests, particularly in the forest canopy.
Collapse
Affiliation(s)
- Cheng Wenda
- School of Ecology, Sun Yat-Sen University, Shenzhen, China.,State Key Laboratory of Biological Control, Sun Yat-sen University, Guangzhou, China
| | - Juan Diego Gaitán-Espitia
- SWIRE Institute of Marine Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Jaiber J Solano-Iguaran
- Departamento de Salud Hidrobiológica, División de Investigación en Acuicultura, Instituto de Fomento Pesquero, Puerto Montt, Chile
| | - Akihiro Nakamura
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Bartosz M Majcher
- Ecology and Biodiversity Area, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Louise A Ashton
- Ecology and Biodiversity Area, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Wenda C, Xing S, Nakamura A, Bonebrake TC. Morphological and behavioural differences facilitate tropical butterfly persistence in variable environments. J Anim Ecol 2021; 90:2888-2900. [PMID: 34529271 DOI: 10.1111/1365-2656.13589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 08/30/2021] [Indexed: 01/27/2023]
Abstract
The thermal biology of ectotherms largely determines their abundance and distributions. In general, tropical species inhabiting warm and stable thermal environments tend to have low tolerance to cold and variable environments, which may restrict their expansion into temperate climates. However, the distribution of some tropical species does extend into cooler areas such as tropical borders and high elevation tropical mountains. Behavioural and morphological differences may therefore play important roles in facilitating tropical species to cope with cold and variable climates at tropical edges. We used field-validated biophysical models to estimate body temperatures of butterflies across elevational gradients at three sites in southern China and assessed the contribution of behavioural and morphological differences in facilitating their persistence in tropical and temperate climates. We investigated the effects of temperature on the activity of 4,844 individuals of 144 butterfly species along thermal gradients and tested whether species of different climatic affinities-tropical and widespread (distributed in both temperate and tropical regions)-differed in their thermoregulatory strategies (i.e. basking). In addition, we tested whether thermally related morphology or the strength of solar radiation (when butterflies were recorded) was related to such differences. We found that activities of tropical species were restricted (low abundance) at low air temperatures compared to widespread species. Active tropical species were also more likely to bask at cooler body temperatures than widespread species. Heat gain from behavioural thermoregulation was higher for tropical species (when accounting for species abundance), and heat gain correlated with larger thorax widths but not with measured solar radiation. Our results indicate that physiological intolerance to cold temperatures in tropical species may be compensated through behavioural and morphological responses in thermoregulation in variable subtropical environments. Increasing climatic variability with climate change may render tropical species more vulnerable to cold weather extremes compared to widespread species that are more physiologically suited to variable environments.
Collapse
Affiliation(s)
- Cheng Wenda
- Division for Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong S.A.R, China
| | - Shuang Xing
- Division for Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong S.A.R, China.,Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| | - Akihiro Nakamura
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Timothy C Bonebrake
- Division for Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong S.A.R, China
| |
Collapse
|