1
|
Darish JR, Kaganer AW, Hanley BJ, Schuler KL, Schwabenlander MD, Wolf TM, Ahmed MS, Rowden GR, Larsen PA, Kobashigawa E, Tewari D, Lichtenberg S, Pedersen JA, Zhang S, Sreevatsan S. Inter-laboratory comparison of real-time quaking-induced conversion (RT-QuIC) for the detection of chronic wasting disease prions in white-tailed deer retropharyngeal lymph nodes. J Vet Diagn Invest 2024:10406387241285165. [PMID: 39397658 DOI: 10.1177/10406387241285165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
The rapid geographic spread of chronic wasting disease (CWD) in white-tailed deer (WTD; Odocoileus virginianus) increases the need for the development and validation of new detection tests. Real-time quaking-induced conversion (RT-QuIC) has emerged as a sensitive tool for CWD prion detection, but federal approval in the United States has been challenged by practical constraints on validation and uncertainty surrounding RT-QuIC robustness between laboratories. To evaluate the effect of inter-laboratory variation on CWD prion detection using RT-QuIC, we conducted a multi-institution comparison on a shared anonymized sample set. We hypothesized that RT-QuIC can accurately and reliably detect the prions that cause CWD in postmortem samples from medial retropharyngeal lymph node (RPLN) tissue despite variation in laboratory protocols. Laboratories from 6 U.S. states (Michigan, Minnesota, Missouri, New York, Pennsylvania, Wisconsin) were enlisted to compare the use of RT-QuIC in determining CWD prion status (positive or negative) among 50 anonymized RPLNs of known prion status. Our sample set included animals of 3 codon 96 WTD genotypes known to affect CWD progression and detection (G96G, G96S, S96S). All 6 laboratories successfully identified the true disease status consistently for all 3 tested codon 96 genotypes. Our results indicate that RT-QuIC is a suitable test for the detection of CWD prions in RPLN tissues in several genotypes of WTD.
Collapse
Affiliation(s)
- Joseph R Darish
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Alyssa W Kaganer
- New York State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Brenda J Hanley
- New York State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Krysten L Schuler
- New York State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Marc D Schwabenlander
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Tiffany M Wolf
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Md Sohel Ahmed
- New York State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Gage R Rowden
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Peter A Larsen
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Estela Kobashigawa
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Deepanker Tewari
- Pennsylvania Veterinary Laboratory, Pennsylvania Animal Diagnostic Laboratory System, Harrisburg, PA, USA
| | - Stuart Lichtenberg
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
- Department of Soil Science, University of Wisconsin, Madison, WI, USA
| | - Joel A Pedersen
- Department of Soil Science, University of Wisconsin, Madison, WI, USA
| | - Shuping Zhang
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Srinand Sreevatsan
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
2
|
Baron JN, Mysterud A, Hopp P, Rosendal T, Frössling J, Benestad SL, Våge J, Nöremark M, Viljugrein H. Assessing freedom from chronic wasting disease in semi-domesticated reindeer in Norway and Sweden. Prev Vet Med 2024; 229:106242. [PMID: 38924869 DOI: 10.1016/j.prevetmed.2024.106242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024]
Abstract
Establishing freedom from disease is a key component of surveillance and may have direct consequences for trade and economy. Transboundary populations pose challenges in terms of variable legislation, efforts, and data availability between countries, often limiting surveillance efficiency. Chronic wasting disease (CWD) is a contagious prion disease of cervids. The long incubation period and slow initial epidemic growth make it notoriously difficult to detect CWD in the early phase of an epidemic. The recent emergence of CWD in wild reindeer in Norway poses a threat to approximately 250,000 semi-domesticated reindeer in Norway and 250,000 in Sweden, including transboundary populations. Here, we provide a first analysis of surveillance data (2016-2022) from all reindeer districts in Norway and Sweden to determine the probability of freedom from CWD infection. During the six years, 6017 semi-domesticated reindeer were tested in Sweden and 51,974 in Norway. Most samples came from healthy slaughtered animals (low risk). Reindeer use large and remote areas and (high risk) samples from fallen stock and animals with clinical signs were difficult to obtain. A scenario tree model was run for seven different set of values for the input parameters (design prevalence within and between districts, probability of introduction, and relative risks) to determine the effect on surveillance sensitivity. At the national level, the mean probability of disease freedom was 59.0 % in Sweden and 87.0 % in Norway by 2021. The most marked effect on sensitivity was varying the design prevalence both within and between districts. Uncertainty about relative risk ratios affected sensitivity for Sweden more than for Norway, due to the higher proportion of animals in the high-risk group in the former (13.8 % vs. 2.1 %, respectively). A probability of disease freedom of 90 % or higher was reached in 8.2 % of the 49 districts in Sweden and 43.5 % of the 46 districts in Norway for a design prevalence of 0.5 %. The probability of freedom remained below 60 % in 29 districts (59.2 %) in Sweden and 10 districts (21.7 %) in Norway. At the national level, only Norway had a sufficiently large number of samples to reach a probability of more than 95 % of disease freedom within a period of 10 years. Our cross-border assessment forms an important knowledge base for designing future surveillance efforts depending on the spatial pattern of prevalence of CWD and risk of spread.
Collapse
Affiliation(s)
- Jerome N Baron
- Department of Epidemiology, Surveillance and Risk Assessment, Swedish Veterinary Agency (SVA), Uppsala SE-751 89, Sweden
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, Oslo NO-0316, Norway; Norwegian Institute for Nature Research, Trondheim NO-7485, Norway
| | - Petter Hopp
- Norwegian Veterinary Institute (NVI), P.O. Box 64, Ås NO-1431, Norway
| | - Thomas Rosendal
- Department of Epidemiology, Surveillance and Risk Assessment, Swedish Veterinary Agency (SVA), Uppsala SE-751 89, Sweden
| | - Jenny Frössling
- Department of Epidemiology, Surveillance and Risk Assessment, Swedish Veterinary Agency (SVA), Uppsala SE-751 89, Sweden; Department of Animal Environment and Health, Swedish University of Agricultural Sciences, PO Box 234, Skara SE-532 23, Sweden
| | - Sylvie L Benestad
- Norwegian Veterinary Institute (NVI), P.O. Box 64, Ås NO-1431, Norway
| | - Jørn Våge
- Norwegian Veterinary Institute (NVI), P.O. Box 64, Ås NO-1431, Norway
| | - Maria Nöremark
- Department of Epidemiology, Surveillance and Risk Assessment, Swedish Veterinary Agency (SVA), Uppsala SE-751 89, Sweden.
| | | |
Collapse
|
3
|
Forrest MJ, Halstead BJ, Grear DA, Kleeman PM, Todd BD, Miano OJ, Urquhart KD. KEEPING THE HEAT ON: WEIGHTED SURVEILLANCE FOR CHYTRID FUNGUS (BATRACHOCHYTRIUM DENDROBATIDIS) IN DIXIE VALLEY TOADS (ANAXYRUS [= BUFO] WILLIAMSI). J Wildl Dis 2023; 59:557-568. [PMID: 37486870 DOI: 10.7589/jwd-d-22-00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 03/09/2023] [Indexed: 07/26/2023]
Abstract
Introduced fungal pathogens have caused declines and extinctions of naïve wildlife populations across vertebrate classes. Consequences of introduced pathogens to hosts with small ranges might be especially severe because of limited redundancy to rescue populations and lower abundance that may limit the resilience of populations to perturbations like disease introduction. As a complement to biosecurity measures to prevent the spread of pathogens, surveillance programs may enable early detection of pathogens, when management actions to limit the effects of pathogens on naïve hosts might be most beneficial. We analyzed surveillance data for the endangered and narrowly endemic Dixie Valley toad (Anaxyrus [= Bufo] williamsi) from two time periods (2011-2014 and 2019-2021) to estimate the minimum detectable prevalence of the amphibian fungal pathogen Batrachochytrium dendrobatidis (Bd). We assessed if detection efficiency could be improved by using samples from both Dixie Valley toads and co-occurring introduced American bullfrogs (Lithobates catesbeianus) and literature-derived surveillance weights. We further evaluated a weighted surveillance design to increase the efficiency of surveillance efforts for Bd within the toad's small (<6 km2) range. We found that monitoring adult and larval American bullfrogs would probably detect Bd more efficiently than monitoring Dixie Valley toads alone. Given that no Bd was detected, minimum detectable prevalence of Bd was <3% in 2011-2014, and <5% (Dixie Valley toads only) and <10% (American bullfrogs only) in 2019-2021. Optimal management for Bd depends on the mechanisms underlying its apparent absence from the range of Dixie Valley toads, but a balanced surveillance scheme that includes sampling American bullfrogs to increase the likelihood of detecting Bd, and adult Dixie Valley toads to ensure broad spatial coverage where American bullfrogs do not occur, would probably result in efficient surveillance, which might permit timely management of Bd if it is detected.
Collapse
Affiliation(s)
- Matthew J Forrest
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
- Co-primary authors
| | - Brian J Halstead
- US Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, California 95620, USA
- Co-primary authors
| | - Daniel A Grear
- US Geological Survey, National Wildlife Health Center, 6006 Schroeder Road, Madison, Wisconsin 53711, USA
| | - Patrick M Kleeman
- US Geological Survey, Western Ecological Research Center, Point Reyes Field Station, 1 Bear Valley Road, Point Reyes Station, California 94956, USA
| | - Brian D Todd
- Department of Wildlife, Fish, and Conservation Biology, University of California-Davis, One Shields Avenue, Davis, California 95616, USA
| | - Oliver J Miano
- Department of Wildlife, Fish, and Conservation Biology, University of California-Davis, One Shields Avenue, Davis, California 95616, USA
| | - Kris D Urquhart
- Nevada Department of Wildlife, 380 West B Street, Fallon, Nevada 89406, USA
| |
Collapse
|
4
|
Koutsoumanis K, Allende A, Alvarez‐Ordoñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Skandamis P, Suffredini E, Miller MW, Mysterud A, Nöremark M, Simmons M, Tranulis MA, Vaccari G, Viljugrein H, Ortiz‐Pelaez A, Ru G. Monitoring of chronic wasting disease (CWD) (IV). EFSA J 2023; 21:e07936. [PMID: 37077299 PMCID: PMC10107390 DOI: 10.2903/j.efsa.2023.7936] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
The European Commission requested an analysis of the Chronic Wasting Disease (CWD) monitoring programme in Norway, Sweden, Finland, Iceland, Estonia, Latvia, Lithuania and Poland (9 January 2017-28 February 2022). Thirteen cases were detected in reindeer, 15 in moose and 3 in red deer. They showed two phenotypes, distinguished by the presence or absence of detectable disease-associated normal cellular prion protein (PrP) in lymphoreticular tissues. CWD was detected for the first time in Finland, Sweden and in other areas of Norway. In countries where the disease was not detected, the evidence was insufficient to rule out its presence altogether. Where cases were detected, the prevalence was below 1%. The data also suggest that the high-risk target groups for surveillance should be revised, and 'road kill' removed. Data show that, in addition to differences in age and sex, there are differences in the prion protein gene (PRNP) genotypes between positive and negative wild reindeer. A stepwise framework has been proposed with expanded minimum background surveillance to be implemented in European countries with relevant cervid species. Additional surveillance may include ad hoc surveys for four different objectives, specific to countries with/without cases, focusing on parallel testing of obex and lymph nodes from adult cervids in high-risk target groups, sustained over time, using sampling units and a data-driven design prevalence. Criteria for assessing the probability of CWD presence have been outlined, based on the definition of the geographical area, an annual assessment of risk of introduction, sustained minimum background surveillance, training and engagement of stakeholders and a surveillance programme based on data-driven parameters. All positive cases should be genotyped. Sample sizes for negative samples have been proposed to detect and estimate the frequency of PRNP polymorphisms. Double-strand sequencing of the entire PRNP open reading frame should be undertaken for all selected samples, with data collated in a centralised collection system at EU level.
Collapse
|
5
|
Thompson NE, Huang MHJ, Christensen SA, Demarais S. Wildlife agency responses to chronic wasting disease in free‐ranging cervids. WILDLIFE SOC B 2023. [DOI: 10.1002/wsb.1435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
6
|
Cook JD, Williams DM, Porter WF, Christensen SA. Improved predictions and forecasts of chronic wasting disease occurrence using multiple mechanism dynamic occupancy modeling. J Wildl Manage 2022. [DOI: 10.1002/jwmg.22296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jonathan D. Cook
- Michigan State University 480 Wilson Road East Lansing MI 48823 USA
| | | | | | | |
Collapse
|
7
|
Assessment of Real-Time Quaking-Induced Conversion (RT-QuIC) Assay, Immunohistochemistry and ELISA for Detection of Chronic Wasting Disease under Field Conditions in White-Tailed Deer: A Bayesian Approach. Pathogens 2022; 11:pathogens11050489. [PMID: 35631010 PMCID: PMC9144059 DOI: 10.3390/pathogens11050489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic wasting disease (CWD) is a transmissible prion disease of the cervidae family. ELISA and IHC tests performed postmortem on the medial retropharyngeal lymph nodes (RPLN) or obex are considered diagnostic gold standards for prion detection. However, differences in CWD transmission, stage of infection, pathogenesis, and strain can limit performance. To overcome these uncertainties, we used Bayesian statistics to assess the accuracy of RT-QuIC, an increasingly used prion amplification assay, to diagnose CWD on tonsil (TLN), parotid (PLN) and submandibular lymph nodes (SMLN), and ELISA/IHC on RPLN of white-tailed deer (WTD) sampled from Minnesota. Dichotomous RT-QuIC and ELISA/IHC results from wild (n = 61) and captive (n = 46) WTD were analyzed with two-dependent-test, one-population models. RT-QuIC performed on TLN and SMLN of the wild WTD population had similar sensitivity (median range (MR): 92.2–95.1) to ELISA/IHC on RPLN (MR: 91.1–92.3). Slightly lower (4–7%) sensitivity estimates were obtained from farmed animal and PLN models. RT-QuIC specificity estimates were high (MR: 94.5–98.5%) and similar to ELISA/IHC estimates (MR: 95.7–97.6%) in all models. This study offers new insights on RT-QuIC and ELISA/IHC performance at the population level and under field conditions, an important step in CWD diagnosis and management.
Collapse
|
8
|
Smolko P, Seidel D, Pybus M, Hubbs A, Ball M, Merrill E. Spatio-temporal changes in chronic wasting disease risk in wild deer during 14 years of surveillance in Alberta, Canada. Prev Vet Med 2021; 197:105512. [PMID: 34740023 DOI: 10.1016/j.prevetmed.2021.105512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/18/2022]
Abstract
Disease risk modeling is a key first step to understand the spatio-temporal dynamics of wildlife disease and to direct cost-effective surveillance and management. In Alberta, active surveillance for chronic wasting disease (CWD) in wild cervids began in 1998 with the first case detected in free-ranging cervids in 2005. Following the detection, a herd reduction program was implemented during 2005-2008 and in 2006 the ongoing hunter-based CWD Surveillance Program became mandatory in high-risk Wildlife Management Units (WMU). We used data collected during the CWD surveillance program to 1) document growth in sex-specific CWD prevalence (proportion of deer in sample that is CWD-positive) in hunter-harvest deer in 6 WMUs consistently monitored from 2006 to 2018, 2) document landscape features associated with where CWD-positive compared to CWD-negative deer were removed during hunter harvest and herd reduction in an early (2005-2012) and in a late period (2013-2017), and 3) to map the spatial risk of harvesting a deer infected with CWD in the prairie parklands of Alberta. In the 6 continuously monitored WMUs, risk of a harvested deer being CWD positive increased from 2006 to 2018 with CWD prevalence remaining highest in male mule deer whereas overall growth rate in CWD prevalence was greater in female mule deer, but similar to male white-tailed deer. We found no evidence that the 3-year herd reduction program conducted immediately after CWD was first detected affected the rate at which CWD grew over the course of the invasion. Risk of deer being CWD-positive was the highest in animals taken near small stream drainages and on soils with low organic carbon content in the early period, whereas risk became highest in areas of agriculture especially when far from large river drainages where deer often concentrate in isolated woody patches. The change in the influence of proximity to known CWD-positive cases suggested the disease was initially patchy but became more spatially homogeneous over time. Our results indicate that a targeted-removal program will remove more CWD positive animals compared to hunter harvest. However, the discontinuation of targeted removals during our research program, restricted our ability to assess its long term impact on CWD prevalence.
Collapse
Affiliation(s)
- Peter Smolko
- University of Alberta, Department of Biological Sciences, Edmonton, AB T6G 2E9, Canada; Technical University in Zvolen, Department of Applied Zoology and Wildlife Management, 960 01, Zvolen, Slovakia
| | - Dana Seidel
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, CA, USA
| | - Margo Pybus
- University of Alberta, Department of Biological Sciences, Edmonton, AB T6G 2E9, Canada; Alberta Fish and Wildlife Division, Government of Alberta, Edmonton, AB T6H 4P2, Canada
| | - Anne Hubbs
- Alberta Fish and Wildlife Division, Government of Alberta, Edmonton, AB T6H 4P2, Canada
| | - Mark Ball
- Alberta Fish and Wildlife Division, Government of Alberta, Edmonton, AB T6H 4P2, Canada
| | - Evelyn Merrill
- University of Alberta, Department of Biological Sciences, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
9
|
Viljugrein H, Hopp P, Benestad SL, Våge J, Mysterud A. Risk-based surveillance of chronic wasting disease in semi-domestic reindeer. Prev Vet Med 2021; 196:105497. [PMID: 34564054 DOI: 10.1016/j.prevetmed.2021.105497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/27/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Reindeer pastoralism is a widespread practise across Fennoscandia and Russia. An outbreak of chronic wasting disease (CWD) among wild reindeer (Rangifer tarandus) poses a severe threat to the semi-domestic reindeer herding culture. Establishing surveillance is therefore key, but current models for surveillance of CWD are designed for wild cervids and rely on samples obtained from recreational hunters. Targeting animal groups with a higher infection probability is often used for more efficient disease surveillance. CWD has a long incubation period of 2-3 years, and the animals show clinical signs in the later stages of the infection i.e. 1-4 months prior to death. The semi-domestic reindeer are free-ranging most of the year, but during slaughtering in late fall, herders stress the animals in penned areas. This allows removal of animals with deviant behaviour or physical appearance, and such removals are likely to include animals in the clinical stages of CWD if the population is infected. In Norway, the semi-domestic reindeer in Filefjell is adjacent to a previously CWD infected wild population. We developed a risk-based surveillance method for this semi-domestic setting to establish the probability of freedom from infection over time, or enable early disease detection and mitigation. The surveillance scheme with a scenario tree using three risk categories (sample category, demographic group, and deviations in behaviour or physical appearance) was more effective and less invasive as compared to the surveillance method developed for wild reindeer. We also simulated how variation in susceptibility, incubation period and time for onset of clinical signs (linked to variation in the prion protein gene, PRNP) would potentially affect surveillance. Surveillance for CWD was mandatory within EU-member states with reindeer (2018-2020). The diversity of management systems and epidemiological settings will require the development of a set of surveillance systems suitable for each different context. Our surveillance model is designed for a population with a high risk of CWD introduction requiring massive sampling, while at the same time aiming to limit adverse effects to the populations in areas of surveillance.
Collapse
Affiliation(s)
- Hildegunn Viljugrein
- Norwegian Veterinary Institute, P.O. Box 64, NO-1431, Ås, Norway; Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, NO-0316, Oslo, Norway.
| | - Petter Hopp
- Norwegian Veterinary Institute, P.O. Box 64, NO-1431, Ås, Norway
| | | | - Jørn Våge
- Norwegian Veterinary Institute, P.O. Box 64, NO-1431, Ås, Norway
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, NO-0316, Oslo, Norway; Norwegian Institute for Nature Research (NINA), P. O. Box 5685, Sluppen, NO-7485, Trondheim, Norway
| |
Collapse
|
10
|
Winter SN, Kirchgessner MS, Frimpong EA, Escobar LE. A Landscape Epidemiological Approach for Predicting Chronic Wasting Disease: A Case Study in Virginia, US. Front Vet Sci 2021; 8:698767. [PMID: 34504887 PMCID: PMC8421794 DOI: 10.3389/fvets.2021.698767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
Many infectious diseases in wildlife occur under quantifiable landscape ecological patterns useful in facilitating epidemiological surveillance and management, though little is known about prion diseases. Chronic wasting disease (CWD), a fatal prion disease of the deer family Cervidae, currently affects white-tailed deer (Odocoileus virginianus) populations in the Mid-Atlantic United States (US) and challenges wildlife veterinarians and disease ecologists from its unclear mechanisms and associations within landscapes, particularly in early phases of an outbreak when CWD detections are sparse. We aimed to provide guidance for wildlife disease management by identifying the extent to which CWD-positive cases can be reliably predicted from landscape conditions. Using the CWD outbreak in Virginia, US from 2009 to early 2020 as a case study system, we used diverse algorithms (e.g., principal components analysis, support vector machines, kernel density estimation) and data partitioning methods to quantify remotely sensed landscape conditions associated with CWD cases. We used various model evaluation tools (e.g., AUC ratios, cumulative binomial testing, Jaccard similarity) to assess predictions of disease transmission risk using independent CWD data. We further examined model variation in the context of uncertainty. We provided significant support that vegetation phenology data representing landscape conditions can predict and map CWD transmission risk. Model predictions improved when incorporating inferred home ranges instead of raw hunter-reported coordinates. Different data availability scenarios identified variation among models. By showing that CWD could be predicted and mapped, our project adds to the available tools for understanding the landscape ecology of CWD transmission risk in free-ranging populations and natural conditions. Our modeling framework and use of widely available landscape data foster replicability for other wildlife diseases and study areas.
Collapse
Affiliation(s)
- Steven N Winter
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, United States
| | | | - Emmanuel A Frimpong
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, United States
| | - Luis E Escobar
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, United States.,Global Change Center, Virginia Tech, Blacksburg, VA, United States.,Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
11
|
CHRONIC WASTING DISEASE MODELING: AN OVERVIEW. J Wildl Dis 2021; 56:741-758. [PMID: 32544029 DOI: 10.7589/2019-08-213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/13/2019] [Indexed: 11/20/2022]
Abstract
Chronic wasting disease (CWD) is an infectious and fatal prion disease occurring in the family Cervidae. To update the research community regarding the status quo of CWD epidemic models, we conducted a meta-analysis on CWD research. We collected data from peer-reviewed articles published since 1980, when CWD was first diagnosed, until December 2018. We explored the analytical methods used historically to understand CWD. We used 14 standardized variables to assess overall analytical approaches of CWD research communities, data used, and the modeling methods used. We found that CWD modeling initiated in the early 2000s and has increased since then. Connectivity of the research community was heavily reliant on a cluster of CWD researchers. Studies focused primarily on regression and compartment-based models, population-level approaches, and host species of game management concern. Similarly, CWD research focused on single populations, species, and locations, neglecting modeling using community ecology and biogeographic approaches. Chronic wasting disease detection relied on classic diagnostic methods with limited sensitivity for most stages of infection. Overall, we found that past modeling efforts generated a solid baseline for understanding CWD in wildlife and increased our knowledge on infectious prion ecology. Future analytical efforts should consider more sensitive diagnostic methods to quantify uncertainty and broader scale studies to elucidate CWD transmission beyond population-level approaches. Considering that infectious prions may not follow biological rules of well-known wildlife pathogens (i.e., viruses, bacteria, fungi), assumptions used when modeling other infectious disease may not apply for CWD. Chronic wasting disease is a new challenge in wildlife epidemiology.
Collapse
|
12
|
Belsare AV, Millspaugh JJ, Mason JR, Sumners J, Viljugrein H, Mysterud A. Getting in Front of Chronic Wasting Disease: Model-Informed Proactive Approach for Managing an Emerging Wildlife Disease. Front Vet Sci 2021; 7:608235. [PMID: 33585599 PMCID: PMC7874108 DOI: 10.3389/fvets.2020.608235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/07/2020] [Indexed: 11/23/2022] Open
Abstract
Continuing geographic spread of chronic wasting disease (CWD) poses a serious threat to the sustainable future of cervids and hunting in North America. Moreover, CWD has been detected in captive cervids in South Korea and, in recent years, in free-ranging reindeer in Europe (Norway). Management of this disease is limited by logistical, financial, and sociopolitical considerations, and current strategies primarily focus on reducing host densities through hunter harvest and targeted culling. The success of such strategies in mitigating the spread and prevalence of CWD only upon detection is questionable. Here, we propose a proactive approach that emphasizes pre-emptive management through purposeful integration of virtual experiments (simulating alternate interventions as model scenarios) with the aim of evaluating their effectiveness. Here, we have used a published agent-based model that links white-tailed deer demography and behavior with CWD transmission dynamics to first derive a CWD outbreak trajectory and then use the trajectory to highlight issues associated with different phases of the CWD outbreak (pre-establishment/transition/endemic). Specifically, we highlight the practical constraints on surveillance in the pre-establishment phase and recommend that agencies use a realistic detection threshold for their CWD surveillance programs. We further demonstrate that many disease introductions are "dead ends" not leading to a full epidemic due to high stochasticity and harvesting in the pre-establishment phase of CWD. Model evaluated pre-emptive (pre-detection) harvest strategies could increase the resilience of the deer population to CWD spread and establishment. We conclude it is important to adaptively position CWD management ahead of, rather than behind, the CWD front.
Collapse
Affiliation(s)
- Aniruddha V. Belsare
- Department of Fisheries and Wildlife, Boone and Crockett Quantitative Wildlife Center, Michigan State University, East Lansing, MI, United States
| | - Joshua J. Millspaugh
- W.A. Franke College of Forestry and Conservation, Wildlife Biology Program, University of Montana, Missoula, MT, United States
| | - J. R. Mason
- Michigan Department of Natural Resources Executive in Residence, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States
| | - Jason Sumners
- Missouri Department of Conservation, Columbia, MO, United States
| | | | - Atle Mysterud
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| |
Collapse
|
13
|
Ableman A, Hynes K, Schuler K, Martin A. Partnering with Taxidermists for Improved Chronic Wasting Disease Surveillance. Animals (Basel) 2019; 9:ani9121113. [PMID: 31835654 PMCID: PMC6941029 DOI: 10.3390/ani9121113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Chronic wasting disease (CWD) is a contagious neurological disease affecting deer, moose, elk, and reindeer. CWD is predominantly found in North America and has a higher prevalence in older male deer. To increase the submission of samples from older male deer, the Taxidermy Partnership Program (TPP) was implemented in New York State (NYS). This program partners with taxidermists to obtain valuable samples that would otherwise be lost and helps raise awareness about CWD. Since its start, the TPP has been successful in increasing the number of older male deer submitted for CWD testing. Abstract Chronic wasting disease (CWD) is a neurodegenerative disease of cervids caused by a misfolded protein called a prion. This disease affects captive and free-ranging deer, moose, elk, and reindeer, and has been detected in 26 states. Cervids infected with CWD may be asymptomatic for months or years. In most areas, older male deer have higher prevalence rates. Prior to 2013, CWD surveillance in New York State focused on testing samples of convenience, by collecting deer heads from meat processors. However, this sampling was biased because many of the heads from older male deer were taken to taxidermists to be mounted. In 2013, the Taxidermy Partnership Program (TPP) was created to train taxidermists to collect CWD samples, and to increase the proportion of older male deer submitted for CWD testing. Added benefits include improved communication with taxidermists and increased awareness about CWD. Trained taxidermists were able to successfully collect and submit tissue samples with few errors. Participating taxidermists were paid for viable samples. Currently, there is a stable number of taxidermists that participate each year. This program has proven to be a valuable resource for obtaining high-value CWD samples for the wildlife agency, requiring a minimal amount of funding and time.
Collapse
Affiliation(s)
- Ashley Ableman
- Wildlife Health Unit, Wildlife Resources Center, New York State Department of Environmental Conservation, 108 Game Farm Road, Delmar, NY 12054, USA;
- Correspondence:
| | - Kevin Hynes
- Wildlife Health Unit, Wildlife Resources Center, New York State Department of Environmental Conservation, 108 Game Farm Road, Delmar, NY 12054, USA;
| | - Krysten Schuler
- Cornell Wildlife Health Laboratory, Animal Health Diagnostic Center, Cornell School of Veterinary Medicine, 240 Farrier Road, Ithaca, NY 14853, USA;
| | - Angela Martin
- Bureau of Environmental Exposure Investigation, Center for Environmental Health, New York State Department of Health, ESP Corning Tower, Albany, NY 12237, USA;
| |
Collapse
|
14
|
Koutsoumanis K, Allende A, Alvarez-Ordoňez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Skandamis P, Suffredini E, Andreoletti O, Benestad SL, Comoy E, Nonno R, da Silva Felicio T, Ortiz-Pelaez A, Simmons MM. Update on chronic wasting disease (CWD) III. EFSA J 2019; 17:e05863. [PMID: 32626163 PMCID: PMC7008890 DOI: 10.2903/j.efsa.2019.5863] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The European Commission asked EFSA for a Scientific Opinion: to revise the state of knowledge about the differences between the chronic wasting disease (CWD) strains found in North America (NA) and Europe and within Europe; to review new scientific evidence on the zoonotic potential of CWD and to provide recommendations to address the potential risks and to identify risk factors for the spread of CWD in the European Union. Full characterisation of European isolates is being pursued, whereas most NA CWD isolates have not been characterised in this way. The differing surveillance programmes in these continents result in biases in the types of cases that can be detected. Preliminary data support the contention that the CWD strains identified in Europe and NA are different and suggest the presence of strain diversity in European cervids. Current data do not allow any conclusion on the implications of strain diversity on transmissibility, pathogenesis or prevalence. Available data do not allow any conclusion on the zoonotic potential of NA or European CWD isolates. The risk of CWD to humans through consumption of meat cannot be directly assessed. At individual level, consumers of meat, meat products and offal derived from CWD-infected cervids will be exposed to the CWD agent(s). Measures to reduce human dietary exposure could be applied, but exclusion from the food chain of whole carcasses of infected animals would be required to eliminate exposure. Based on NA experiences, all the risk factors identified for the spread of CWD may be associated with animals accumulating infectivity in both the peripheral tissues and the central nervous system. A subset of risk factors is relevant for infected animals without involvement of peripheral tissues. All the risk factors should be taken into account due to the potential co-localisation of animals presenting with different disease phenotypes.
Collapse
|
15
|
Tabak MA, Pedersen K, Miller RS. Detection error influences both temporal seroprevalence predictions and risk factors associations in wildlife disease models. Ecol Evol 2019; 9:10404-10414. [PMID: 31632645 PMCID: PMC6787870 DOI: 10.1002/ece3.5558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/06/2019] [Indexed: 11/08/2022] Open
Abstract
Understanding the prevalence of pathogens in invasive species is essential to guide efforts to prevent transmission to agricultural animals, wildlife, and humans. Pathogen prevalence can be difficult to estimate for wild species due to imperfect sampling and testing (pathogens may not be detected in infected individuals and erroneously detected in individuals that are not infected). The invasive wild pig (Sus scrofa, also referred to as wild boar and feral swine) is one of the most widespread hosts of domestic animal and human pathogens in North America.We developed hierarchical Bayesian models that account for imperfect detection to estimate the seroprevalence of five pathogens (porcine reproductive and respiratory syndrome virus, pseudorabies virus, Influenza A virus in swine, Hepatitis E virus, and Brucella spp.) in wild pigs in the United States using a dataset of over 50,000 samples across nine years. To assess the effect of incorporating detection error in models, we also evaluated models that ignored detection error. Both sets of models included effects of demographic parameters on seroprevalence. We compared our predictions of seroprevalence to 40 published studies, only one of which accounted for imperfect detection.We found a range of seroprevalence among the pathogens with a high seroprevalence of pseudorabies virus, indicating significant risk to livestock and wildlife. Demographics had mostly weak effects, indicating that other variables may have greater effects in predicting seroprevalence.Models that ignored detection error led to different predictions of seroprevalence as well as different inferences on the effects of demographic parameters.Our results highlight the importance of incorporating detection error in models of seroprevalence and demonstrate that ignoring such error may lead to erroneous conclusions about the risk associated with pathogen transmission. When using opportunistic sampling data to model seroprevalence and evaluate risk factors, detection error should be included.
Collapse
Affiliation(s)
- Michael A. Tabak
- Center for Epidemiology and Animal HealthUnited States Department of AgricultureFort CollinsColorado
| | - Kerri Pedersen
- Wildlife ServicesUnited States Department of AgricultureRaleighNorth Carolina
| | - Ryan S. Miller
- Center for Epidemiology and Animal HealthUnited States Department of AgricultureFort CollinsColorado
| |
Collapse
|